Forecasting a Stock’s Closing Price:

The report below details a exploratory analysis of AMZN stock performance over the past 5 years. The forecast is produced using R to fit three Bayesian structural time series models. The data consists of a .xts times series dataset available through “Yahoo Finance”.

Understand the SP500 Stocks & Extract Stock Symbol…

## 'data.frame':    505 obs. of  9 variables:
##  $ Symbol                : chr  "MMM" "ABT" "ABBV" "ABMD" ...
##  $ Security              : chr  "3M Company" "Abbott Laboratories" "AbbVie Inc." "ABIOMED Inc" ...
##  $ SEC.filings           : chr  "reports" "reports" "reports" "reports" ...
##  $ GICS.Sector           : chr  "Industrials" "Health Care" "Health Care" "Health Care" ...
##  $ GICS.Sub.Industry     : chr  "Industrial Conglomerates" "Health Care Equipment" "Pharmaceuticals" "Health Care Equipment" ...
##  $ Headquarters.Location : chr  "St. Paul, Minnesota" "North Chicago, Illinois" "North Chicago, Illinois" "Danvers, Massachusetts" ...
##  $ Date.first.added.3..4.: chr  "" "1964-03-31" "2012-12-31" "2018-05-31" ...
##  $ CIK                   : int  66740 1800 1551152 815094 1467373 718877 796343 2488 1158449 874761 ...
##  $ Founded               : chr  "1902" "1888" "2013 (1888)" "1981" ...
## [1] "AMZN"
## [1] "Consumer Discretionary"
## [1] "Internet & Direct Marketing Retail"

Import the Stock Dataset…

## [1] "AMZN"
## An 'xts' object on 2014-01-17/2019-01-15 containing:
##   Data: num [1:1257, 1:6] 394 403 408 401 398 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:6] "AMZN.Open" "AMZN.High" "AMZN.Low" "AMZN.Close" ...
##   Indexed by objects of class: [Date] TZ: UTC
##   xts Attributes:  
## List of 2
##  $ src    : chr "yahoo"
##  $ updated: POSIXct[1:1], format: "2019-01-16 01:10:58"

Exploratory Analysis of Stock Dataset…

Exploratory Analysis of stock dataset - Open Price:

Exploratory Analysis of stock dataset - Close Price:

Exploratory Analysis of stock dataset - High Price:

Exploratory Analysis of stock dataset - Low Price:

Exploratory Analysis of stock dataset - Volume:

Exploratory Analysis of stock dataset - Candle Chart - SMA = 20:

Exploratory Analysis of stock dataset - TA: Added Bollinger Bands, Volume, and Moving Average Convergence Divergence (MACD) plots:

Exploratory Analysis of stock dataset - Calculate some predictor variables to add to the stock dataset:

## An 'xts' object on 2014-03-31/2019-01-15 containing:
##   Data: num [1:1208, 1:18] 342 338 346 342 335 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:18] "Open" "High" "Low" "Close" ...
##   Indexed by objects of class: [Date] TZ: UTC
##   xts Attributes:  
## List of 2
##  $ src    : chr "yahoo"
##  $ updated: POSIXct[1:1], format: "2019-01-16 01:10:58"
##              Open   High    Low  Close   Volume Adjusted daily.returns
## 2014-03-31 342.40 346.29 334.06 336.37  4297500   336.37  -0.005675645
## 2014-04-01 338.09 344.43 338.00 342.99  3600100   342.99   0.019680694
## 2014-04-02 345.99 348.30 340.38 341.96  4475500   341.96  -0.003003000
## 2014-04-03 341.82 342.50 328.46 333.62  6399300   333.62  -0.024388806
## 2014-04-04 335.15 335.44 315.61 323.00 12534600   323.00  -0.031832609
## 2014-04-07 320.99 324.94 313.13 317.76  7077400   317.76  -0.016222879
##                  atr       SMI      ADX oscillator        pctB
## 2014-03-31  9.991097 -25.76660 25.69594        -50 0.017939734
## 2014-04-01  9.853162 -29.32020 26.94289        -50 0.121687522
## 2014-04-02  9.715078 -32.00644 27.42554        -50 0.188781589
## 2014-04-03 10.024001 -36.05854 28.72464        -75 0.092263203
## 2014-04-04 10.724431 -40.57839 30.60146        -80 0.009346975
## 2014-04-07 10.801971 -45.16075 32.45552        -85 0.006352941
##            Delt.1.arithmetic        EMA       maEMV    signal      mfi
## 2014-03-31        0.47396283 -0.3505966 -0.10846753 -1.115453 44.20347
## 2014-04-01        0.01500899 -0.1864703 -0.09518293 -1.319675 49.27906
## 2014-04-02       -0.32061697 -0.2618417 -0.07549397 -1.491625 46.64744
## 2014-04-03        0.33102691 -0.2624081 -0.08526839 -1.669376 37.30442
## 2014-04-04       -0.07439208 -0.2610000 -0.07168018 -1.887372 28.46426
## 2014-04-07       -0.30092205 -0.2528033 -0.08081438 -2.140675 23.13613
##                 sar
## 2014-03-31 368.0574
## 2014-04-01 363.6212
## 2014-04-02 359.8060
## 2014-04-03 356.5250
## 2014-04-04 352.8602
## 2014-04-07 347.4853

Exploratory Analysis of stock dataset - Volume:

Exploratory Analysis of stock dataset - Scatterplot Matrix:

Train a Bayesian Nowcasting Structural Time Series Model to Forecast Close Price…

## =-=-=-=-= Iteration 0 Wed Jan 16 01:11:41 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 10 Wed Jan 16 01:11:41 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 20 Wed Jan 16 01:11:42 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 30 Wed Jan 16 01:11:43 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 40 Wed Jan 16 01:11:45 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 50 Wed Jan 16 01:11:46 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 60 Wed Jan 16 01:11:47 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 70 Wed Jan 16 01:11:48 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 80 Wed Jan 16 01:11:49 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 90 Wed Jan 16 01:11:50 2019
##  =-=-=-=-=
## $residual.sd
## [1] 8.072437
## 
## $prediction.sd
## [1] 21.131
## 
## $rsquare
## [1] 0.9997181
## 
## $relative.gof
## [1] -0.1648646

Plot Model

##  [1] "sigma.obs"                  "trend.level.sd"            
##  [3] "trend.slope.mean"           "trend.slope.ar.coefficient"
##  [5] "trend.slope.sd"             "sigma.seasonal.54"         
##  [7] "final.state"                "state.contributions"       
##  [9] "one.step.prediction.errors" "log.likelihood"            
## [11] "has.regression"             "state.specification"       
## [13] "prior"                      "timestamp.info"            
## [15] "model.options"              "family"                    
## [17] "niter"                      "original.series"

Create Prediction of Close Price Using the Nowcasting Model…

## List of 5
##  $ mean           : num [1:20] 1648 1663 1670 1668 1665 ...
##  $ median         : num [1:20] 1647 1660 1670 1659 1667 ...
##  $ interval       : num [1:2, 1:20] 1624 1671 1625 1700 1628 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "5%" "95%"
##   .. ..$ : NULL
##  $ distribution   : num [1:13, 1:20] 1638 1647 1657 1671 1621 ...
##  $ original.series:'zoo' series from 2014-03-31 to 2019-01-15
##   Data: num [1:1208] 336 343 342 334 323 ...
##   Index:  Date[1:1208], format: "2014-03-31" "2014-04-01" ...
##  - attr(*, "class")= chr "bsts.prediction"

Summary of Prediction:

summary(pred)
##                 Length Class  Mode   
## mean              20   -none- numeric
## median            20   -none- numeric
## interval          40   -none- numeric
## distribution     260   -none- numeric
## original.series 1208   zoo    numeric

Plot the Mean:

par(mfrow=c(2,2))
plot(pred$original.series)
plot(pred$mean)
plot(pred$median)
plot(pred$interval)

Plot Prediction:

plot(pred, plot.original = 20)

Nowcasting Prediction Table

tail(pred$original.series)
## 2019-01-08 2019-01-09 2019-01-10 2019-01-11 2019-01-14 2019-01-15 
##    1656.58    1659.42    1656.22    1640.56    1617.21    1674.56
head(pred$mean)
## [1] 1647.697 1662.810 1670.239 1667.612 1665.439 1679.032
head(pred$median)
## [1] 1646.865 1660.332 1669.660 1658.682 1667.284 1666.767
head(pred$interval)
##         [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]
## 5%  1624.485 1625.388 1628.023 1624.198 1617.774 1622.787 1596.373
## 95% 1670.987 1700.176 1726.799 1718.561 1728.822 1768.324 1774.529
##         [,8]     [,9]    [,10]    [,11]    [,12]    [,13]    [,14]
## 5%  1593.084 1585.814 1576.296 1567.244 1538.910 1553.934 1546.799
## 95% 1768.208 1777.841 1800.035 1774.479 1757.476 1784.294 1805.536
##        [,15]    [,16]    [,17]    [,18]    [,19]    [,20]
## 5%  1552.073 1541.310 1548.405 1551.292 1539.622 1511.209
## 95% 1795.806 1792.998 1807.962 1808.187 1817.056 1826.319

Train a Bayesian Regression Structural Time Series Model to Forecast Close Price…

## =-=-=-=-= Iteration 0 Wed Jan 16 01:11:54 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 10 Wed Jan 16 01:11:55 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 20 Wed Jan 16 01:11:56 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 30 Wed Jan 16 01:11:57 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 40 Wed Jan 16 01:11:58 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 50 Wed Jan 16 01:11:59 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 60 Wed Jan 16 01:12:00 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 70 Wed Jan 16 01:12:01 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 80 Wed Jan 16 01:12:02 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 90 Wed Jan 16 01:12:03 2019
##  =-=-=-=-=
## $residual.sd
## [1] 4.859581
## 
## $prediction.sd
## [1] 16.07452
## 
## $rsquare
## [1] 0.9998978
## 
## $relative.gof
## [1] 0.3260676
## 
## $size
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   2.000   1.711   2.000   3.000 
## 
## $coefficients
##                            mean           sd   mean.inc    sd.inc
## daily.returns      4.110110e+02 66.741371278 411.011024 66.741371
## maEMV              1.287004e+01 11.604097882  18.682321  9.278849
## EMA                3.000435e-02  0.284646210   2.700391  0.000000
## Delt.1.arithmetic -7.668111e-04  0.007274609  -0.069013  0.000000
## sar                0.000000e+00  0.000000000   0.000000  0.000000
## mfi                0.000000e+00  0.000000000   0.000000  0.000000
## signal             0.000000e+00  0.000000000   0.000000  0.000000
## pctB               0.000000e+00  0.000000000   0.000000  0.000000
## oscillator         0.000000e+00  0.000000000   0.000000  0.000000
## ADX                0.000000e+00  0.000000000   0.000000  0.000000
## SMI                0.000000e+00  0.000000000   0.000000  0.000000
## atr                0.000000e+00  0.000000000   0.000000  0.000000
## Adjusted           0.000000e+00  0.000000000   0.000000  0.000000
## Volume             0.000000e+00  0.000000000   0.000000  0.000000
## Low                0.000000e+00  0.000000000   0.000000  0.000000
## High               0.000000e+00  0.000000000   0.000000  0.000000
## Open               0.000000e+00  0.000000000   0.000000  0.000000
## (Intercept)        0.000000e+00  0.000000000   0.000000  0.000000
##                     inc.prob
## daily.returns     1.00000000
## maEMV             0.68888889
## EMA               0.01111111
## Delt.1.arithmetic 0.01111111
## sar               0.00000000
## mfi               0.00000000
## signal            0.00000000
## pctB              0.00000000
## oscillator        0.00000000
## ADX               0.00000000
## SMI               0.00000000
## atr               0.00000000
## Adjusted          0.00000000
## Volume            0.00000000
## Low               0.00000000
## High              0.00000000
## Open              0.00000000
## (Intercept)       0.00000000

Parameter Estimates: (Sample mean of the Sampled beta value)

##       (Intercept)              Open              High               Low 
##        0.00000000        0.00000000        0.00000000        0.00000000 
##            Volume          Adjusted     daily.returns               atr 
##        0.00000000        0.00000000      375.95080202        0.00000000 
##               SMI               ADX        oscillator              pctB 
##        0.00000000        0.00000000        0.00000000        0.00000000 
## Delt.1.arithmetic               EMA             maEMV            signal 
##       -0.00069013        0.02700391       11.58303895        0.00000000 
##               mfi               sar 
##        0.00000000        0.00000000

Plot Model

##  [1] "coefficients"               "sigma.obs"                 
##  [3] "trend.level.sd"             "trend.slope.mean"          
##  [5] "trend.slope.ar.coefficient" "trend.slope.sd"            
##  [7] "sigma.seasonal.54"          "final.state"               
##  [9] "state.contributions"        "one.step.prediction.errors"
## [11] "log.likelihood"             "has.regression"            
## [13] "state.specification"        "prior"                     
## [15] "timestamp.info"             "model.options"             
## [17] "family"                     "niter"                     
## [19] "original.series"            "xlevels"                   
## [21] "terms"                      "predictors"

Create Prediction of Close Price Using the Regression Model…

## List of 5
##  $ mean           : num [1:91] 1645 1634 1636 1630 1645 ...
##  $ median         : num [1:91] 1645 1635 1635 1624 1644 ...
##  $ interval       : num [1:2, 1:91] 1638 1652 1620 1650 1618 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "5%" "95%"
##   .. ..$ : NULL
##  $ distribution   : num [1:10, 1:91] 1642 1644 1648 1647 1655 ...
##  $ original.series:'zoo' series from 2014-03-31 to 2019-01-15
##   Data: num [1:1208] 336 343 342 334 323 ...
##   Index:  Date[1:1208], format: "2014-03-31" "2014-04-01" ...
##  - attr(*, "class")= chr "bsts.prediction"

Summary of Prediction:

summary(pred)
##                 Length Class  Mode   
## mean              91   -none- numeric
## median            91   -none- numeric
## interval         182   -none- numeric
## distribution     910   -none- numeric
## original.series 1208   zoo    numeric

Plot the Mean:

par(mfrow=c(2,2))
plot(pred$original.series)
plot(pred$mean)
plot(pred$median)
plot(pred$interval)

Plot Prediction:

plot(pred, plot.original = 90)

Regression Model Prediction Table

tail(pred$original.series)
## 2019-01-08 2019-01-09 2019-01-10 2019-01-11 2019-01-14 2019-01-15 
##    1656.58    1659.42    1656.22    1640.56    1617.21    1674.56
head(pred$mean)
## [1] 1644.993 1633.601 1635.716 1629.532 1645.337 1633.396
head(pred$median)
## [1] 1645.144 1634.623 1635.216 1624.183 1643.779 1630.252
head(pred$interval)
##         [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]
## 5%  1637.666 1619.812 1617.714 1602.361 1619.216 1607.278 1604.497
## 95% 1651.701 1649.560 1653.202 1660.035 1669.694 1663.018 1660.215
##         [,8]     [,9]    [,10]    [,11]    [,12]    [,13]    [,14]
## 5%  1592.501 1557.226 1585.349 1572.160 1573.034 1575.069 1564.167
## 95% 1651.942 1614.964 1655.075 1663.318 1682.174 1697.336 1694.608
##        [,15]    [,16]    [,17]    [,18]    [,19]    [,20]    [,21]
## 5%  1567.208 1568.145 1578.433 1587.413 1567.592 1549.350 1539.774
## 95% 1697.583 1697.277 1712.280 1726.864 1725.073 1701.118 1711.866
##        [,22]    [,23]    [,24]    [,25]    [,26]    [,27]    [,28]
## 5%  1515.579 1534.879 1488.739 1482.518 1443.019 1467.978 1508.098
## 95% 1693.048 1727.653 1711.212 1696.978 1653.274 1648.666 1710.382
##        [,29]    [,30]    [,31]    [,32]    [,33]    [,34]    [,35]
## 5%  1502.854 1549.709 1528.988 1509.788 1518.940 1530.108 1510.649
## 95% 1691.385 1743.226 1754.001 1731.307 1767.963 1783.791 1785.044
##        [,36]    [,37]    [,38]    [,39]    [,40]    [,41]    [,42]
## 5%  1481.923 1535.542 1435.515 1405.304 1400.904 1460.016 1489.071
## 95% 1767.630 1828.999 1759.543 1734.627 1733.071 1796.352 1800.781
##        [,43]    [,44]    [,45]   [,46]    [,47]    [,48]    [,49]    [,50]
## 5%  1484.964 1466.889 1505.262 1549.52 1545.651 1537.414 1534.393 1527.944
## 95% 1791.917 1766.092 1801.530 1832.18 1839.620 1844.724 1819.629 1828.201
##        [,51]    [,52]    [,53]    [,54]    [,55]    [,56]    [,57]
## 5%  1487.326 1491.987 1490.320 1434.133 1410.702 1429.593 1413.386
## 95% 1805.244 1794.928 1796.785 1761.274 1738.023 1737.908 1740.420
##        [,58]    [,59]    [,60]    [,61]    [,62]    [,63]    [,64]
## 5%  1467.794 1465.123 1520.491 1516.841 1537.715 1592.528 1556.534
## 95% 1790.663 1782.519 1834.164 1841.507 1835.511 1887.061 1855.228
##        [,65]    [,66]   [,67]    [,68]    [,69]    [,70]    [,71]    [,72]
## 5%  1582.505 1553.053 1570.30 1576.177 1561.508 1535.488 1515.568 1474.174
## 95% 1861.556 1825.944 1834.39 1819.084 1816.687 1793.863 1770.756 1725.724
##        [,73]    [,74]    [,75]    [,76]    [,77]    [,78]    [,79]
## 5%  1514.049 1516.325 1499.315 1484.929 1467.112 1539.052 1502.015
## 95% 1782.016 1787.797 1786.575 1749.764 1750.446 1820.961 1777.412
##        [,80]    [,81]    [,82]    [,83]    [,84]    [,85]    [,86]
## 5%  1544.726 1561.902 1563.079 1551.251 1607.456 1637.555 1672.277
## 95% 1819.366 1826.710 1838.113 1826.148 1882.844 1887.129 1912.900
##        [,87]   [,88]    [,89]    [,90]    [,91]
## 5%  1659.478 1646.68 1626.508 1604.613 1613.447
## 95% 1898.256 1910.21 1896.201 1876.720 1897.059

Train a Modified Bayesian Regression Structural Time Series Model to Forecast Close Price…

## =-=-=-=-= Iteration 0 Wed Jan 16 01:12:07 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 10 Wed Jan 16 01:12:08 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 20 Wed Jan 16 01:12:09 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 30 Wed Jan 16 01:12:10 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 40 Wed Jan 16 01:12:11 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 50 Wed Jan 16 01:12:12 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 60 Wed Jan 16 01:12:14 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 70 Wed Jan 16 01:12:15 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 80 Wed Jan 16 01:12:16 2019
##  =-=-=-=-=
## =-=-=-=-= Iteration 90 Wed Jan 16 01:12:17 2019
##  =-=-=-=-=
## $residual.sd
## [1] 4.588233
## 
## $prediction.sd
## [1] 17.12498
## 
## $rsquare
## [1] 0.9999089
## 
## $relative.gof
## [1] 0.2352618
## 
## $size
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   1.000   1.000   1.011   1.000   2.000 
## 
## $coefficients
##                       mean           sd     mean.inc   sd.inc   inc.prob
## daily.returns 4.117891e+02 6.903792e+01 4.117891e+02 69.03792 1.00000000
## Adjusted      5.631126e-06 5.342155e-05 5.068013e-04  0.00000 0.01111111
## Volume        0.000000e+00 0.000000e+00 0.000000e+00  0.00000 0.00000000
## (Intercept)   0.000000e+00 0.000000e+00 0.000000e+00  0.00000 0.00000000

Parameter Estimates: (Sample mean of the Sampled beta value)

##   (Intercept)        Volume      Adjusted daily.returns 
##  0.000000e+00  0.000000e+00  5.068013e-06  3.743886e+02

Plot Model

##  [1] "coefficients"               "sigma.obs"                 
##  [3] "trend.level.sd"             "trend.slope.mean"          
##  [5] "trend.slope.ar.coefficient" "trend.slope.sd"            
##  [7] "sigma.seasonal.54"          "final.state"               
##  [9] "state.contributions"        "one.step.prediction.errors"
## [11] "log.likelihood"             "has.regression"            
## [13] "state.specification"        "prior"                     
## [15] "timestamp.info"             "model.options"             
## [17] "family"                     "niter"                     
## [19] "original.series"            "xlevels"                   
## [21] "terms"                      "predictors"

Create Prediction of Close Price Using the Modified Regression Model…

## List of 5
##  $ mean           : num [1:91] 1640 1658 1659 1663 1669 ...
##  $ median         : num [1:91] 1638 1655 1667 1664 1686 ...
##  $ interval       : num [1:2, 1:91] 1635 1646 1654 1664 1641 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:2] "5%" "95%"
##   .. ..$ : NULL
##  $ distribution   : num [1:3, 1:91] 1638 1646 1634 1654 1665 ...
##  $ original.series:'zoo' series from 2014-03-31 to 2019-01-15
##   Data: num [1:1208] 336 343 342 334 323 ...
##   Index:  Date[1:1208], format: "2014-03-31" "2014-04-01" ...
##  - attr(*, "class")= chr "bsts.prediction"

Summary of Prediction:

summary(pred)
##                 Length Class  Mode   
## mean              91   -none- numeric
## median            91   -none- numeric
## interval         182   -none- numeric
## distribution     273   -none- numeric
## original.series 1208   zoo    numeric

Plot the Mean:

par(mfrow=c(2,2))
plot(pred$original.series)
plot(pred$mean)
plot(pred$median)
plot(pred$interval)

Plot Prediction:

plot(pred, plot.original = 90)

Regression Model Prediction Table

tail(pred$original.series)
## 2019-01-08 2019-01-09 2019-01-10 2019-01-11 2019-01-14 2019-01-15 
##    1656.58    1659.42    1656.22    1640.56    1617.21    1674.56
head(pred$mean)
## [1] 1639.542 1657.653 1659.187 1662.982 1669.032 1674.833
head(pred$median)
## [1] 1637.898 1654.731 1666.911 1664.462 1686.134 1675.067
head(pred$interval)
##         [,1]     [,2]     [,3]     [,4]     [,5]     [,6]     [,7]
## 5%  1634.725 1653.742 1640.763 1654.217 1638.460 1664.753 1667.457
## 95% 1645.511 1663.609 1672.205 1670.711 1687.632 1684.749 1704.510
##         [,8]     [,9]    [,10]    [,11]    [,12]    [,13]    [,14]
## 5%  1667.245 1657.949 1707.632 1692.120 1673.744 1674.902 1692.977
## 95% 1701.789 1696.966 1734.604 1726.659 1736.292 1775.381 1808.173
##        [,15]    [,16]    [,17]    [,18]    [,19]    [,20]    [,21]
## 5%  1677.929 1666.170 1685.478 1684.917 1668.421 1662.597 1654.785
## 95% 1817.774 1834.271 1849.894 1883.914 1888.898 1887.170 1914.209
##        [,22]    [,23]    [,24]    [,25]    [,26]    [,27]    [,28]
## 5%  1655.553 1676.935 1683.379 1669.702 1666.775 1695.829 1722.242
## 95% 1901.781 1920.424 1941.317 1927.478 1929.046 1914.113 1948.973
##        [,29]    [,30]    [,31]    [,32]    [,33]    [,34]    [,35]
## 5%  1687.468 1694.596 1669.106 1629.262 1681.596 1697.637 1708.560
## 95% 1942.804 1962.260 1944.463 1919.017 1941.740 1930.685 1918.916
##        [,36]    [,37]    [,38]    [,39]    [,40]    [,41]    [,42]
## 5%  1699.686 1757.285 1704.146 1740.910 1777.847 1787.356 1802.062
## 95% 1888.806 1953.135 1888.905 1902.788 1920.964 1947.996 1931.314
##        [,43]    [,44]    [,45]    [,46]    [,47]    [,48]    [,49]
## 5%  1797.566 1795.184 1818.850 1833.486 1810.752 1782.963 1765.950
## 95% 1924.562 1908.968 1931.739 1940.983 1922.756 1910.042 1930.601
##        [,50]    [,51]    [,52]    [,53]    [,54]    [,55]    [,56]
## 5%  1795.319 1772.498 1770.460 1739.349 1735.981 1741.512 1763.216
## 95% 1963.240 1955.510 1974.841 1954.975 1968.294 1980.331 2012.772
##        [,57]    [,58]    [,59]    [,60]    [,61]    [,62]    [,63]
## 5%  1749.258 1774.807 1721.925 1760.752 1743.568 1738.757 1757.204
## 95% 2010.552 2048.304 2035.619 2059.880 2045.209 2083.170 2091.823
##        [,64]    [,65]    [,66]    [,67]    [,68]    [,69]    [,70]
## 5%  1718.417 1751.015 1701.140 1733.931 1719.517 1705.912 1714.806
## 95% 2057.067 2069.223 2018.476 2061.502 2029.472 2015.072 2021.676
##        [,71]    [,72]    [,73]    [,74]    [,75]    [,76]    [,77]
## 5%  1683.736 1691.949 1727.034 1723.320 1770.750 1746.266 1781.411
## 95% 1996.125 1996.290 2011.280 1992.492 2028.344 2005.983 2046.419
##        [,78]    [,79]    [,80]   [,81]    [,82]    [,83]    [,84]    [,85]
## 5%  1861.217 1798.334 1819.611 1793.84 1795.757 1746.565 1774.856 1765.919
## 95% 2115.763 2048.151 2065.931 2056.97 2073.269 2040.930 2074.952 2054.184
##        [,86]    [,87]    [,88]    [,89]    [,90]    [,91]
## 5%  1737.271 1751.688 1746.380 1742.171 1748.134 1775.221
## 95% 2021.611 2035.737 2033.237 2038.861 2029.676 2080.175