#df <- read.csv("C:/CUNY/Assignments/Workshop/R/week3/Week3DataSet.csv", header = TRUE, stringsAsFactors = FALSE)
dataURL <- "https://raw.githubusercontent.com/san123i/CUNY/master/Assignments_workshop/R/week3/Week3DataSet.csv"
onlineDataSet <- read.csv(dataURL, header = TRUE, stringsAsFactors = FALSE)
df <- onlineDataSet
summary(df)
## Package Item Title Rows
## Length:1243 Length:1243 Length:1243 Min. : 0
## Class :character Class :character Class :character 1st Qu.: 30
## Mode :character Mode :character Mode :character Median : 90
## Mean : 1576
## 3rd Qu.: 451
## Max. :372864
## Cols has_logical has_binary has_numeric
## Min. : 1.00 Mode :logical Mode :logical Mode :logical
## 1st Qu.: 3.00 FALSE:1233 FALSE:717 FALSE:329
## Median : 5.00 TRUE :10 TRUE :526 TRUE :914
## Mean : 14.96
## 3rd Qu.: 9.00
## Max. :6831.00
## has_character CSV Doc
## Mode :logical Length:1243 Length:1243
## FALSE:1190 Class :character Class :character
## TRUE :53 Mode :character Mode :character
##
##
##
mean(df$Rows)
## [1] 1575.697
mean(df$Cols)
## [1] 14.96541
median(df$Rows)
## [1] 90
median(df$Cols)
## [1] 5
quantile(df$Rows)
## 0% 25% 50% 75% 100%
## 0 30 90 451 372864
quantile(df$Cols)
## 0% 25% 50% 75% 100%
## 1 3 5 9 6831
subset_frame <- df[c(1:500), c(1:9)]
subset_frame$totalData <- subset_frame$Rows * subset_frame$Cols
#Calculate a new column value from existing column data
titleLength <- nchar(subset_frame$Title, type="chars")
#Added a new Column TitleLength
subset_frame$TitleLength <- titleLength
colnames(subset_frame)[4] <- c("RowCount")
colnames(subset_frame)[5] <- c("ColCount")
subset_frame
## Package Item
## 1 boot acme
## 2 boot aids
## 3 boot aircondit
## 4 boot aircondit7
## 5 boot amis
## 6 boot aml
## 7 boot beaver
## 8 boot bigcity
## 9 boot brambles
## 10 boot breslow
## 11 boot calcium
## 12 boot cane
## 13 boot capability
## 14 boot catsM
## 15 boot cav
## 16 boot cd4
## 17 boot cd4.nested
## 18 boot channing
## 19 boot city
## 20 boot claridge
## 21 boot cloth
## 22 boot co.transfer
## 23 boot coal
## 24 boot darwin
## 25 boot dogs
## 26 boot downs.bc
## 27 boot ducks
## 28 boot fir
## 29 boot frets
## 30 boot grav
## 31 boot gravity
## 32 boot hirose
## 33 boot islay
## 34 boot manaus
## 35 boot melanoma
## 36 boot motor
## 37 boot neuro
## 38 boot nitrofen
## 39 boot nodal
## 40 boot nuclear
## 41 boot paulsen
## 42 boot poisons
## 43 boot polar
## 44 boot remission
## 45 boot salinity
## 46 boot survival
## 47 boot tau
## 48 boot tuna
## 49 boot urine
## 50 boot wool
## 51 carData Adler
## 52 carData AMSsurvey
## 53 carData Angell
## 54 carData Anscombe
## 55 carData Arrests
## 56 carData Baumann
## 57 carData BEPS
## 58 carData Bfox
## 59 carData Blackmore
## 60 carData Burt
## 61 carData CanPop
## 62 carData Chile
## 63 carData Chirot
## 64 carData Cowles
## 65 carData Davis
## 66 carData DavisThin
## 67 carData Depredations
## 68 carData Duncan
## 69 carData Ericksen
## 70 carData Florida
## 71 carData Freedman
## 72 carData Friendly
## 73 carData Ginzberg
## 74 carData Greene
## 75 carData GSSvocab
## 76 carData Guyer
## 77 carData Hartnagel
## 78 carData Highway1
## 79 carData KosteckiDillon
## 80 carData Leinhardt
## 81 carData LoBD
## 82 carData Mandel
## 83 carData Migration
## 84 carData Moore
## 85 carData MplsDemo
## 86 carData MplsStops
## 87 carData Mroz
## 88 carData OBrienKaiser
## 89 carData Ornstein
## 90 carData Pottery
## 91 carData Prestige
## 92 carData Quartet
## 93 carData Robey
## 94 carData Sahlins
## 95 carData Salaries
## 96 carData SLID
## 97 carData Soils
## 98 carData States
## 99 carData TitanicSurvival
## 100 carData Transact
## 101 carData UN
## 102 carData USPop
## 103 carData Vocab
## 104 carData WeightLoss
## 105 carData Wells
## 106 carData Womenlf
## 107 carData Wong
## 108 carData Wool
## 109 carData WVS
## 110 cluster agriculture
## 111 cluster animals
## 112 cluster chorSub
## 113 cluster flower
## 114 cluster plantTraits
## 115 cluster pluton
## 116 cluster ruspini
## 117 cluster votes.repub
## 118 cluster xclara
## 119 COUNT affairs
## 120 COUNT azcabgptca
## 121 COUNT azdrg112
## 122 COUNT azpro
## 123 COUNT azprocedure
## 124 COUNT badhealth
## 125 COUNT fasttrakg
## 126 COUNT fishing
## 127 COUNT lbw
## 128 COUNT lbwgrp
## 129 COUNT loomis
## 130 COUNT mdvis
## 131 COUNT medpar
## 132 COUNT nuts
## 133 COUNT rwm
## 134 COUNT rwm1984
## 135 COUNT rwm5yr
## 136 COUNT ships
## 137 COUNT smoking
## 138 COUNT titanic
## 139 COUNT titanicgrp
## 140 DAAG ACF1
## 141 DAAG ais
## 142 DAAG allbacks
## 143 DAAG anesthetic
## 144 DAAG ant111b
## 145 DAAG antigua
## 146 DAAG appletaste
## 147 DAAG aulatlong
## 148 DAAG austpop
## 149 DAAG biomass
## 150 DAAG bomregions
## 151 DAAG bomregions2011
## 152 DAAG bomregions2012
## 153 DAAG bomsoi
## 154 DAAG bomsoi2001
## 155 DAAG bostonc
## 156 DAAG carprice
## 157 DAAG Cars93.summary
## 158 DAAG cerealsugar
## 159 DAAG cfseal
## 160 DAAG cities
## 161 DAAG codling
## 162 DAAG cottonworkers
## 163 DAAG cps1
## 164 DAAG cps2
## 165 DAAG cps3
## 166 DAAG cricketer
## 167 DAAG cuckoohosts
## 168 DAAG cuckoos
## 169 DAAG dengue
## 170 DAAG dewpoint
## 171 DAAG droughts
## 172 DAAG edcCO2
## 173 DAAG edcT
## 174 DAAG elastic1
## 175 DAAG elastic2
## 176 DAAG elasticband
## 177 DAAG fossilfuel
## 178 DAAG fossum
## 179 DAAG frogs
## 180 DAAG frostedflakes
## 181 DAAG fruitohms
## 182 DAAG gaba
## 183 DAAG geophones
## 184 DAAG greatLakes
## 185 DAAG grog
## 186 DAAG head.injury
## 187 DAAG headInjury
## 188 DAAG hills
## 189 DAAG hills2000
## 190 DAAG hotspots
## 191 DAAG hotspots2006
## 192 DAAG houseprices
## 193 DAAG humanpower1
## 194 DAAG humanpower2
## 195 DAAG hurricNamed
## 196 DAAG intersalt
## 197 DAAG ironslag
## 198 DAAG jobs
## 199 DAAG kiwishade
## 200 DAAG leafshape
## 201 DAAG leafshape17
## 202 DAAG leaftemp
## 203 DAAG leaftemp.all
## 204 DAAG litters
## 205 DAAG Lottario
## 206 DAAG lung
## 207 DAAG Manitoba.lakes
## 208 DAAG measles
## 209 DAAG medExpenses
## 210 DAAG mifem
## 211 DAAG mignonette
## 212 DAAG milk
## 213 DAAG modelcars
## 214 DAAG monica
## 215 DAAG moths
## 216 DAAG nassCDS
## 217 DAAG nasshead
## 218 DAAG nihills
## 219 DAAG nsw74demo
## 220 DAAG nsw74psid1
## 221 DAAG nsw74psid3
## 222 DAAG nsw74psidA
## 223 DAAG nswdemo
## 224 DAAG nswpsid1
## 225 DAAG oddbooks
## 226 DAAG orings
## 227 DAAG ozone
## 228 DAAG pair65
## 229 DAAG possum
## 230 DAAG possumsites
## 231 DAAG poxetc
## 232 DAAG primates
## 233 DAAG progression
## 234 DAAG psid1
## 235 DAAG psid2
## 236 DAAG psid3
## 237 DAAG races2000
## 238 DAAG rainforest
## 239 DAAG rareplants
## 240 DAAG rice
## 241 DAAG rockArt
## 242 DAAG roller
## 243 DAAG science
## 244 DAAG seedrates
## 245 DAAG socsupport
## 246 DAAG softbacks
## 247 DAAG sorption
## 248 DAAG SP500close
## 249 DAAG SP500W90
## 250 DAAG spam7
## 251 DAAG stVincent
## 252 DAAG sugar
## 253 DAAG tinting
## 254 DAAG tomato
## 255 DAAG toycars
## 256 DAAG vince111b
## 257 DAAG vlt
## 258 DAAG wages1833
## 259 DAAG whoops
## 260 DAAG worldRecords
## 261 datasets ability.cov
## 262 datasets airmiles
## 263 datasets AirPassengers
## 264 datasets airquality
## 265 datasets anscombe
## 266 datasets attenu
## 267 datasets attitude
## 268 datasets austres
## 269 datasets BJsales
## 270 datasets BOD
## 271 datasets cars
## 272 datasets ChickWeight
## 273 datasets chickwts
## 274 datasets co2
## 275 datasets CO2
## 276 datasets crimtab
## 277 datasets discoveries
## 278 datasets DNase
## 279 datasets esoph
## 280 datasets euro
## 281 datasets EuStockMarkets
## 282 datasets faithful
## 283 datasets Formaldehyde
## 284 datasets freeny
## 285 datasets HairEyeColor
## 286 datasets Harman23.cor
## 287 datasets Harman74.cor
## 288 datasets Indometh
## 289 datasets infert
## 290 datasets InsectSprays
## 291 datasets iris
## 292 datasets iris3
## 293 datasets islands
## 294 datasets JohnsonJohnson
## 295 datasets LakeHuron
## 296 datasets lh
## 297 datasets LifeCycleSavings
## 298 datasets Loblolly
## 299 datasets longley
## 300 datasets lynx
## 301 datasets morley
## 302 datasets mtcars
## 303 datasets nhtemp
## 304 datasets Nile
## 305 datasets nottem
## 306 datasets npk
## 307 datasets occupationalStatus
## 308 datasets Orange
## 309 datasets OrchardSprays
## 310 datasets PlantGrowth
## 311 datasets precip
## 312 datasets presidents
## 313 datasets pressure
## 314 datasets Puromycin
## 315 datasets quakes
## 316 datasets randu
## 317 datasets rivers
## 318 datasets rock
## 319 datasets Seatbelts
## 320 datasets sleep
## 321 datasets stackloss
## 322 datasets sunspot.month
## 323 datasets sunspot.year
## 324 datasets sunspots
## 325 datasets swiss
## 326 datasets Theoph
## 327 datasets Titanic
## 328 datasets ToothGrowth
## 329 datasets treering
## 330 datasets trees
## 331 datasets UCBAdmissions
## 332 datasets UKDriverDeaths
## 333 datasets UKgas
## 334 datasets USAccDeaths
## 335 datasets USArrests
## 336 datasets USJudgeRatings
## 337 datasets USPersonalExpenditure
## 338 datasets uspop
## 339 datasets VADeaths
## 340 datasets volcano
## 341 datasets warpbreaks
## 342 datasets women
## 343 datasets WorldPhones
## 344 datasets WWWusage
## 345 drc acidiq
## 346 drc algae
## 347 drc auxins
## 348 drc chickweed
## 349 drc chickweed0
## 350 drc daphnids
## 351 drc decontaminants
## 352 drc deguelin
## 353 drc earthworms
## 354 drc etmotc
## 355 drc finney71
## 356 drc G.aparine
## 357 drc germination
## 358 drc glymet
## 359 drc H.virescens
## 360 drc heartrate
## 361 drc leaflength
## 362 drc lepidium
## 363 drc lettuce
## 364 drc M.bahia
## 365 drc mecter
## 366 drc metals
## 367 drc methionine
## 368 drc nasturtium
## 369 drc O.mykiss
## 370 drc P.promelas
## 371 drc RScompetition
## 372 drc ryegrass
## 373 drc S.alba
## 374 drc S.capricornutum
## 375 drc secalonic
## 376 drc selenium
## 377 drc spinach
## 378 drc terbuthylazin
## 379 drc vinclozolin
## 380 Ecdat Accident
## 381 Ecdat Airline
## 382 Ecdat Airq
## 383 Ecdat bankingCrises
## 384 Ecdat Benefits
## 385 Ecdat Bids
## 386 Ecdat breaches
## 387 Ecdat BudgetFood
## 388 Ecdat BudgetItaly
## 389 Ecdat BudgetUK
## 390 Ecdat Bwages
## 391 Ecdat Capm
## 392 Ecdat Car
## 393 Ecdat Caschool
## 394 Ecdat Catsup
## 395 Ecdat Cigar
## 396 Ecdat Cigarette
## 397 Ecdat Clothing
## 398 Ecdat Computers
## 399 Ecdat Consumption
## 400 Ecdat CPSch3
## 401 Ecdat Cracker
## 402 Ecdat CRANpackages
## 403 Ecdat Crime
## 404 Ecdat CRSPday
## 405 Ecdat CRSPmon
## 406 Ecdat Diamond
## 407 Ecdat DM
## 408 Ecdat Doctor
## 409 Ecdat DoctorAUS
## 410 Ecdat DoctorContacts
## 411 Ecdat Earnings
## 412 Ecdat Electricity
## 413 Ecdat Fair
## 414 Ecdat Fatality
## 415 Ecdat Fishing
## 416 Ecdat Forward
## 417 Ecdat FriendFoe
## 418 Ecdat Garch
## 419 Ecdat Gasoline
## 420 Ecdat Griliches
## 421 Ecdat Grunfeld
## 422 Ecdat HC
## 423 Ecdat Hdma
## 424 Ecdat Heating
## 425 Ecdat Hedonic
## 426 Ecdat HHSCyberSecurityBreaches
## 427 Ecdat HI
## 428 Ecdat Hmda
## 429 Ecdat Housing
## 430 Ecdat Hstarts
## 431 Ecdat Icecream
## 432 Ecdat incidents.byCountryYr
## 433 Ecdat incomeInequality
## 434 Ecdat IncomeUK
## 435 Ecdat Irates
## 436 Ecdat Journals
## 437 Ecdat Kakadu
## 438 Ecdat Ketchup
## 439 Ecdat Klein
## 440 Ecdat LaborSupply
## 441 Ecdat Labour
## 442 Ecdat Longley
## 443 Ecdat LT
## 444 Ecdat Macrodat
## 445 Ecdat Males
## 446 Ecdat ManufCost
## 447 Ecdat Mathlevel
## 448 Ecdat MCAS
## 449 Ecdat MedExp
## 450 Ecdat Metal
## 451 Ecdat Mishkin
## 452 Ecdat Mode
## 453 Ecdat ModeChoice
## 454 Ecdat Mofa
## 455 Ecdat Money
## 456 Ecdat MoneyUS
## 457 Ecdat Mpyr
## 458 Ecdat Mroz
## 459 Ecdat MunExp
## 460 Ecdat MW
## 461 Ecdat NaturalPark
## 462 Ecdat Nerlove
## 463 Ecdat nkill.byCountryYr
## 464 Ecdat nonEnglishNames
## 465 Ecdat OFP
## 466 Ecdat Oil
## 467 Ecdat Orange
## 468 Ecdat Participation
## 469 Ecdat PatentsHGH
## 470 Ecdat PatentsRD
## 471 Ecdat PE
## 472 Ecdat politicalKnowledge
## 473 Ecdat Pound
## 474 Ecdat PPP
## 475 Ecdat Pricing
## 476 Ecdat Produc
## 477 Ecdat PSID
## 478 Ecdat RetSchool
## 479 Ecdat Schooling
## 480 Ecdat Solow
## 481 Ecdat Somerville
## 482 Ecdat SP500
## 483 Ecdat Star
## 484 Ecdat Strike
## 485 Ecdat StrikeDur
## 486 Ecdat StrikeNb
## 487 Ecdat SumHes
## 488 Ecdat Tbrate
## 489 Ecdat terrorism
## 490 Ecdat Tobacco
## 491 Ecdat Train
## 492 Ecdat TranspEq
## 493 Ecdat Treatment
## 494 Ecdat Tuna
## 495 Ecdat UnempDur
## 496 Ecdat Unemployment
## 497 Ecdat University
## 498 Ecdat USclassifiedDocuments
## 499 Ecdat USFinanceIndustry
## 500 Ecdat USGDPpresidents
## Title
## 1 Monthly Excess Returns
## 2 Delay in AIDS Reporting in England and Wales
## 3 Failures of Air-conditioning Equipment
## 4 Failures of Air-conditioning Equipment
## 5 Car Speeding and Warning Signs
## 6 Remission Times for Acute Myelogenous Leukaemia
## 7 Beaver Body Temperature Data
## 8 Population of U.S. Cities
## 9 Spatial Location of Bramble Canes
## 10 Smoking Deaths Among Doctors
## 11 Calcium Uptake Data
## 12 Sugar-cane Disease Data
## 13 Simulated Manufacturing Process Data
## 14 Weight Data for Domestic Cats
## 15 Position of Muscle Caveolae
## 16 CD4 Counts for HIV-Positive Patients
## 17 Nested Bootstrap of cd4 data
## 18 Channing House Data
## 19 Population of U.S. Cities
## 20 Genetic Links to Left-handedness
## 21 Number of Flaws in Cloth
## 22 Carbon Monoxide Transfer
## 23 Dates of Coal Mining Disasters
## 24 Darwin's Plant Height Differences
## 25 Cardiac Data for Domestic Dogs
## 26 Incidence of Down's Syndrome in British Columbia
## 27 Behavioral and Plumage Characteristics of Hybrid Ducks
## 28 Counts of Balsam-fir Seedlings
## 29 Head Dimensions in Brothers
## 30 Acceleration Due to Gravity
## 31 Acceleration Due to Gravity
## 32 Failure Time of PET Film
## 33 Jura Quartzite Azimuths on Islay
## 34 Average Heights of the Rio Negro river at Manaus
## 35 Survival from Malignant Melanoma
## 36 Data from a Simulated Motorcycle Accident
## 37 Neurophysiological Point Process Data
## 38 Toxicity of Nitrofen in Aquatic Systems
## 39 Nodal Involvement in Prostate Cancer
## 40 Nuclear Power Station Construction Data
## 41 Neurotransmission in Guinea Pig Brains
## 42 Animal Survival Times
## 43 Pole Positions of New Caledonian Laterites
## 44 Cancer Remission and Cell Activity
## 45 Water Salinity and River Discharge
## 46 Survival of Rats after Radiation Doses
## 47 Tau Particle Decay Modes
## 48 Tuna Sighting Data
## 49 Urine Analysis Data
## 50 Australian Relative Wool Prices
## 51 Experimenter Expectations
## 52 American Math Society Survey Data
## 53 Moral Integration of American Cities
## 54 U. S. State Public-School Expenditures
## 55 Arrests for Marijuana Possession
## 56 Methods of Teaching Reading Comprehension
## 57 British Election Panel Study
## 58 Canadian Women's Labour-Force Participation
## 59 Exercise Histories of Eating-Disordered and Control Subjects
## 60 Fraudulent Data on IQs of Twins Raised Apart
## 61 Canadian Population Data
## 62 Voting Intentions in the 1988 Chilean Plebiscite
## 63 The 1907 Romanian Peasant Rebellion
## 64 Cowles and Davis's Data on Volunteering
## 65 Self-Reports of Height and Weight
## 66 Davis's Data on Drive for Thinness
## 67 Minnesota Wolf Depredation Data
## 68 Duncan's Occupational Prestige Data
## 69 The 1980 U.S. Census Undercount
## 70 Florida County Voting
## 71 Crowding and Crime in U. S. Metropolitan Areas
## 72 Format Effects on Recall
## 73 Data on Depression
## 74 Refugee Appeals
## 75 Data from the General Social Survey (GSS) from the National Opinion Research Center of the University of Chicago.
## 76 Anonymity and Cooperation
## 77 Canadian Crime-Rates Time Series
## 78 Highway Accidents
## 79 Treatment of Migraine Headaches
## 80 Data on Infant-Mortality
## 81 Cancer drug data use to provide an example of the use of the skew power distributions.
## 82 Contrived Collinear Data
## 83 Canadian Interprovincial Migration Data
## 84 Status, Authoritarianism, and Conformity
## 85 Minneapolis Demographic Data 2015, by Neighborhood
## 86 Minneapolis Police Department 2017 Stop Data
## 87 U.S. Women's Labor-Force Participation
## 88 O'Brien and Kaiser's Repeated-Measures Data
## 89 Interlocking Directorates Among Major Canadian Firms
## 90 Chemical Composition of Pottery
## 91 Prestige of Canadian Occupations
## 92 Four Regression Datasets
## 93 Fertility and Contraception
## 94 Agricultural Production in Mazulu Village
## 95 Salaries for Professors
## 96 Survey of Labour and Income Dynamics
## 97 Soil Compositions of Physical and Chemical Characteristics
## 98 Education and Related Statistics for the U.S. States
## 99 Survival of Passengers on the Titanic
## 100 Transaction data
## 101 National Statistics from the United Nations, Mostly From 2009-2011
## 102 Population of the United States
## 103 Vocabulary and Education
## 104 Weight Loss Data
## 105 Well Switching in Bangladesh
## 106 Canadian Women's Labour-Force Participation
## 107 Post-Coma Recovery of IQ
## 108 Wool data
## 109 World Values Surveys
## 110 European Union Agricultural Workforces
## 111 Attributes of Animals
## 112 Subset of C-horizon of Kola Data
## 113 Flower Characteristics
## 114 Plant Species Traits Data
## 115 Isotopic Composition Plutonium Batches
## 116 Ruspini Data
## 117 Votes for Republican Candidate in Presidential Elections
## 118 Bivariate Data Set with 3 Clusters
## 119 affairs
## 120 azcabgptca
## 121 azdrg112
## 122 azpro
## 123 azprocedure
## 124 badhealth
## 125 fasttrakg
## 126 fishing
## 127 lbw
## 128 lbwgrp
## 129 loomis
## 130 mdvis
## 131 medpar
## 132 nuts
## 133 rwm
## 134 rwm1984
## 135 rwm5yr
## 136 ships
## 137 smoking
## 138 titanic
## 139 titanicgrp
## 140 Aberrant Crypt Foci in Rat Colons
## 141 Australian athletes data set
## 142 Measurements on a Selection of Books
## 143 Anesthetic Effectiveness
## 144 Averages by block of corn yields, for treatment 111 only
## 145 Averages by block of yields for the Antigua Corn data
## 146 Tasting experiment that compared four apple varieties
## 147 Latitudes and longitudes for ten Australian cities
## 148 Population figures for Australian States and Territories
## 149 Biomass Data
## 150 Australian and Related Historical Annual Climate Data, by region
## 151 Australian and Related Historical Annual Climate Data, by region
## 152 Australian and Related Historical Annual Climate Data, by region
## 153 Southern Oscillation Index Data
## 154 Southern Oscillation Index Data
## 155 Boston Housing Data - Corrected
## 156 US Car Price Data
## 157 A Summary of the Cars93 Data set
## 158 Percentage of Sugar in Breakfast Cereal
## 159 Cape Fur Seal Data
## 160 Populations of Major Canadian Cities (1992-96)
## 161 Dose-mortality data, for fumigation of codling moth with methyl bromide
## 162 Occupation and wage profiles of British cotton workers
## 163 Labour Training Evaluation Data
## 164 Labour Training Evaluation Data
## 165 Labour Training Evaluation Data
## 166 Lifespans of UK 1st class cricketers born 1840-1960
## 167 Comparison of cuckoo eggs with host eggs
## 168 Cuckoo Eggs Data
## 169 Dengue prevalence, by administrative region
## 170 Dewpoint Data
## 171 Periods Between Rain Events
## 172 EPICA Dome C Ice Core 800KYr Carbon Dioxide Data
## 173 EPICA Dome C Ice Core 800KYr Temperature Estimates
## 174 Elastic Band Data Replicated
## 175 Elastic Band Data Replicated Again
## 176 Elastic Band Data
## 177 Fossil Fuel Data
## 178 Female Possum Measurements
## 179 Frogs Data
## 180 Frosted Flakes data
## 181 Electrical Resistance of Kiwi Fruit
## 182 Effect of pentazocine on post-operative pain (average VAS scores)
## 183 Seismic Timing Data
## 184 Yearly averages of Great Lake heights: 1918 - 2009
## 185 Alcohol consumption in Australia and New Zealand
## 186 Minor Head Injury (Simulated) Data
## 187 Minor Head Injury (Simulated) Data
## 188 Scottish Hill Races Data
## 189 Scottish Hill Races Data - 2000
## 190 Hawaian island chain hotspot Potassium-Argon ages
## 191 Hawaian island chain hotspot Argon-Argon ages
## 192 Aranda House Prices
## 193 Oxygen uptake versus mechanical power, for humans
## 194 Oxygen uptake versus mechanical power, for humans
## 195 Named US Atlantic Hurricanes
## 196 Blood pressure versus Salt; inter-population data
## 197 Iron Content Measurements
## 198 Canadian Labour Force Summary Data (1995-96)
## 199 Kiwi Shading Data
## 200 Full Leaf Shape Data Set
## 201 Subset of Leaf Shape Data Set
## 202 Leaf and Air Temperature Data
## 203 Full Leaf and Air Temperature Data Set
## 204 Mouse Litters
## 205 Ontario Lottery Data
## 206 Cape Fur Seal Lung Measurements
## 207 The Nine Largest Lakes in Manitoba
## 208 Deaths in London from measles
## 209 Family Medical Expenses
## 210 Mortality Outcomes for Females Suffering Myocardial Infarction
## 211 Darwin's Wild Mignonette Data
## 212 Milk Sweetness Study
## 213 Model Car Data
## 214 WHO Monica Data
## 215 Moths Data
## 216 Airbag and other influences on accident fatalities
## 217 Documentation of names of columns in nass9702cor
## 218 Record times for Northern Ireland mountain running events
## 219 Labour Training Evaluation Data
## 220 Labour Training Evaluation Data
## 221 Labour Training Evaluation Data
## 222 A Subset of the nsw74psid1 Data Set
## 223 Labour Training Evaluation Data
## 224 Labour Training Evaluation Data
## 225 Measurements on 12 books
## 226 Challenger O-rings Data
## 227 Ozone Data
## 228 Heated Elastic Bands
## 229 Possum Measurements
## 230 Possum Sites
## 231 Deaths from various causes, in London from 1629 till 1881, with gaps
## 232 Primate Body and Brain Weights
## 233 Progression of Record times for track races, 1912 - 2008
## 234 Labour Training Evaluation Data
## 235 Labour Training Evaluation Data
## 236 Labour Training Evaluation Data
## 237 Scottish Hill Races Data - 2000
## 238 Rainforest Data
## 239 Rare and Endangered Plant Species
## 240 Genetically Modified and Wild Type Rice Data
## 241 Pacific Rock Art features
## 242 Lawn Roller Data
## 243 School Science Survey Data
## 244 Barley Seeding Rate Data
## 245 Social Support Data
## 246 Measurements on a Selection of Paperback Books
## 247 sorption data set
## 248 Closing Numbers for S and P 500 Index
## 249 Closing Numbers for S and P 500 Index - First 100 Days of 1990
## 250 Spam E-mail Data
## 251 Averages by block of yields for the St. Vincent Corn data
## 252 Sugar Data
## 253 Car Window Tinting Experiment Data
## 254 Root weights of tomato plants exposed to 4 different treatments
## 255 Toy Cars Data
## 256 Averages by block of corn yields, for treatment 111 only
## 257 Video Lottery Terminal Data
## 258 Wages of Lancashire Cotton Factory Workers in 1833
## 259 Deaths from whooping cough, in London
## 260 Record times for track and road races, at August 9th 2006
## 261 Ability and Intelligence Tests
## 262 Passenger Miles on Commercial US Airlines, 1937-1960
## 263 Monthly Airline Passenger Numbers 1949-1960
## 264 New York Air Quality Measurements
## 265 Anscombe's Quartet of 'Identical' Simple Linear Regressions
## 266 The Joyner-Boore Attenuation Data
## 267 The Chatterjee-Price Attitude Data
## 268 Quarterly Time Series of the Number of Australian Residents
## 269 Sales Data with Leading Indicator
## 270 Biochemical Oxygen Demand
## 271 Speed and Stopping Distances of Cars
## 272 Weight versus age of chicks on different diets
## 273 Chicken Weights by Feed Type
## 274 Mauna Loa Atmospheric CO2 Concentration
## 275 Carbon Dioxide Uptake in Grass Plants
## 276 Student's 3000 Criminals Data
## 277 Yearly Numbers of Important Discoveries
## 278 Elisa assay of DNase
## 279 Smoking, Alcohol and (O)esophageal Cancer
## 280 Conversion Rates of Euro Currencies
## 281 Daily Closing Prices of Major European Stock Indices, 1991-1998
## 282 Old Faithful Geyser Data
## 283 Determination of Formaldehyde
## 284 Freeny's Revenue Data
## 285 Hair and Eye Color of Statistics Students
## 286 Harman Example 2.3
## 287 Harman Example 7.4
## 288 Pharmacokinetics of Indomethacin
## 289 Infertility after Spontaneous and Induced Abortion
## 290 Effectiveness of Insect Sprays
## 291 Edgar Anderson's Iris Data
## 292 Edgar Anderson's Iris Data
## 293 Areas of the World's Major Landmasses
## 294 Quarterly Earnings per Johnson & Johnson Share
## 295 Level of Lake Huron 1875-1972
## 296 Luteinizing Hormone in Blood Samples
## 297 Intercountry Life-Cycle Savings Data
## 298 Growth of Loblolly pine trees
## 299 Longley's Economic Regression Data
## 300 Annual Canadian Lynx trappings 1821-1934
## 301 Michelson Speed of Light Data
## 302 Motor Trend Car Road Tests
## 303 Average Yearly Temperatures in New Haven
## 304 Flow of the River Nile
## 305 Average Monthly Temperatures at Nottingham, 1920-1939
## 306 Classical N, P, K Factorial Experiment
## 307 Occupational Status of Fathers and their Sons
## 308 Growth of Orange Trees
## 309 Potency of Orchard Sprays
## 310 Results from an Experiment on Plant Growth
## 311 Annual Precipitation in US Cities
## 312 Quarterly Approval Ratings of US Presidents
## 313 Vapor Pressure of Mercury as a Function of Temperature
## 314 Reaction Velocity of an Enzymatic Reaction
## 315 Locations of Earthquakes off Fiji
## 316 Random Numbers from Congruential Generator RANDU
## 317 Lengths of Major North American Rivers
## 318 Measurements on Petroleum Rock Samples
## 319 Road Casualties in Great Britain 1969-84
## 320 Student's Sleep Data
## 321 Brownlee's Stack Loss Plant Data
## 322 Monthly Sunspot Data, from 1749 to "Present"
## 323 Yearly Sunspot Data, 1700-1988
## 324 Monthly Sunspot Numbers, 1749-1983
## 325 Swiss Fertility and Socioeconomic Indicators (1888) Data
## 326 Pharmacokinetics of Theophylline
## 327 Survival of passengers on the Titanic
## 328 The Effect of Vitamin C on Tooth Growth in Guinea Pigs
## 329 Yearly Treering Data, -6000-1979
## 330 Girth, Height and Volume for Black Cherry Trees
## 331 Student Admissions at UC Berkeley
## 332 Road Casualties in Great Britain 1969-84
## 333 UK Quarterly Gas Consumption
## 334 Accidental Deaths in the US 1973-1978
## 335 Violent Crime Rates by US State
## 336 Lawyers' Ratings of State Judges in the US Superior Court
## 337 Personal Expenditure Data
## 338 Populations Recorded by the US Census
## 339 Death Rates in Virginia (1940)
## 340 Topographic Information on Auckland's Maunga Whau Volcano
## 341 The Number of Breaks in Yarn during Weaving
## 342 Average Heights and Weights for American Women
## 343 The World's Telephones
## 344 Internet Usage per Minute
## 345 Acifluorfen and diquat tested on Lemna minor.
## 346 Volume of algae as function of increasing concentrations of a herbicide
## 347 Effect of technical grade and commercially formulated auxin herbicides
## 348 Germination of common chickweed (_Stellaria media_)
## 349 Germination of common chickweed (_Stellaria media_)
## 350 Daphnia test
## 351 Performance of decontaminants used in the culturing of a micro-organism
## 352 Deguelin applied to chrysanthemum aphis
## 353 Earthworm toxicity test
## 354 Effect of erythromycin on mixed sewage microorganisms
## 355 Example from Finney (1971)
## 356 Herbicide applied to Galium aparine
## 357 Germination of three crops
## 358 Glyphosate and metsulfuron-methyl tested on algae.
## 359 Mortality of tobacco budworms
## 360 Heart rate baroreflexes for rabbits
## 361 Leaf length of barley
## 362 Dose-response profile of degradation of agrochemical using lepidium
## 363 Hormesis in lettuce plants
## 364 Effect of an effluent on the growth of mysid shrimp
## 365 Mechlorprop and terbythylazine tested on Lemna minor
## 366 Data from heavy metal mixture experiments
## 367 Weight gain for different methionine sources
## 368 Dose-response profile of degradation of agrochemical using nasturtium
## 369 Test data from a 21 day fish test
## 370 Effect of sodium pentachlorophenate on growth of fathead minnow
## 371 Competition between two biotypes
## 372 Effect of ferulic acid on growth of ryegrass
## 373 Potency of two herbicides
## 374 Effect of cadmium on growth of green alga
## 375 Root length measurements
## 376 Data from toxicology experiments with selenium
## 377 Inhibition of photosynthesis
## 378 The effect of terbuthylazin on growth rate
## 379 Vinclozolin from AR in vitro assay
## 380 Ship Accidents
## 381 Cost for U.S. Airlines
## 382 Air Quality for Californian Metropolitan Areas
## 383 Countries in Banking Crises
## 384 Unemployment of Blue Collar Workers
## 385 Bids Received By U.S. Firms
## 386 Cyber Security Breaches
## 387 Budget Share of Food for Spanish Households
## 388 Budget Shares for Italian Households
## 389 Budget Shares of British Households
## 390 Wages in Belgium
## 391 Stock Market Data
## 392 Stated Preferences for Car Choice
## 393 The California Test Score Data Set
## 394 Choice of Brand for Catsup
## 395 Cigarette Consumption
## 396 The Cigarette Consumption Panel Data Set
## 397 Sales Data of Men's Fashion Stores
## 398 Prices of Personal Computers
## 399 Quarterly Data on Consumption and Expenditure
## 400 Earnings from the Current Population Survey
## 401 Choice of Brand for Crakers
## 402 Growth of CRAN
## 403 Crime in North Carolina
## 404 Daily Returns from the CRSP Database
## 405 Monthly Returns from the CRSP Database
## 406 Pricing the C's of Diamond Stones
## 407 DM Dollar Exchange Rate
## 408 Number of Doctor Visits
## 409 Doctor Visits in Australia
## 410 Contacts With Medical Doctor
## 411 Earnings for Three Age Groups
## 412 Cost Function for Electricity Producers
## 413 Extramarital Affairs Data
## 414 Drunk Driving Laws and Traffic Deaths
## 415 Choice of Fishing Mode
## 416 Exchange Rates of US Dollar Against Other Currencies
## 417 Data from the Television Game Show Friend Or Foe ?
## 418 Daily Observations on Exchange Rates of the US Dollar Against Other Currencies
## 419 Gasoline Consumption
## 420 Wage Datas
## 421 Grunfeld Investment Data
## 422 Heating and Cooling System Choice in Newly Built Houses in California
## 423 The Boston HMDA Data Set
## 424 Heating System Choice in California Houses
## 425 Hedonic Prices of Census Tracts in Boston
## 426 Cybersecurity breaches reported to the US Department of Health and Human Services
## 427 Health Insurance and Hours Worked By Wives
## 428 The Boston HMDA Data Set
## 429 Sales Prices of Houses in the City of Windsor
## 430 Housing Starts
## 431 Ice Cream Consumption
## 432 Global Terrorism Database yearly summaries
## 433 Income Inequality in the US
## 434 Seasonally Unadjusted Quarterly Data on Disposable Income and Expenditure
## 435 Monthly Interest Rates
## 436 Economic Journals Dat Set
## 437 Willingness to Pay for the Preservation of the Kakadu National Park
## 438 Choice of Brand for Ketchup
## 439 Klein's Model I
## 440 Wages and Hours Worked
## 441 Belgian Firms
## 442 The Longley Data
## 443 Dollar Sterling Exchange Rate
## 444 Macroeconomic Time Series for the United States
## 445 Wages and Education of Young Males
## 446 Manufacturing Costs
## 447 Level of Calculus Attained for Students Taking Advanced Micro-economics
## 448 The Massachusetts Test Score Data Set
## 449 Structure of Demand for Medical Care
## 450 Production for SIC 33
## 451 Inflation and Interest Rates
## 452 Mode Choice
## 453 Data to Study Travel Mode Choice
## 454 International Expansion of U.S. Mofa's (majority-owned Foreign Affiliates in Fire (finance, Insurance and Real Estate)
## 455 Money, GDP and Interest Rate in Canada
## 456 Macroeconomic Series for the United States
## 457 Money, National Product and Interest Rate
## 458 Labor Supply Data
## 459 Municipal Expenditure Data
## 460 Growth of Disposable Income and Treasury Bill Rate
## 461 Willingness to Pay for the Preservation of the Alentejo Natural Park
## 462 Cost Function for Electricity Producers, 1955
## 463 Global Terrorism Database yearly summaries
## 464 Names with Character Set Problems
## 465 Visits to Physician Office
## 466 Oil Investment
## 467 The Orange Juice Data Set
## 468 Labor Force Participation
## 469 Dynamic Relation Between Patents and R&D
## 470 Patents, R&D and Technological Spillovers for a Panel of Firms
## 471 Price and Earnings Index
## 472 Political knowledge in the US and Europe
## 473 Pound-dollar Exchange Rate
## 474 Exchange Rates and Price Indices for France and Italy
## 475 Returns of Size-based Portfolios
## 476 Us States Production
## 477 Panel Survey of Income Dynamics
## 478 Return to Schooling
## 479 Wages and Schooling
## 480 Solow's Technological Change Data
## 481 Visits to Lake Somerville
## 482 Returns on Standard & Poor's 500 Index
## 483 Effects on Learning of Small Class Sizes
## 484 Strike Duration Data
## 485 Strikes Duration
## 486 Number of Strikes in Us Manufacturing
## 487 The Penn Table
## 488 Interest Rate, GDP and Inflation
## 489 Global Terrorism Database yearly summaries
## 490 Households Tobacco Budget Share
## 491 Stated Preferences for Train Traveling
## 492 Statewide Data on Transportation Equipment Manufacturing
## 493 Evaluating Treatment Effect of Training on Earnings
## 494 Choice of Brand for Tuna
## 495 Unemployment Duration
## 496 Unemployment Duration
## 497 Provision of University Teaching and Research
## 498 Official Secrecy of the United States Government
## 499 US Finance Industry Profits
## 500 US GDP per capita with presidents and wars
## RowCount ColCount has_logical has_binary has_numeric has_character
## 1 60 3 FALSE FALSE TRUE TRUE
## 2 570 6 FALSE TRUE TRUE FALSE
## 3 12 1 FALSE FALSE TRUE FALSE
## 4 24 1 FALSE FALSE TRUE FALSE
## 5 8437 4 FALSE TRUE TRUE FALSE
## 6 23 3 FALSE TRUE TRUE FALSE
## 7 100 4 FALSE TRUE TRUE FALSE
## 8 49 2 FALSE FALSE TRUE FALSE
## 9 823 3 FALSE FALSE TRUE FALSE
## 10 10 5 FALSE TRUE TRUE FALSE
## 11 27 2 FALSE FALSE TRUE FALSE
## 12 180 5 FALSE FALSE TRUE FALSE
## 13 75 1 FALSE FALSE TRUE FALSE
## 14 97 3 FALSE FALSE TRUE FALSE
## 15 138 2 FALSE FALSE TRUE FALSE
## 16 20 2 FALSE FALSE TRUE FALSE
## 17 999 2 FALSE FALSE TRUE FALSE
## 18 462 5 FALSE TRUE TRUE FALSE
## 19 10 2 FALSE FALSE TRUE FALSE
## 20 37 2 FALSE FALSE TRUE FALSE
## 21 32 2 FALSE FALSE TRUE FALSE
## 22 7 2 FALSE FALSE TRUE FALSE
## 23 191 1 FALSE FALSE TRUE FALSE
## 24 15 1 FALSE FALSE TRUE FALSE
## 25 7 2 FALSE FALSE TRUE FALSE
## 26 30 3 FALSE FALSE TRUE FALSE
## 27 11 2 FALSE FALSE TRUE FALSE
## 28 50 3 FALSE FALSE TRUE FALSE
## 29 25 4 FALSE FALSE TRUE FALSE
## 30 26 2 FALSE TRUE TRUE FALSE
## 31 81 2 FALSE FALSE TRUE FALSE
## 32 44 3 FALSE TRUE TRUE FALSE
## 33 18 1 FALSE FALSE TRUE FALSE
## 34 1080 2 FALSE FALSE FALSE FALSE
## 35 205 7 FALSE TRUE TRUE FALSE
## 36 94 4 FALSE FALSE TRUE FALSE
## 37 469 6 FALSE FALSE TRUE FALSE
## 38 50 5 FALSE FALSE TRUE FALSE
## 39 53 7 FALSE TRUE TRUE FALSE
## 40 32 11 FALSE TRUE TRUE FALSE
## 41 346 1 FALSE FALSE TRUE FALSE
## 42 48 3 FALSE FALSE TRUE FALSE
## 43 50 2 FALSE FALSE TRUE FALSE
## 44 27 3 FALSE TRUE TRUE FALSE
## 45 28 4 FALSE FALSE TRUE FALSE
## 46 14 2 FALSE FALSE TRUE FALSE
## 47 60 2 FALSE FALSE TRUE FALSE
## 48 64 1 FALSE FALSE TRUE FALSE
## 49 79 7 FALSE TRUE TRUE FALSE
## 50 309 2 FALSE FALSE FALSE FALSE
## 51 108 3 FALSE TRUE FALSE FALSE
## 52 24 5 FALSE TRUE FALSE FALSE
## 53 43 4 FALSE FALSE TRUE FALSE
## 54 51 4 FALSE FALSE TRUE FALSE
## 55 5226 8 FALSE TRUE FALSE FALSE
## 56 66 6 FALSE FALSE FALSE FALSE
## 57 1525 10 FALSE TRUE FALSE FALSE
## 58 30 6 FALSE FALSE TRUE FALSE
## 59 945 4 FALSE TRUE TRUE FALSE
## 60 27 3 FALSE FALSE FALSE FALSE
## 61 16 2 FALSE FALSE TRUE FALSE
## 62 2700 8 FALSE TRUE TRUE FALSE
## 63 32 5 FALSE FALSE TRUE FALSE
## 64 1421 4 FALSE TRUE FALSE FALSE
## 65 200 5 FALSE TRUE FALSE FALSE
## 66 191 7 FALSE FALSE FALSE FALSE
## 67 434 5 FALSE FALSE TRUE FALSE
## 68 45 4 FALSE FALSE FALSE FALSE
## 69 66 9 FALSE TRUE TRUE FALSE
## 70 67 11 FALSE FALSE FALSE FALSE
## 71 110 4 FALSE FALSE TRUE FALSE
## 72 30 2 FALSE FALSE FALSE FALSE
## 73 82 6 FALSE FALSE TRUE FALSE
## 74 384 7 FALSE TRUE TRUE FALSE
## 75 28867 8 FALSE TRUE TRUE FALSE
## 76 20 3 FALSE TRUE TRUE FALSE
## 77 38 8 FALSE FALSE TRUE FALSE
## 78 39 12 FALSE FALSE TRUE FALSE
## 79 4152 9 FALSE TRUE TRUE FALSE
## 80 105 4 FALSE TRUE TRUE FALSE
## 81 84 9 FALSE FALSE FALSE FALSE
## 82 8 3 FALSE FALSE TRUE FALSE
## 83 90 8 FALSE FALSE FALSE FALSE
## 84 45 4 FALSE TRUE FALSE FALSE
## 85 84 8 FALSE FALSE TRUE TRUE
## 86 51920 14 FALSE TRUE TRUE FALSE
## 87 753 8 FALSE TRUE TRUE FALSE
## 88 16 17 FALSE TRUE TRUE FALSE
## 89 248 4 FALSE FALSE FALSE FALSE
## 90 26 6 FALSE FALSE TRUE FALSE
## 91 102 6 FALSE FALSE TRUE FALSE
## 92 11 6 FALSE TRUE TRUE FALSE
## 93 50 3 FALSE FALSE TRUE FALSE
## 94 20 2 FALSE FALSE TRUE FALSE
## 95 397 6 FALSE TRUE FALSE FALSE
## 96 7425 5 FALSE TRUE TRUE FALSE
## 97 48 14 FALSE FALSE TRUE FALSE
## 98 51 7 FALSE FALSE TRUE FALSE
## 99 1309 4 FALSE TRUE TRUE FALSE
## 100 261 3 FALSE FALSE FALSE FALSE
## 101 213 7 FALSE FALSE TRUE FALSE
## 102 22 2 FALSE FALSE TRUE FALSE
## 103 30351 4 FALSE TRUE TRUE FALSE
## 104 34 7 FALSE FALSE FALSE FALSE
## 105 3020 5 FALSE TRUE TRUE FALSE
## 106 263 4 FALSE TRUE FALSE FALSE
## 107 331 7 FALSE TRUE TRUE FALSE
## 108 27 4 FALSE FALSE FALSE FALSE
## 109 5381 6 FALSE TRUE FALSE FALSE
## 110 12 2 FALSE FALSE TRUE FALSE
## 111 20 6 FALSE TRUE FALSE FALSE
## 112 61 10 FALSE FALSE FALSE FALSE
## 113 18 8 FALSE TRUE TRUE FALSE
## 114 136 31 FALSE TRUE TRUE FALSE
## 115 45 4 FALSE FALSE TRUE FALSE
## 116 75 2 FALSE FALSE FALSE FALSE
## 117 50 31 FALSE FALSE TRUE FALSE
## 118 3000 2 FALSE FALSE TRUE FALSE
## 119 601 18 FALSE TRUE FALSE FALSE
## 120 1959 6 FALSE TRUE FALSE FALSE
## 121 1798 4 FALSE TRUE FALSE FALSE
## 122 3589 6 FALSE TRUE FALSE FALSE
## 123 3589 6 FALSE TRUE TRUE FALSE
## 124 1127 3 FALSE TRUE TRUE FALSE
## 125 15 9 FALSE TRUE FALSE FALSE
## 126 147 7 FALSE TRUE TRUE FALSE
## 127 189 10 FALSE TRUE FALSE FALSE
## 128 6 7 FALSE TRUE FALSE FALSE
## 129 410 11 FALSE TRUE FALSE FALSE
## 130 2227 13 FALSE TRUE TRUE FALSE
## 131 1495 10 FALSE TRUE FALSE FALSE
## 132 52 8 FALSE FALSE TRUE FALSE
## 133 27326 4 FALSE FALSE FALSE FALSE
## 134 3874 15 FALSE TRUE TRUE FALSE
## 135 19609 17 FALSE TRUE TRUE FALSE
## 136 40 7 FALSE TRUE FALSE FALSE
## 137 6 4 FALSE TRUE FALSE FALSE
## 138 1316 4 FALSE TRUE FALSE FALSE
## 139 12 5 FALSE TRUE TRUE FALSE
## 140 22 2 FALSE FALSE TRUE FALSE
## 141 202 13 FALSE TRUE TRUE FALSE
## 142 15 4 FALSE TRUE TRUE FALSE
## 143 30 4 FALSE TRUE TRUE FALSE
## 144 32 9 FALSE FALSE TRUE FALSE
## 145 288 7 FALSE FALSE TRUE FALSE
## 146 60 3 FALSE FALSE TRUE FALSE
## 147 10 2 FALSE FALSE TRUE FALSE
## 148 9 10 FALSE FALSE TRUE FALSE
## 149 153 8 FALSE FALSE TRUE FALSE
## 150 109 22 FALSE FALSE TRUE FALSE
## 151 112 22 FALSE FALSE TRUE FALSE
## 152 113 22 FALSE FALSE TRUE FALSE
## 153 106 21 FALSE FALSE TRUE FALSE
## 154 102 15 FALSE FALSE TRUE FALSE
## 155 517 1 FALSE FALSE FALSE FALSE
## 156 48 9 FALSE FALSE TRUE FALSE
## 157 6 4 FALSE FALSE TRUE FALSE
## 158 100 1 FALSE FALSE TRUE FALSE
## 159 30 11 FALSE FALSE TRUE FALSE
## 160 25 7 FALSE FALSE TRUE FALSE
## 161 99 10 FALSE TRUE TRUE TRUE
## 162 14 3 FALSE FALSE TRUE FALSE
## 163 15992 10 FALSE TRUE TRUE FALSE
## 164 2369 10 FALSE TRUE TRUE FALSE
## 165 429 10 FALSE TRUE TRUE FALSE
## 166 5960 8 FALSE TRUE FALSE FALSE
## 167 10 12 FALSE FALSE TRUE FALSE
## 168 120 4 FALSE FALSE TRUE FALSE
## 169 2000 13 FALSE TRUE TRUE FALSE
## 170 72 3 FALSE FALSE TRUE FALSE
## 171 2042 2 FALSE FALSE TRUE FALSE
## 172 1096 2 FALSE FALSE TRUE FALSE
## 173 5788 5 FALSE FALSE TRUE FALSE
## 174 7 2 FALSE FALSE TRUE FALSE
## 175 9 2 FALSE FALSE TRUE FALSE
## 176 7 2 FALSE FALSE TRUE FALSE
## 177 5 2 FALSE FALSE TRUE FALSE
## 178 43 14 FALSE TRUE TRUE FALSE
## 179 212 10 FALSE TRUE TRUE FALSE
## 180 100 2 FALSE FALSE TRUE FALSE
## 181 128 2 FALSE FALSE TRUE FALSE
## 182 9 7 FALSE FALSE TRUE FALSE
## 183 56 2 FALSE FALSE TRUE FALSE
## 184 92 4 FALSE FALSE TRUE FALSE
## 185 18 5 FALSE TRUE TRUE FALSE
## 186 3121 11 FALSE TRUE TRUE FALSE
## 187 3121 11 FALSE TRUE TRUE FALSE
## 188 35 3 FALSE FALSE TRUE FALSE
## 189 56 4 FALSE FALSE TRUE FALSE
## 190 35 6 FALSE FALSE TRUE TRUE
## 191 10 6 FALSE TRUE TRUE FALSE
## 192 15 3 FALSE FALSE TRUE FALSE
## 193 28 3 FALSE FALSE TRUE FALSE
## 194 26 3 FALSE FALSE TRUE FALSE
## 195 94 12 FALSE TRUE TRUE TRUE
## 196 52 4 FALSE FALSE TRUE TRUE
## 197 53 2 FALSE FALSE TRUE FALSE
## 198 24 7 FALSE FALSE TRUE FALSE
## 199 48 4 FALSE FALSE TRUE FALSE
## 200 286 9 FALSE TRUE TRUE FALSE
## 201 61 8 FALSE TRUE TRUE FALSE
## 202 62 4 FALSE FALSE TRUE FALSE
## 203 62 9 FALSE FALSE TRUE FALSE
## 204 20 3 FALSE FALSE TRUE FALSE
## 205 39 2 FALSE FALSE TRUE FALSE
## 206 30 1 FALSE FALSE TRUE FALSE
## 207 9 2 FALSE FALSE TRUE FALSE
## 208 311 2 FALSE FALSE FALSE FALSE
## 209 33 2 FALSE FALSE TRUE FALSE
## 210 1295 10 FALSE TRUE TRUE FALSE
## 211 24 2 FALSE FALSE TRUE FALSE
## 212 17 2 FALSE FALSE TRUE FALSE
## 213 12 2 FALSE FALSE TRUE FALSE
## 214 6367 12 FALSE TRUE TRUE FALSE
## 215 41 4 FALSE FALSE TRUE FALSE
## 216 26217 15 FALSE TRUE TRUE TRUE
## 217 56 3 FALSE FALSE FALSE TRUE
## 218 23 4 FALSE FALSE TRUE FALSE
## 219 445 10 FALSE TRUE TRUE FALSE
## 220 2675 10 FALSE TRUE TRUE FALSE
## 221 313 10 FALSE TRUE TRUE FALSE
## 222 252 10 FALSE TRUE TRUE FALSE
## 223 722 10 FALSE TRUE TRUE FALSE
## 224 2787 10 FALSE TRUE TRUE FALSE
## 225 12 4 FALSE FALSE TRUE FALSE
## 226 23 4 FALSE TRUE TRUE FALSE
## 227 45 11 FALSE FALSE TRUE FALSE
## 228 9 2 FALSE FALSE TRUE FALSE
## 229 104 14 FALSE TRUE TRUE FALSE
## 230 7 3 FALSE FALSE TRUE FALSE
## 231 253 5 FALSE FALSE TRUE FALSE
## 232 5 2 FALSE FALSE TRUE FALSE
## 233 227 4 FALSE FALSE TRUE TRUE
## 234 2490 10 FALSE TRUE TRUE FALSE
## 235 253 10 FALSE TRUE TRUE FALSE
## 236 128 10 FALSE TRUE TRUE FALSE
## 237 77 5 FALSE FALSE TRUE TRUE
## 238 65 7 FALSE FALSE TRUE FALSE
## 239 4 3 FALSE FALSE TRUE FALSE
## 240 72 7 FALSE TRUE TRUE FALSE
## 241 103 20 FALSE TRUE TRUE TRUE
## 242 10 2 FALSE FALSE TRUE FALSE
## 243 1385 7 FALSE TRUE TRUE FALSE
## 244 5 2 FALSE FALSE TRUE FALSE
## 245 95 20 FALSE TRUE TRUE FALSE
## 246 8 2 FALSE FALSE TRUE FALSE
## 247 192 14 FALSE FALSE TRUE FALSE
## 248 2780 1 FALSE FALSE TRUE FALSE
## 249 100 2 FALSE FALSE TRUE FALSE
## 250 4601 7 FALSE TRUE TRUE FALSE
## 251 324 8 FALSE FALSE TRUE FALSE
## 252 12 2 FALSE FALSE TRUE FALSE
## 253 182 9 FALSE TRUE TRUE FALSE
## 254 24 2 FALSE FALSE TRUE FALSE
## 255 27 3 FALSE FALSE TRUE FALSE
## 256 36 8 FALSE FALSE TRUE FALSE
## 257 345 5 FALSE TRUE FALSE FALSE
## 258 51 5 FALSE FALSE TRUE FALSE
## 259 142 3 FALSE FALSE TRUE FALSE
## 260 40 5 FALSE TRUE TRUE TRUE
## 261 6 8 FALSE FALSE TRUE FALSE
## 262 24 2 FALSE FALSE FALSE FALSE
## 263 144 2 FALSE FALSE FALSE FALSE
## 264 153 6 FALSE FALSE TRUE FALSE
## 265 11 8 FALSE TRUE TRUE FALSE
## 266 182 5 FALSE FALSE TRUE FALSE
## 267 30 7 FALSE FALSE TRUE FALSE
## 268 89 2 FALSE FALSE FALSE FALSE
## 269 150 2 FALSE FALSE FALSE FALSE
## 270 6 2 FALSE FALSE TRUE FALSE
## 271 50 2 FALSE FALSE TRUE FALSE
## 272 578 4 FALSE FALSE TRUE FALSE
## 273 71 2 FALSE FALSE TRUE FALSE
## 274 468 2 FALSE FALSE FALSE FALSE
## 275 84 5 FALSE TRUE TRUE FALSE
## 276 924 3 FALSE FALSE FALSE FALSE
## 277 100 2 FALSE FALSE FALSE FALSE
## 278 176 3 FALSE FALSE TRUE FALSE
## 279 88 5 FALSE FALSE TRUE FALSE
## 280 11 1 FALSE FALSE TRUE FALSE
## 281 1860 4 FALSE FALSE TRUE FALSE
## 282 272 2 FALSE FALSE TRUE FALSE
## 283 6 2 FALSE FALSE TRUE FALSE
## 284 39 5 FALSE FALSE TRUE FALSE
## 285 32 4 FALSE TRUE TRUE FALSE
## 286 8 10 FALSE FALSE TRUE FALSE
## 287 24 26 FALSE FALSE TRUE FALSE
## 288 66 3 FALSE FALSE TRUE FALSE
## 289 248 8 FALSE TRUE TRUE FALSE
## 290 72 2 FALSE FALSE TRUE FALSE
## 291 150 5 FALSE FALSE TRUE FALSE
## 292 50 12 FALSE FALSE TRUE FALSE
## 293 48 1 FALSE FALSE TRUE FALSE
## 294 84 2 FALSE FALSE FALSE FALSE
## 295 98 2 FALSE FALSE FALSE FALSE
## 296 48 2 FALSE FALSE FALSE FALSE
## 297 50 5 FALSE FALSE TRUE FALSE
## 298 84 3 FALSE FALSE TRUE FALSE
## 299 16 7 FALSE FALSE TRUE FALSE
## 300 114 2 FALSE FALSE FALSE FALSE
## 301 100 3 FALSE FALSE FALSE FALSE
## 302 32 11 FALSE TRUE TRUE FALSE
## 303 60 2 FALSE FALSE FALSE FALSE
## 304 100 2 FALSE FALSE FALSE FALSE
## 305 240 2 FALSE FALSE FALSE FALSE
## 306 24 5 FALSE TRUE TRUE FALSE
## 307 64 3 FALSE FALSE FALSE FALSE
## 308 35 3 FALSE FALSE TRUE FALSE
## 309 64 4 FALSE FALSE TRUE FALSE
## 310 30 2 FALSE FALSE TRUE FALSE
## 311 70 1 FALSE FALSE TRUE FALSE
## 312 120 2 FALSE FALSE FALSE FALSE
## 313 19 2 FALSE FALSE TRUE FALSE
## 314 23 3 FALSE TRUE TRUE FALSE
## 315 1000 5 FALSE FALSE TRUE FALSE
## 316 400 3 FALSE FALSE TRUE FALSE
## 317 141 1 FALSE FALSE TRUE FALSE
## 318 48 4 FALSE FALSE TRUE FALSE
## 319 192 8 FALSE TRUE TRUE FALSE
## 320 20 3 FALSE TRUE TRUE FALSE
## 321 21 4 FALSE FALSE TRUE FALSE
## 322 3177 2 FALSE FALSE FALSE FALSE
## 323 289 2 FALSE FALSE FALSE FALSE
## 324 2820 2 FALSE FALSE FALSE FALSE
## 325 47 6 FALSE FALSE TRUE FALSE
## 326 132 5 FALSE FALSE TRUE FALSE
## 327 32 5 FALSE TRUE TRUE FALSE
## 328 60 3 FALSE TRUE TRUE FALSE
## 329 7980 2 FALSE FALSE FALSE FALSE
## 330 31 3 FALSE FALSE TRUE FALSE
## 331 24 4 FALSE TRUE TRUE FALSE
## 332 192 2 FALSE FALSE FALSE FALSE
## 333 108 2 FALSE FALSE FALSE FALSE
## 334 72 2 FALSE FALSE FALSE FALSE
## 335 50 4 FALSE FALSE TRUE FALSE
## 336 43 12 FALSE FALSE TRUE FALSE
## 337 5 5 FALSE FALSE TRUE FALSE
## 338 19 2 FALSE FALSE FALSE FALSE
## 339 5 4 FALSE FALSE TRUE FALSE
## 340 87 61 FALSE FALSE TRUE FALSE
## 341 54 3 FALSE TRUE TRUE FALSE
## 342 15 2 FALSE FALSE TRUE FALSE
## 343 7 7 FALSE FALSE TRUE FALSE
## 344 100 2 FALSE FALSE FALSE FALSE
## 345 180 3 FALSE FALSE TRUE FALSE
## 346 14 2 FALSE FALSE TRUE FALSE
## 347 150 5 FALSE FALSE TRUE FALSE
## 348 35 3 FALSE FALSE TRUE FALSE
## 349 34 2 FALSE FALSE TRUE FALSE
## 350 16 4 FALSE TRUE TRUE FALSE
## 351 128 3 FALSE TRUE TRUE FALSE
## 352 6 4 FALSE FALSE TRUE FALSE
## 353 35 3 FALSE FALSE TRUE FALSE
## 354 57 4 FALSE FALSE TRUE FALSE
## 355 6 3 FALSE FALSE TRUE FALSE
## 356 240 3 FALSE TRUE TRUE FALSE
## 357 192 5 FALSE FALSE TRUE FALSE
## 358 113 3 FALSE FALSE TRUE FALSE
## 359 12 4 FALSE TRUE TRUE FALSE
## 360 18 2 FALSE FALSE TRUE FALSE
## 361 42 2 FALSE FALSE TRUE FALSE
## 362 42 2 FALSE FALSE TRUE FALSE
## 363 14 2 FALSE FALSE TRUE FALSE
## 364 40 2 FALSE FALSE TRUE FALSE
## 365 102 3 FALSE FALSE TRUE FALSE
## 366 543 3 FALSE FALSE TRUE FALSE
## 367 9 3 FALSE FALSE TRUE FALSE
## 368 42 2 FALSE FALSE TRUE FALSE
## 369 70 2 FALSE FALSE TRUE FALSE
## 370 24 2 FALSE FALSE TRUE FALSE
## 371 49 3 FALSE FALSE TRUE FALSE
## 372 24 2 FALSE FALSE TRUE FALSE
## 373 68 3 FALSE TRUE TRUE FALSE
## 374 18 2 FALSE FALSE TRUE FALSE
## 375 7 2 FALSE FALSE TRUE FALSE
## 376 25 4 FALSE FALSE TRUE FALSE
## 377 105 4 FALSE TRUE TRUE FALSE
## 378 30 2 FALSE FALSE TRUE FALSE
## 379 53 3 FALSE FALSE TRUE FALSE
## 380 40 5 FALSE TRUE FALSE FALSE
## 381 90 6 FALSE FALSE TRUE FALSE
## 382 30 6 FALSE TRUE TRUE FALSE
## 383 211 71 FALSE TRUE TRUE FALSE
## 384 4877 18 FALSE TRUE TRUE FALSE
## 385 126 12 FALSE TRUE TRUE FALSE
## 386 1055 13 FALSE FALSE TRUE TRUE
## 387 23972 6 FALSE TRUE TRUE FALSE
## 388 1729 11 FALSE FALSE TRUE FALSE
## 389 1519 10 FALSE TRUE TRUE FALSE
## 390 1472 4 FALSE FALSE TRUE FALSE
## 391 516 5 FALSE FALSE TRUE FALSE
## 392 4654 70 FALSE TRUE TRUE FALSE
## 393 420 17 FALSE TRUE TRUE FALSE
## 394 2798 14 FALSE TRUE TRUE FALSE
## 395 1380 9 FALSE FALSE TRUE FALSE
## 396 528 9 FALSE FALSE TRUE FALSE
## 397 400 13 FALSE FALSE TRUE FALSE
## 398 6259 10 FALSE TRUE TRUE FALSE
## 399 200 2 FALSE FALSE TRUE FALSE
## 400 11130 3 FALSE TRUE TRUE FALSE
## 401 3292 14 FALSE TRUE TRUE FALSE
## 402 29 4 FALSE FALSE FALSE FALSE
## 403 630 24 FALSE TRUE TRUE FALSE
## 404 2528 7 FALSE FALSE TRUE FALSE
## 405 360 4 FALSE FALSE TRUE FALSE
## 406 308 5 FALSE FALSE TRUE FALSE
## 407 778 4 FALSE FALSE TRUE FALSE
## 408 485 4 FALSE FALSE TRUE FALSE
## 409 5190 15 FALSE TRUE TRUE FALSE
## 410 20186 15 TRUE TRUE TRUE FALSE
## 411 4266 2 FALSE FALSE TRUE FALSE
## 412 158 8 FALSE FALSE TRUE FALSE
## 413 601 9 FALSE TRUE TRUE FALSE
## 414 336 10 FALSE TRUE TRUE FALSE
## 415 1182 12 FALSE FALSE TRUE FALSE
## 416 276 9 FALSE FALSE TRUE FALSE
## 417 227 13 FALSE TRUE TRUE FALSE
## 418 1867 8 FALSE FALSE TRUE TRUE
## 419 342 6 FALSE FALSE TRUE FALSE
## 420 758 20 FALSE TRUE TRUE FALSE
## 421 200 5 FALSE FALSE TRUE FALSE
## 422 250 18 FALSE FALSE TRUE FALSE
## 423 2381 13 FALSE TRUE TRUE FALSE
## 424 900 21 FALSE FALSE TRUE FALSE
## 425 506 15 FALSE TRUE TRUE FALSE
## 426 1151 9 TRUE TRUE FALSE TRUE
## 427 22272 13 FALSE TRUE TRUE FALSE
## 428 2381 13 FALSE TRUE TRUE FALSE
## 429 546 12 FALSE TRUE TRUE FALSE
## 430 168 2 FALSE FALSE TRUE FALSE
## 431 30 4 FALSE FALSE TRUE FALSE
## 432 9270 3 FALSE FALSE FALSE FALSE
## 433 66 22 FALSE FALSE TRUE FALSE
## 434 58 2 FALSE FALSE TRUE FALSE
## 435 531 10 FALSE FALSE TRUE FALSE
## 436 180 10 FALSE TRUE FALSE FALSE
## 437 1827 22 FALSE TRUE TRUE FALSE
## 438 4956 7 FALSE FALSE TRUE FALSE
## 439 22 9 FALSE FALSE TRUE FALSE
## 440 5320 7 FALSE TRUE TRUE FALSE
## 441 569 4 FALSE FALSE TRUE FALSE
## 442 16 4 FALSE FALSE TRUE FALSE
## 443 200 3 FALSE FALSE TRUE FALSE
## 444 168 7 FALSE FALSE TRUE FALSE
## 445 4360 12 FALSE TRUE TRUE FALSE
## 446 25 9 FALSE FALSE TRUE FALSE
## 447 609 8 FALSE TRUE TRUE FALSE
## 448 220 17 FALSE FALSE TRUE FALSE
## 449 5574 15 FALSE TRUE TRUE FALSE
## 450 27 3 FALSE FALSE TRUE FALSE
## 451 491 5 FALSE FALSE TRUE FALSE
## 452 453 9 FALSE FALSE TRUE FALSE
## 453 840 7 FALSE TRUE FALSE FALSE
## 454 50 5 FALSE FALSE TRUE FALSE
## 455 128 4 FALSE FALSE TRUE FALSE
## 456 164 5 FALSE FALSE TRUE FALSE
## 457 90 4 FALSE FALSE TRUE FALSE
## 458 753 18 FALSE TRUE TRUE FALSE
## 459 2385 5 FALSE FALSE TRUE FALSE
## 460 50 2 FALSE FALSE TRUE FALSE
## 461 312 7 FALSE TRUE FALSE FALSE
## 462 159 8 FALSE FALSE TRUE FALSE
## 463 206 45 FALSE FALSE TRUE FALSE
## 464 11 2 FALSE FALSE FALSE FALSE
## 465 4406 19 FALSE TRUE TRUE FALSE
## 466 53 11 FALSE FALSE TRUE FALSE
## 467 642 3 FALSE FALSE TRUE FALSE
## 468 872 7 FALSE TRUE TRUE FALSE
## 469 1730 18 FALSE TRUE TRUE FALSE
## 470 1629 7 FALSE FALSE TRUE FALSE
## 471 132 2 FALSE FALSE TRUE FALSE
## 472 4 12 FALSE FALSE TRUE TRUE
## 473 778 4 FALSE FALSE TRUE FALSE
## 474 186 5 FALSE FALSE TRUE FALSE
## 475 418 12 FALSE FALSE TRUE FALSE
## 476 816 10 FALSE FALSE TRUE FALSE
## 477 4856 8 FALSE FALSE FALSE FALSE
## 478 5225 17 FALSE TRUE TRUE FALSE
## 479 3010 28 FALSE TRUE TRUE FALSE
## 480 41 3 FALSE FALSE TRUE FALSE
## 481 659 8 FALSE TRUE TRUE FALSE
## 482 2783 1 FALSE FALSE TRUE FALSE
## 483 5748 8 FALSE TRUE FALSE FALSE
## 484 62 2 FALSE FALSE TRUE FALSE
## 485 566 2 FALSE FALSE TRUE FALSE
## 486 108 3 FALSE FALSE TRUE FALSE
## 487 3250 7 FALSE TRUE TRUE FALSE
## 488 188 3 FALSE FALSE TRUE FALSE
## 489 46 25 FALSE FALSE TRUE TRUE
## 490 2724 9 FALSE FALSE TRUE FALSE
## 491 2929 11 FALSE TRUE FALSE FALSE
## 492 25 5 FALSE FALSE TRUE FALSE
## 493 2675 10 TRUE TRUE TRUE FALSE
## 494 13705 8 FALSE FALSE TRUE FALSE
## 495 3343 11 FALSE TRUE TRUE FALSE
## 496 452 12 FALSE TRUE FALSE FALSE
## 497 62 17 FALSE FALSE TRUE FALSE
## 498 29 5 FALSE FALSE TRUE FALSE
## 499 84 7 FALSE FALSE TRUE FALSE
## 500 259 12 FALSE TRUE TRUE FALSE
## totalData TitleLength
## 1 180 22
## 2 3420 44
## 3 12 38
## 4 24 38
## 5 33748 30
## 6 69 47
## 7 400 28
## 8 98 25
## 9 2469 33
## 10 50 28
## 11 54 19
## 12 900 23
## 13 75 36
## 14 291 29
## 15 276 27
## 16 40 36
## 17 1998 28
## 18 2310 19
## 19 20 25
## 20 74 32
## 21 64 24
## 22 14 24
## 23 191 30
## 24 15 33
## 25 14 30
## 26 90 48
## 27 22 54
## 28 150 30
## 29 100 27
## 30 52 27
## 31 162 27
## 32 132 24
## 33 18 32
## 34 2160 48
## 35 1435 32
## 36 376 41
## 37 2814 37
## 38 250 39
## 39 371 36
## 40 352 39
## 41 346 38
## 42 144 21
## 43 100 42
## 44 81 34
## 45 112 34
## 46 28 38
## 47 120 24
## 48 64 18
## 49 553 19
## 50 618 31
## 51 324 25
## 52 120 33
## 53 172 36
## 54 204 38
## 55 41808 32
## 56 396 41
## 57 15250 28
## 58 180 43
## 59 3780 60
## 60 81 44
## 61 32 24
## 62 21600 48
## 63 160 35
## 64 5684 39
## 65 1000 33
## 66 1337 34
## 67 2170 31
## 68 180 35
## 69 594 31
## 70 737 21
## 71 440 46
## 72 60 24
## 73 492 18
## 74 2688 15
## 75 230936 113
## 76 60 25
## 77 304 32
## 78 468 17
## 79 37368 31
## 80 420 24
## 81 756 86
## 82 24 24
## 83 720 39
## 84 180 40
## 85 672 50
## 86 726880 44
## 87 6024 38
## 88 272 43
## 89 992 52
## 90 156 31
## 91 612 32
## 92 66 24
## 93 150 27
## 94 40 41
## 95 2382 23
## 96 37125 36
## 97 672 58
## 98 357 52
## 99 5236 37
## 100 783 16
## 101 1491 66
## 102 44 31
## 103 121404 24
## 104 238 16
## 105 15100 28
## 106 1052 43
## 107 2317 24
## 108 108 9
## 109 32286 20
## 110 24 38
## 111 120 21
## 112 610 32
## 113 144 22
## 114 4216 25
## 115 180 38
## 116 150 12
## 117 1550 56
## 118 6000 34
## 119 10818 7
## 120 11754 10
## 121 7192 8
## 122 21534 5
## 123 21534 11
## 124 3381 9
## 125 135 9
## 126 1029 7
## 127 1890 3
## 128 42 6
## 129 4510 6
## 130 28951 5
## 131 14950 6
## 132 416 4
## 133 109304 3
## 134 58110 7
## 135 333353 6
## 136 280 5
## 137 24 7
## 138 5264 7
## 139 60 10
## 140 44 33
## 141 2626 28
## 142 60 36
## 143 120 24
## 144 288 56
## 145 2016 53
## 146 180 53
## 147 20 50
## 148 90 56
## 149 1224 12
## 150 2398 64
## 151 2464 64
## 152 2486 64
## 153 2226 31
## 154 1530 31
## 155 517 31
## 156 432 17
## 157 24 32
## 158 100 39
## 159 330 18
## 160 175 46
## 161 990 71
## 162 42 54
## 163 159920 31
## 164 23690 31
## 165 4290 31
## 166 47680 51
## 167 120 40
## 168 480 16
## 169 26000 43
## 170 216 13
## 171 4084 27
## 172 2192 48
## 173 28940 50
## 174 14 28
## 175 18 34
## 176 14 17
## 177 10 16
## 178 602 26
## 179 2120 10
## 180 200 19
## 181 256 35
## 182 63 65
## 183 112 19
## 184 368 50
## 185 90 48
## 186 34331 34
## 187 34331 34
## 188 105 24
## 189 224 31
## 190 210 49
## 191 60 45
## 192 45 19
## 193 84 49
## 194 78 49
## 195 1128 28
## 196 208 49
## 197 106 25
## 198 168 44
## 199 192 17
## 200 2574 24
## 201 488 29
## 202 248 29
## 203 558 38
## 204 60 13
## 205 78 20
## 206 30 31
## 207 18 34
## 208 622 29
## 209 66 23
## 210 12950 62
## 211 48 29
## 212 34 20
## 213 24 14
## 214 76404 15
## 215 164 10
## 216 393255 50
## 217 168 48
## 218 92 57
## 219 4450 31
## 220 26750 31
## 221 3130 31
## 222 2520 35
## 223 7220 31
## 224 27870 31
## 225 48 24
## 226 92 23
## 227 495 10
## 228 18 20
## 229 1456 19
## 230 21 12
## 231 1265 68
## 232 10 30
## 233 908 56
## 234 24900 31
## 235 2530 31
## 236 1280 31
## 237 385 31
## 238 455 15
## 239 12 33
## 240 504 44
## 241 2060 25
## 242 20 16
## 243 9695 26
## 244 10 24
## 245 1900 19
## 246 16 46
## 247 2688 17
## 248 2780 37
## 249 200 62
## 250 32207 16
## 251 2592 57
## 252 24 10
## 253 1638 34
## 254 48 63
## 255 81 13
## 256 288 56
## 257 1725 27
## 258 255 50
## 259 426 37
## 260 200 57
## 261 48 30
## 262 48 52
## 263 288 43
## 264 918 33
## 265 88 59
## 266 910 33
## 267 210 34
## 268 178 59
## 269 300 33
## 270 12 25
## 271 100 36
## 272 2312 46
## 273 142 28
## 274 936 39
## 275 420 37
## 276 2772 29
## 277 200 39
## 278 528 20
## 279 440 41
## 280 11 35
## 281 7440 63
## 282 544 24
## 283 12 29
## 284 195 21
## 285 128 41
## 286 80 18
## 287 624 18
## 288 198 32
## 289 1984 50
## 290 144 30
## 291 750 26
## 292 600 26
## 293 48 37
## 294 168 46
## 295 196 29
## 296 96 36
## 297 250 36
## 298 252 29
## 299 112 34
## 300 228 40
## 301 300 29
## 302 352 26
## 303 120 40
## 304 200 22
## 305 480 53
## 306 120 38
## 307 192 45
## 308 105 22
## 309 256 25
## 310 60 42
## 311 70 33
## 312 240 43
## 313 38 54
## 314 69 42
## 315 5000 33
## 316 1200 48
## 317 141 38
## 318 192 38
## 319 1536 40
## 320 60 20
## 321 84 32
## 322 6354 44
## 323 578 30
## 324 5640 34
## 325 282 56
## 326 660 32
## 327 160 37
## 328 180 54
## 329 15960 32
## 330 93 47
## 331 96 33
## 332 384 40
## 333 216 28
## 334 144 37
## 335 200 31
## 336 516 57
## 337 25 25
## 338 38 37
## 339 20 30
## 340 5307 57
## 341 162 43
## 342 30 46
## 343 49 22
## 344 200 25
## 345 540 45
## 346 28 71
## 347 750 70
## 348 105 51
## 349 68 51
## 350 64 12
## 351 384 71
## 352 24 39
## 353 105 23
## 354 228 53
## 355 18 26
## 356 720 35
## 357 960 26
## 358 339 50
## 359 48 29
## 360 36 35
## 361 84 21
## 362 84 67
## 363 28 26
## 364 80 51
## 365 306 52
## 366 1629 41
## 367 27 44
## 368 84 69
## 369 140 33
## 370 48 63
## 371 147 32
## 372 48 44
## 373 204 25
## 374 36 41
## 375 14 24
## 376 100 46
## 377 420 28
## 378 60 42
## 379 159 34
## 380 200 14
## 381 540 22
## 382 180 46
## 383 14981 27
## 384 87786 35
## 385 1512 27
## 386 13715 23
## 387 143832 43
## 388 19019 36
## 389 15190 35
## 390 5888 16
## 391 2580 17
## 392 325780 33
## 393 7140 34
## 394 39172 26
## 395 12420 21
## 396 4752 40
## 397 5200 34
## 398 62590 28
## 399 400 45
## 400 33390 43
## 401 46088 27
## 402 116 14
## 403 15120 23
## 404 17696 36
## 405 1440 38
## 406 1540 33
## 407 3112 23
## 408 1940 23
## 409 77850 26
## 410 302790 28
## 411 8532 29
## 412 1264 39
## 413 5409 25
## 414 3360 37
## 415 14184 22
## 416 2484 52
## 417 2951 50
## 418 14936 78
## 419 2052 20
## 420 15160 10
## 421 1000 24
## 422 4500 69
## 423 30953 24
## 424 18900 42
## 425 7590 41
## 426 10359 81
## 427 289536 42
## 428 30953 24
## 429 6552 45
## 430 336 14
## 431 120 21
## 432 27810 42
## 433 1452 27
## 434 116 73
## 435 5310 22
## 436 1800 25
## 437 40194 67
## 438 34692 27
## 439 198 15
## 440 37240 22
## 441 2276 13
## 442 64 16
## 443 600 29
## 444 1176 47
## 445 52320 34
## 446 225 19
## 447 4872 71
## 448 3740 37
## 449 83610 36
## 450 81 21
## 451 2455 28
## 452 4077 11
## 453 5880 32
## 454 250 118
## 455 512 38
## 456 820 42
## 457 360 41
## 458 13554 17
## 459 11925 26
## 460 100 50
## 461 2184 68
## 462 1272 45
## 463 9270 42
## 464 22 33
## 465 83714 26
## 466 583 14
## 467 1926 25
## 468 6104 25
## 469 31140 40
## 470 11403 62
## 471 264 24
## 472 48 40
## 473 3112 26
## 474 930 53
## 475 5016 32
## 476 8160 20
## 477 38848 31
## 478 88825 19
## 479 84280 19
## 480 123 33
## 481 5272 25
## 482 2783 38
## 483 45984 40
## 484 124 20
## 485 1132 16
## 486 324 37
## 487 22750 14
## 488 564 32
## 489 1150 42
## 490 24516 31
## 491 32219 38
## 492 125 56
## 493 26750 51
## 494 109640 24
## 495 36773 21
## 496 5424 21
## 497 1054 45
## 498 145 48
## 499 588 27
## 500 3108 42
boxplot(subset_frame$RowCount, subset_frame$ColCount)
plot(x=subset_frame$RowCount, y=subset_frame$ColCount, xlab="Total Rows", ylab="Total Cols", main = "Correlation b/w Rows and Columns")
hist(subset_frame$TitleLength, xlab = "TitleLength", main="Histogram on length of title")
Is there any correlation b/w row and col count, and what is the maximum length usually titles are applied for the data sets??
As per the box and plot charts, the maximum column is within 70 and rowCount extends till 50000. And most of the datasets are very small data sets less than 10000 records. Most of the titles applied for the datasets are b/w 30 - 40 characters.