Load libraries

library(mFilter)
library(quantmod)

The Hodrick–Prescott Decomposition of Log of GDP per capita

For Japan

Import the data

getSymbols("RGDPCHJPA625NUPN",src="FRED")
[1] "RGDPCHJPA625NUPN"

Run the HP filter

hpf <- hpfilter(log(RGDPCHJPA625NUPN),freq = 6.25)

Plot the series

out <- xts(cbind(hpf$x, hpf$trend, hpf$cycle), index(RGDPCHJPA625NUPN))
colnames(out) <- c("x", "trend", "cycle")
par(mfrow = c(2, 1), mar = c(3, 2, 2, 1))
plot(out[,"x"], t= "n", main = paste(hpf$title, "of", hpf$xname))
lines(out[,"trend"], col = "red")

plot(out[,"cycle"], t = "n", main = "Cyclical component (deviations from trend)")

For Bolivia

getSymbols("RGDPCHBOA625NUPN",src="FRED")
[1] "RGDPCHBOA625NUPN"
hpf <- hpfilter(log(RGDPCHBOA625NUPN),freq = 6.25)
out <- xts(cbind(hpf$x, hpf$trend, hpf$cycle), index(RGDPCHBOA625NUPN))
colnames(out) <- c("x", "trend", "cycle")
par(mfrow = c(2, 1), mar = c(3, 2, 2, 1))
plot(out[,"x"], t= "n", main = paste(hpf$title, "of", hpf$xname))
lines(out[,"trend"], col = "red")

plot(out[,"cycle"], t = "n", main = "Cyclical component (deviations from trend)")

LS0tCnRpdGxlOiAiTG9uZyBSdW4gdnMgU2hvcnQgUnVuIERlY29tcG9zaXRpb25zIGluIFIiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCkxvYWQgbGlicmFyaWVzCgpgYGB7cn0KbGlicmFyeShtRmlsdGVyKQpsaWJyYXJ5KHF1YW50bW9kKQpgYGAKCiMgVGhlIEhvZHJpY2vigJNQcmVzY290dCBEZWNvbXBvc2l0aW9uIG9mIExvZyBvZiBHRFAgcGVyIGNhcGl0YQoKIyMgRm9yIEphcGFuCkltcG9ydCB0aGUgZGF0YQpgYGB7cn0KZ2V0U3ltYm9scygiUkdEUENISlBBNjI1TlVQTiIsc3JjPSJGUkVEIikKYGBgCgpSdW4gdGhlIEhQIGZpbHRlcgoKYGBge3J9CmhwZiA8LSBocGZpbHRlcihsb2coUkdEUENISlBBNjI1TlVQTiksZnJlcSA9IDYuMjUpCmBgYAoKUGxvdCB0aGUgc2VyaWVzCmBgYHtyfQpvdXQgPC0geHRzKGNiaW5kKGhwZiR4LCBocGYkdHJlbmQsIGhwZiRjeWNsZSksIGluZGV4KFJHRFBDSEpQQTYyNU5VUE4pKQpjb2xuYW1lcyhvdXQpIDwtIGMoIngiLCAidHJlbmQiLCAiY3ljbGUiKQoKcGFyKG1mcm93ID0gYygyLCAxKSwgbWFyID0gYygzLCAyLCAyLCAxKSkKcGxvdChvdXRbLCJ4Il0sIHQ9ICJuIiwgbWFpbiA9IHBhc3RlKGhwZiR0aXRsZSwgIm9mIiwgaHBmJHhuYW1lKSkKbGluZXMob3V0WywidHJlbmQiXSwgY29sID0gInJlZCIpCnBsb3Qob3V0WywiY3ljbGUiXSwgdCA9ICJuIiwgbWFpbiA9ICJDeWNsaWNhbCBjb21wb25lbnQgKGRldmlhdGlvbnMgZnJvbSB0cmVuZCkiKQpgYGAKCgojIyBGb3IgQm9saXZpYQoKYGBge3J9CmdldFN5bWJvbHMoIlJHRFBDSEJPQTYyNU5VUE4iLHNyYz0iRlJFRCIpCmhwZiA8LSBocGZpbHRlcihsb2coUkdEUENIQk9BNjI1TlVQTiksZnJlcSA9IDYuMjUpCm91dCA8LSB4dHMoY2JpbmQoaHBmJHgsIGhwZiR0cmVuZCwgaHBmJGN5Y2xlKSwgaW5kZXgoUkdEUENIQk9BNjI1TlVQTikpCmNvbG5hbWVzKG91dCkgPC0gYygieCIsICJ0cmVuZCIsICJjeWNsZSIpCgpwYXIobWZyb3cgPSBjKDIsIDEpLCBtYXIgPSBjKDMsIDIsIDIsIDEpKQpwbG90KG91dFssIngiXSwgdD0gIm4iLCBtYWluID0gcGFzdGUoaHBmJHRpdGxlLCAib2YiLCBocGYkeG5hbWUpKQpsaW5lcyhvdXRbLCJ0cmVuZCJdLCBjb2wgPSAicmVkIikKcGxvdChvdXRbLCJjeWNsZSJdLCB0ID0gIm4iLCBtYWluID0gIkN5Y2xpY2FsIGNvbXBvbmVudCAoZGV2aWF0aW9ucyBmcm9tIHRyZW5kKSIpCmBgYAoKCg==