Autores
- Romina Pedreros (DDS). Cirujano Dentista, Estudiante de Postgrado Trastornos Temporomandibulares y Dolor Orofacial, Facultad de Medicina Universidad del Desarrollo, Santiago, Chile.
- Rodrigo Casassus (DDS, MS). Cirujano Dentista, Especialista en Trastornos Temporomandibulares y Dolor Orofacial Universidad de Kentucky. Profesor Asociado y Director Postgrado Trastornos Temporomandibulares y Dolor Orofacial, Facultad de Medicina, Universidad del Desarrollo, Santiago, Chile.
- María Carolina Díaz (DDS). Cirujano Dentista. Especialista en Trastornos Temporomandibulares y Dolor Orofacial Universidad Andrés Bello. Profesor Asociado y Subdirectora Postgrado Trastornos Temporomandibulares y Dolor Orofacial, Facultad de Medicina, Universidad del Desarrollo, Santiago, Chile.
Paquetes
library(meta)
Loading 'meta' package (version 4.9-4).
Type 'help(meta)' for a brief overview.
Dataset
df <- read_csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vSF0IaPzgT1j8zZjCRttANxOh948pFZVaQvBfRafzdfHjDox2lc1KgMGjBfrbqh0HWdtjPXQbYXDhm1/pub?gid=0&single=true&output=csv")
Parsed with column specification:
cols(
Estudio = [31mcol_character()[39m,
Año = [32mcol_double()[39m,
`Diseño del estudio` = [31mcol_character()[39m,
`Método diagnóstico` = [31mcol_character()[39m,
`Método diagnóstico BS` = [31mcol_character()[39m,
Musculo = [31mcol_character()[39m,
`medida utilizada para medir grosor muscular` = [31mcol_character()[39m,
`n en el grupo con bruxismo` = [32mcol_double()[39m,
`promedio músculo grupo bruxismo posición relajada` = [32mcol_double()[39m,
`promedio músculo grupo bruxismo máximo apriete` = [32mcol_double()[39m,
`desviación estandar grupo bruxismo posición relajada` = [32mcol_double()[39m,
`desviación estándar grupo bruxismo máximo apriete` = [32mcol_double()[39m,
`n en el grupo control` = [32mcol_double()[39m,
`promedio músculo grupo control posición relajada` = [32mcol_double()[39m,
`promedio músculo grupo control máximo apriete` = [32mcol_double()[39m,
`desviación estandar grupo control posición relajada` = [32mcol_double()[39m,
`desviación estándar grupo control máximo apriete` = [32mcol_double()[39m
)
EDA
summary(df)
Estudio Año Diseño del estudio Método diagnóstico Método diagnóstico BS Musculo medida utilizada para medir grosor muscular
Length:4 Min. :2016 Length:4 Length:4 Length:4 Length:4 Length:4
Class :character 1st Qu.:2016 Class :character Class :character Class :character Class :character Class :character
Mode :character Median :2016 Mode :character Mode :character Mode :character Mode :character Mode :character
Mean :2016
3rd Qu.:2016
Max. :2016
n en el grupo con bruxismo promedio músculo grupo bruxismo posición relajada promedio músculo grupo bruxismo máximo apriete desviación estandar grupo bruxismo posición relajada
Min. :45 Min. :0.4800 Min. :0.570 Min. :0.010
1st Qu.:45 1st Qu.:0.4875 1st Qu.:0.600 1st Qu.:0.010
Median :45 Median :0.6600 Median :0.880 Median :0.015
Mean :45 Mean :0.6650 Mean :0.885 Mean :0.015
3rd Qu.:45 3rd Qu.:0.8375 3rd Qu.:1.165 3rd Qu.:0.020
Max. :45 Max. :0.8600 Max. :1.210 Max. :0.020
desviación estándar grupo bruxismo máximo apriete n en el grupo control promedio músculo grupo control posición relajada promedio músculo grupo control máximo apriete
Min. :0.010 Min. :45 Min. :0.4900 Min. :0.5900
1st Qu.:0.025 1st Qu.:45 1st Qu.:0.4975 1st Qu.:0.5975
Median :0.030 Median :45 Median :0.6650 Median :0.8850
Mean :0.025 Mean :45 Mean :0.6675 Mean :0.8950
3rd Qu.:0.030 3rd Qu.:45 3rd Qu.:0.8350 3rd Qu.:1.1825
Max. :0.030 Max. :45 Max. :0.8500 Max. :1.2200
desviación estandar grupo control posición relajada desviación estándar grupo control máximo apriete
Min. :0.0100 Min. :0.02
1st Qu.:0.0175 1st Qu.:0.02
Median :0.0250 Median :0.03
Mean :0.0225 Mean :0.03
3rd Qu.:0.0300 3rd Qu.:0.04
Max. :0.0300 Max. :0.04
glimpse(df)
Observations: 4
Variables: 17
$ Estudio [3m[38;5;246m<chr>[39m[23m "Impact of bruxism on masseter and temporalis muscles and bite force", "Impact of bruxism on masseter and temporalis…
$ Año [3m[38;5;246m<dbl>[39m[23m 2016, 2016, 2016, 2016
$ `Diseño del estudio` [3m[38;5;246m<chr>[39m[23m "Observacional, transversal", "observacional, transversal", "observacional, transversal", "observacional, transversa…
$ `Método diagnóstico` [3m[38;5;246m<chr>[39m[23m "Ultrasonografía", "Ultrasonografía", "Ultrasonografía", "Ultrasonografía"
$ `Método diagnóstico BS` [3m[38;5;246m<chr>[39m[23m "Polisomnograma", "Polisomnograma", "Polisomnograma", "Polisomnograma"
$ Musculo [3m[38;5;246m<chr>[39m[23m "masetero derecho", "masetero izquierdo", "temporal anterior derecho", "temporal anterior izquierdo"
$ `medida utilizada para medir grosor muscular` [3m[38;5;246m<chr>[39m[23m "centímetros", "centímetros", "centímetros", "centímetros"
$ `n en el grupo con bruxismo` [3m[38;5;246m<dbl>[39m[23m 45, 45, 45, 45
$ `promedio músculo grupo bruxismo posición relajada` [3m[38;5;246m<dbl>[39m[23m 0.83, 0.86, 0.49, 0.48
$ `promedio músculo grupo bruxismo máximo apriete` [3m[38;5;246m<dbl>[39m[23m 1.15, 1.21, 0.61, 0.57
$ `desviación estandar grupo bruxismo posición relajada` [3m[38;5;246m<dbl>[39m[23m 0.02, 0.02, 0.01, 0.01
$ `desviación estándar grupo bruxismo máximo apriete` [3m[38;5;246m<dbl>[39m[23m 0.03, 0.03, 0.03, 0.01
$ `n en el grupo control` [3m[38;5;246m<dbl>[39m[23m 45, 45, 45, 45
$ `promedio músculo grupo control posición relajada` [3m[38;5;246m<dbl>[39m[23m 0.85, 0.83, 0.49, 0.50
$ `promedio músculo grupo control máximo apriete` [3m[38;5;246m<dbl>[39m[23m 1.17, 1.22, 0.60, 0.59
$ `desviación estandar grupo control posición relajada` [3m[38;5;246m<dbl>[39m[23m 0.03, 0.02, 0.01, 0.03
$ `desviación estándar grupo control máximo apriete` [3m[38;5;246m<dbl>[39m[23m 0.04, 0.04, 0.02, 0.02
Subsets
Data cleaning
glimpse(df)
Observations: 4
Variables: 17
$ estudio [3m[38;5;246m<chr>[39m[23m "Impact of bruxism on masseter and temporalis muscles and bite force", "Impact of bruxism on masseter and temporalis …
$ ano [3m[38;5;246m<dbl>[39m[23m 2016, 2016, 2016, 2016
$ diseno_del_estudio [3m[38;5;246m<chr>[39m[23m "Observacional, transversal", "observacional, transversal", "observacional, transversal", "observacional, transversal"
$ metodo_diagnostico [3m[38;5;246m<chr>[39m[23m "Ultrasonografía", "Ultrasonografía", "Ultrasonografía", "Ultrasonografía"
$ metodo_diagnostico_bs [3m[38;5;246m<chr>[39m[23m "Polisomnograma", "Polisomnograma", "Polisomnograma", "Polisomnograma"
$ musculo [3m[38;5;246m<chr>[39m[23m "masetero derecho", "masetero izquierdo", "temporal anterior derecho", "temporal anterior izquierdo"
$ medida_utilizada_para_medir_grosor_muscular [3m[38;5;246m<chr>[39m[23m "centímetros", "centímetros", "centímetros", "centímetros"
$ n_en_el_grupo_con_bruxismo [3m[38;5;246m<dbl>[39m[23m 45, 45, 45, 45
$ promedio_musculo_grupo_bruxismo_posicion_relajada [3m[38;5;246m<dbl>[39m[23m 0.83, 0.86, 0.49, 0.48
$ promedio_musculo_grupo_bruxismo_maximo_apriete [3m[38;5;246m<dbl>[39m[23m 1.15, 1.21, 0.61, 0.57
$ desviacion_estandar_grupo_bruxismo_posicion_relajada [3m[38;5;246m<dbl>[39m[23m 0.02, 0.02, 0.01, 0.01
$ desviacion_estandar_grupo_bruxismo_maximo_apriete [3m[38;5;246m<dbl>[39m[23m 0.03, 0.03, 0.03, 0.01
$ n_en_el_grupo_control [3m[38;5;246m<dbl>[39m[23m 45, 45, 45, 45
$ promedio_musculo_grupo_control_posicion_relajada [3m[38;5;246m<dbl>[39m[23m 0.85, 0.83, 0.49, 0.50
$ promedio_musculo_grupo_control_maximo_apriete [3m[38;5;246m<dbl>[39m[23m 1.17, 1.22, 0.60, 0.59
$ desviacion_estandar_grupo_control_posicion_relajada [3m[38;5;246m<dbl>[39m[23m 0.03, 0.02, 0.01, 0.03
$ desviacion_estandar_grupo_control_maximo_apriete [3m[38;5;246m<dbl>[39m[23m 0.04, 0.04, 0.02, 0.02
MA
Relajada
metacont(n_en_el_grupo_con_bruxismo,
promedio_musculo_grupo_bruxismo_posicion_relajada,
desviacion_estandar_grupo_bruxismo_posicion_relajada,
n_en_el_grupo_control,
promedio_musculo_grupo_control_posicion_relajada,
desviacion_estandar_grupo_control_posicion_relajada,
data = df,
sm = "SMD")
SMD 95%-CI %W(fixed) %W(random)
1 -0.7778 [-1.2070; -0.3485] 25.7 25.0
2 1.4872 [ 1.0180; 1.9563] 21.5 24.8
3 0.0000 [-0.4132; 0.4132] 27.7 25.1
4 -0.8868 [-1.3207; -0.4529] 25.1 25.0
Number of studies combined: k = 4
SMD 95%-CI z p-value
Fixed effect model -0.1029 [-0.3204; 0.1146] -0.93 0.3540
Random effects model -0.0474 [-1.0721; 0.9774] -0.09 0.9278
Quantifying heterogeneity:
tau^2 = 1.0438; H = 4.70 [3.39; 6.52]; I^2 = 95.5% [91.3%; 97.6%]
Test of heterogeneity:
Q d.f. p-value
66.40 3 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hedges' g (bias corrected standardised mean difference)
relajada
SMD 95%-CI %W(fixed) %W(random)
1 -0.7778 [-1.2070; -0.3485] 25.7 25.0
2 1.4872 [ 1.0180; 1.9563] 21.5 24.8
3 0.0000 [-0.4132; 0.4132] 27.7 25.1
4 -0.8868 [-1.3207; -0.4529] 25.1 25.0
Number of studies combined: k = 4
SMD 95%-CI z p-value
Fixed effect model -0.1029 [-0.3204; 0.1146] -0.93 0.3540
Random effects model -0.0474 [-1.0721; 0.9774] -0.09 0.9278
Quantifying heterogeneity:
tau^2 = 1.0438; H = 4.70 [3.39; 6.52]; I^2 = 95.5% [91.3%; 97.6%]
Test of heterogeneity:
Q d.f. p-value
66.40 3 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hedges' g (bias corrected standardised mean difference)

relajada por musculo
Relajado masetero
relajada_masetero <- metacont(n_en_el_grupo_con_bruxismo,
promedio_musculo_grupo_bruxismo_posicion_relajada,
desviacion_estandar_grupo_bruxismo_posicion_relajada,
n_en_el_grupo_control,
promedio_musculo_grupo_control_posicion_relajada,
desviacion_estandar_grupo_control_posicion_relajada,
subset = masetero,
data = df,
studlab=paste(author, year),
sm = "SMD")
Error in paste(author, year) : objeto 'author' no encontrado
relajada_masetero
SMD 95%-CI %W(fixed) %W(random)
1 -0.7778 [-1.2070; -0.3485] 54.4 50.1
2 1.4872 [ 1.0180; 1.9563] 45.6 49.9
Number of studies combined: k = 2
SMD 95%-CI z p-value
Fixed effect model 0.2543 [-0.0624; 0.5709] 1.57 0.1156
Random effects model 0.3526 [-1.8669; 2.5722] 0.31 0.7555
Quantifying heterogeneity:
tau^2 = 2.5123; H = 6.98; I^2 = 97.9% [95.2%; 99.1%]
Test of heterogeneity:
Q d.f. p-value
48.74 1 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hedges' g (bias corrected standardised mean difference)

Relajado temporal
relajada_temporal
SMD 95%-CI %W(fixed) %W(random)
3 0.0000 [-0.4132; 0.4132] 52.4 50.3
4 -0.8868 [-1.3207; -0.4529] 47.6 49.7
Number of studies combined: k = 2
SMD 95%-CI z p-value
Fixed effect model -0.4217 [-0.7209; -0.1225] -2.76 0.0057
Random effects model -0.4408 [-1.3098; 0.4282] -0.99 0.3201
Quantifying heterogeneity:
tau^2 = 0.3465; H = 2.90; I^2 = 88.1% [54.4%; 96.9%]
Test of heterogeneity:
Q d.f. p-value
8.41 1 0.0037
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hedges' g (bias corrected standardised mean difference)

Apriete máximo
apriete
SMD 95%-CI %W(fixed) %W(random)
1 -0.5609 [-0.9825; -0.1392] 25.5 25.1
2 -0.2804 [-0.6957; 0.1349] 26.3 25.1
3 0.3889 [-0.0284; 0.8061] 26.1 25.1
4 -1.2541 [-1.7078; -0.8004] 22.1 24.7
Number of studies combined: k = 4
SMD 95%-CI z p-value
Fixed effect model -0.3923 [-0.6054; -0.1792] -3.61 0.0003
Random effects model -0.4227 [-1.0768; 0.2314] -1.27 0.2053
Quantifying heterogeneity:
tau^2 = 0.3980; H = 3.07 [2.02; 4.65]; I^2 = 89.4% [75.6%; 95.4%]
Test of heterogeneity:
Q d.f. p-value
28.22 3 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hedges' g (bias corrected standardised mean difference)

Apriete por músculo
apriete masetero
apriete_masetero
SMD 95%-CI %W(fixed) %W(random)
1 -0.5609 [-0.9825; -0.1392] 49.2 49.2
2 -0.2804 [-0.6957; 0.1349] 50.8 50.8
Number of studies combined: k = 2
SMD 95%-CI z p-value
Fixed effect model -0.4185 [-0.7144; -0.1227] -2.77 0.0056
Random effects model -0.4185 [-0.7144; -0.1227] -2.77 0.0056
Quantifying heterogeneity:
tau^2 = 0; H = 1.00; I^2 = 0.0%
Test of heterogeneity:
Q d.f. p-value
0.86 1 0.3530
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hedges' g (bias corrected standardised mean difference)

apriete temporal
apriete_temporal
SMD 95%-CI %W(fixed) %W(random)
3 0.3889 [-0.0284; 0.8061] 54.2 50.2
4 -1.2541 [-1.7078; -0.8004] 45.8 49.8
Number of studies combined: k = 2
SMD 95%-CI z p-value
Fixed effect model -0.3640 [-0.6711; -0.0569] -2.32 0.0202
Random effects model -0.4301 [-2.0402; 1.1800] -0.52 0.6006
Quantifying heterogeneity:
tau^2 = 1.3002; H = 5.22; I^2 = 96.3% [89.9%; 98.7%]
Test of heterogeneity:
Q d.f. p-value
27.29 1 < 0.0001
Details on meta-analytical method:
- Inverse variance method
- DerSimonian-Laird estimator for tau^2
- Hedges' g (bias corrected standardised mean difference)

LS0tCnRpdGxlOiAiMjAxOCBSb21pbmEgUlMgR3Jvc29yIG3DunNjdWxvcyB5IGJydXhpc21vIGRlbCBzdWXDsW8iCmF1dGhvcjogQW5hbGlzaXMgcG9yIFNlcmdpbyBVcmliZQpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICclZCAlQiwgJVknKWAiCgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6IAogICAgdG9jOiB5ZXMKICAgIHRvY19mbG9hdDogdHJ1ZQogICAgZmlnX2NhcHRpb246IHRydWUKLS0tCgojIEF1dG9yZXMKCjEuIFJvbWluYSBQZWRyZXJvcyAoRERTKS4gQ2lydWphbm8gRGVudGlzdGEsIEVzdHVkaWFudGUgZGUgUG9zdGdyYWRvIFRyYXN0b3Jub3MgVGVtcG9yb21hbmRpYnVsYXJlcyB5IERvbG9yIE9yb2ZhY2lhbCwgRmFjdWx0YWQgZGUgTWVkaWNpbmEgVW5pdmVyc2lkYWQgZGVsIERlc2Fycm9sbG8sIFNhbnRpYWdvLCBDaGlsZS4gCjEuIFJvZHJpZ28gQ2FzYXNzdXMgKEREUywgTVMpLiBDaXJ1amFubyBEZW50aXN0YSwgRXNwZWNpYWxpc3RhIGVuIFRyYXN0b3Jub3MgVGVtcG9yb21hbmRpYnVsYXJlcyB5IERvbG9yIE9yb2ZhY2lhbCBVbml2ZXJzaWRhZCBkZSBLZW50dWNreS4gUHJvZmVzb3IgQXNvY2lhZG8geSBEaXJlY3RvciBQb3N0Z3JhZG8gVHJhc3Rvcm5vcyBUZW1wb3JvbWFuZGlidWxhcmVzIHkgRG9sb3IgT3JvZmFjaWFsLCBGYWN1bHRhZCBkZSBNZWRpY2luYSwgVW5pdmVyc2lkYWQgZGVsIERlc2Fycm9sbG8sIFNhbnRpYWdvLCBDaGlsZS4KMS4gTWFyw61hIENhcm9saW5hIETDrWF6IChERFMpLiBDaXJ1amFubyBEZW50aXN0YS4gRXNwZWNpYWxpc3RhIGVuIFRyYXN0b3Jub3MgVGVtcG9yb21hbmRpYnVsYXJlcyB5IERvbG9yIE9yb2ZhY2lhbCBVbml2ZXJzaWRhZCBBbmRyw6lzIEJlbGxvLiBQcm9mZXNvciBBc29jaWFkbyB5IFN1YmRpcmVjdG9yYSBQb3N0Z3JhZG8gVHJhc3Rvcm5vcyBUZW1wb3JvbWFuZGlidWxhcmVzIHkgRG9sb3IgT3JvZmFjaWFsLCBGYWN1bHRhZCBkZSBNZWRpY2luYSwgVW5pdmVyc2lkYWQgZGVsIERlc2Fycm9sbG8sIFNhbnRpYWdvLCBDaGlsZS4gCgoKIyBQYXF1ZXRlcwpgYGB7ciwgd2FybmluZz1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmluc3RhbGwucGFja2FnZXMoIm1ldGEiKQpsaWJyYXJ5KG1ldGEpCmBgYAoKCiMgRGF0YXNldApgYGB7cn0KZGYgPC0gcmVhZF9jc3YoImh0dHBzOi8vZG9jcy5nb29nbGUuY29tL3NwcmVhZHNoZWV0cy9kL2UvMlBBQ1gtMXZTRjBJYVB6Z1Qxajh6WmpDUnR0QU54T2g5NDhwRlpWYVF2QmZSYWZ6ZGZIakRveDJsYzFLZ01HakJmcmJxaDBIV2R0alBYUWJZWERobTEvcHViP2dpZD0wJnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKCgojIEVEQQpgYGB7cn0KaGVhZChkZikKYGBgCmBgYHtyfQpzdW1tYXJ5KGRmKQpgYGAKYGBge3J9CmdsaW1wc2UoZGYpCmBgYAoKIyMgU3Vic2V0cwoKYGBge3J9Cm1hc2V0ZXJvIDwtIGMoMSwgMikKdGVtcG9yYWwgPC0gYygzLCA0KQpgYGAKCiMgRGF0YSBjbGVhbmluZwoKYGBge3J9CmRmIDwtIGphbml0b3I6OmNsZWFuX25hbWVzKGRmKQpgYGAKCmBgYHtyfQpnbGltcHNlKGRmKQpgYGAKCgoKIyBNQQojIyBSZWxhamFkYQpgYGB7cn0KcmVsYWphZGEgPC0gbWV0YWNvbnQobl9lbl9lbF9ncnVwb19jb25fYnJ1eGlzbW8sCiAgICAgICAgIHByb21lZGlvX211c2N1bG9fZ3J1cG9fYnJ1eGlzbW9fcG9zaWNpb25fcmVsYWphZGEsCiAgICAgICAgIGRlc3ZpYWNpb25fZXN0YW5kYXJfZ3J1cG9fYnJ1eGlzbW9fcG9zaWNpb25fcmVsYWphZGEsIAogICAgICAgICBuX2VuX2VsX2dydXBvX2NvbnRyb2wsIAogICAgICAgICBwcm9tZWRpb19tdXNjdWxvX2dydXBvX2NvbnRyb2xfcG9zaWNpb25fcmVsYWphZGEsIAogICAgICAgICBkZXN2aWFjaW9uX2VzdGFuZGFyX2dydXBvX2NvbnRyb2xfcG9zaWNpb25fcmVsYWphZGEsIAogICAgICAgICBkYXRhID0gZGYsIAogICAgICAgICBzbSA9ICJTTUQiKQoKYGBgCgpgYGB7cn0KcmVsYWphZGEKYGBgCgoKYGBge3J9CmZvcmVzdC5tZXRhKHJlbGFqYWRhKQpgYGAKCiMjIyByZWxhamFkYSBwb3IgbXVzY3VsbwoKIyMjIyBSZWxhamFkbyBtYXNldGVybwpgYGB7cn0KcmVsYWphZGFfbWFzZXRlcm8gPC0gbWV0YWNvbnQobl9lbl9lbF9ncnVwb19jb25fYnJ1eGlzbW8sCiAgICAgICAgIHByb21lZGlvX211c2N1bG9fZ3J1cG9fYnJ1eGlzbW9fcG9zaWNpb25fcmVsYWphZGEsCiAgICAgICAgIGRlc3ZpYWNpb25fZXN0YW5kYXJfZ3J1cG9fYnJ1eGlzbW9fcG9zaWNpb25fcmVsYWphZGEsIAogICAgICAgICBuX2VuX2VsX2dydXBvX2NvbnRyb2wsIAogICAgICAgICBwcm9tZWRpb19tdXNjdWxvX2dydXBvX2NvbnRyb2xfcG9zaWNpb25fcmVsYWphZGEsIAogICAgICAgICBkZXN2aWFjaW9uX2VzdGFuZGFyX2dydXBvX2NvbnRyb2xfcG9zaWNpb25fcmVsYWphZGEsIAogICAgICAgICBzdWJzZXQgPSBtYXNldGVybywgCiAgICAgICAgIGRhdGEgPSBkZiwgCiAgICAgICAgIHNtID0gIlNNRCIpCmBgYAoKYGBge3J9CnJlbGFqYWRhX21hc2V0ZXJvCmBgYAoKYGBge3J9CmZvcmVzdChyZWxhamFkYV9tYXNldGVybykKYGBgCgojIyMjIFJlbGFqYWRvIHRlbXBvcmFsCmBgYHtyfQpyZWxhamFkYV90ZW1wb3JhbCA8LSBtZXRhY29udChuX2VuX2VsX2dydXBvX2Nvbl9icnV4aXNtbywKICAgICAgICAgcHJvbWVkaW9fbXVzY3Vsb19ncnVwb19icnV4aXNtb19wb3NpY2lvbl9yZWxhamFkYSwKICAgICAgICAgZGVzdmlhY2lvbl9lc3RhbmRhcl9ncnVwb19icnV4aXNtb19wb3NpY2lvbl9yZWxhamFkYSwgCiAgICAgICAgIG5fZW5fZWxfZ3J1cG9fY29udHJvbCwgCiAgICAgICAgIHByb21lZGlvX211c2N1bG9fZ3J1cG9fY29udHJvbF9wb3NpY2lvbl9yZWxhamFkYSwgCiAgICAgICAgIGRlc3ZpYWNpb25fZXN0YW5kYXJfZ3J1cG9fY29udHJvbF9wb3NpY2lvbl9yZWxhamFkYSwgCiAgICAgICAgIHN1YnNldCA9IHRlbXBvcmFsLCAKICAgICAgICAgZGF0YSA9IGRmLCAKICAgICAgICAgc20gPSAiU01EIikKYGBgCgpgYGB7cn0KcmVsYWphZGFfdGVtcG9yYWwKYGBgCgpgYGB7cn0KZm9yZXN0KHJlbGFqYWRhX3RlbXBvcmFsKQpgYGAKCiMjIEFwcmlldGUgbcOheGltbwpgYGB7cn0KYXByaWV0ZSA8LSBtZXRhY29udChuX2VuX2VsX2dydXBvX2Nvbl9icnV4aXNtbywKICAgICAgICAgcHJvbWVkaW9fbXVzY3Vsb19ncnVwb19icnV4aXNtb19tYXhpbW9fYXByaWV0ZSwKICAgICAgICAgZGVzdmlhY2lvbl9lc3RhbmRhcl9ncnVwb19icnV4aXNtb19tYXhpbW9fYXByaWV0ZSwgCiAgICAgICAgIG5fZW5fZWxfZ3J1cG9fY29udHJvbCwgCiAgICAgICAgIHByb21lZGlvX211c2N1bG9fZ3J1cG9fY29udHJvbF9tYXhpbW9fYXByaWV0ZSwgCiAgICAgICAgIGRlc3ZpYWNpb25fZXN0YW5kYXJfZ3J1cG9fY29udHJvbF9tYXhpbW9fYXByaWV0ZSwgCiAgICAgICAgIGRhdGEgPSBkZiwgCiAgICAgICAgIHNtID0gIlNNRCIpCgpgYGAKYGBge3J9CmFwcmlldGUKYGBgCgoKYGBge3J9CmZvcmVzdC5tZXRhKGFwcmlldGUpCmBgYAojIyMgQXByaWV0ZSBwb3IgbcO6c2N1bG8KCiMjIyMgYXByaWV0ZSBtYXNldGVybwoKYGBge3J9CmFwcmlldGVfbWFzZXRlcm8gPC0gbWV0YWNvbnQobl9lbl9lbF9ncnVwb19jb25fYnJ1eGlzbW8sCiAgICAgICAgIHByb21lZGlvX211c2N1bG9fZ3J1cG9fYnJ1eGlzbW9fbWF4aW1vX2FwcmlldGUsCiAgICAgICAgIGRlc3ZpYWNpb25fZXN0YW5kYXJfZ3J1cG9fYnJ1eGlzbW9fbWF4aW1vX2FwcmlldGUsIAogICAgICAgICBuX2VuX2VsX2dydXBvX2NvbnRyb2wsIAogICAgICAgICBwcm9tZWRpb19tdXNjdWxvX2dydXBvX2NvbnRyb2xfbWF4aW1vX2FwcmlldGUsIAogICAgICAgICBkZXN2aWFjaW9uX2VzdGFuZGFyX2dydXBvX2NvbnRyb2xfbWF4aW1vX2FwcmlldGUsIAogICAgICAgICBzdWJzZXQgPSBtYXNldGVybywgCiAgICAgICAgIGRhdGEgPSBkZiwgCiAgICAgICAgIHNtID0gIlNNRCIpCgpgYGAKYGBge3J9CmFwcmlldGVfbWFzZXRlcm8KYGBgCgoKYGBge3J9CmZvcmVzdC5tZXRhKGFwcmlldGVfbWFzZXRlcm8pCmBgYAoKCiMjIyMgYXByaWV0ZSB0ZW1wb3JhbApgYGB7cn0KYXByaWV0ZV90ZW1wb3JhbCA8LSBtZXRhY29udChuX2VuX2VsX2dydXBvX2Nvbl9icnV4aXNtbywKICAgICAgICAgcHJvbWVkaW9fbXVzY3Vsb19ncnVwb19icnV4aXNtb19tYXhpbW9fYXByaWV0ZSwKICAgICAgICAgZGVzdmlhY2lvbl9lc3RhbmRhcl9ncnVwb19icnV4aXNtb19tYXhpbW9fYXByaWV0ZSwgCiAgICAgICAgIG5fZW5fZWxfZ3J1cG9fY29udHJvbCwgCiAgICAgICAgIHByb21lZGlvX211c2N1bG9fZ3J1cG9fY29udHJvbF9tYXhpbW9fYXByaWV0ZSwgCiAgICAgICAgIGRlc3ZpYWNpb25fZXN0YW5kYXJfZ3J1cG9fY29udHJvbF9tYXhpbW9fYXByaWV0ZSwgCiAgICAgICAgIHN1YnNldCA9IHRlbXBvcmFsLCAKICAgICAgICAgZGF0YSA9IGRmLCAKICAgICAgICAgc20gPSAiU01EIikKCmBgYApgYGB7cn0KYXByaWV0ZV90ZW1wb3JhbApgYGAKCgpgYGB7cn0KZm9yZXN0Lm1ldGEoYXByaWV0ZV90ZW1wb3JhbCkKYGBgCg==