#1. Data Exploration: This should include summary statistics, means, medians, quartiles, or any other relevant information about the data set. Please include some conclusions in the R Markdown text.

library(readr)

require(RCurl)
## Loading required package: RCurl
## Loading required package: bitops
UNStatistics <-read.csv(text=getURL("https://raw.githubusercontent.com/samsri01/Repo-For-CSV-File-Storage/master/UN_Statistics.csv"),header=TRUE)

summary.data.frame(UNStatistics)
##               X              region      group       fertility    
##  Afghanistan   :  1   Africa    :53   africa: 53   Min.   :1.134  
##  Albania       :  1   Asia      :50   oecd  : 31   1st Qu.:1.754  
##  Algeria       :  1   Europe    :39   other :115   Median :2.262  
##  American Samoa:  1   Latin Amer:20   NA's  : 14   Mean   :2.761  
##  Angola        :  1   Caribbean :17                3rd Qu.:3.545  
##  Anguilla      :  1   (Other)   :20                Max.   :6.925  
##  (Other)       :207   NA's      :14                NA's   :14     
##      ppgdp             lifeExpF        pctUrban      infantMortality  
##  Min.   :   114.8   Min.   :48.11   Min.   : 11.00   Min.   :  1.916  
##  1st Qu.:  1283.0   1st Qu.:65.66   1st Qu.: 39.00   1st Qu.:  7.019  
##  Median :  4684.5   Median :75.89   Median : 59.00   Median : 19.007  
##  Mean   : 13012.0   Mean   :72.29   Mean   : 57.93   Mean   : 29.440  
##  3rd Qu.: 15520.5   3rd Qu.:79.58   3rd Qu.: 75.00   3rd Qu.: 44.477  
##  Max.   :105095.4   Max.   :87.12   Max.   :100.00   Max.   :124.535  
##  NA's   :14         NA's   :14      NA's   :14       NA's   :6
# Analyzing Data to draw some hypothesis/conclusions
# group is a vector with 3 levels "africa","oecd","other"
levels(UNStatistics$group)
## [1] "africa" "oecd"   "other"
#Dividing the UNStatics data frame individually for different groups to analyze, it better.

#Dataframe with group as "africa"

africanCountriesData <- subset.data.frame(UNStatistics,group=="africa", select=c(X,region,group,fertility,ppgdp,lifeExpF,pctUrban,infantMortality))
summary.data.frame(africanCountriesData)
##             X                region      group      fertility    
##  Algeria     : 1   Africa       :53   africa:53   Min.   :1.590  
##  Angola      : 1   Asia         : 0   oecd  : 0   1st Qu.:3.174  
##  Benin       : 1   Caribbean    : 0   other : 0   Median :4.423  
##  Botswana    : 1   Europe       : 0               Mean   :4.236  
##  Burkina Faso: 1   Latin Amer   : 0               3rd Qu.:5.078  
##  Burundi     : 1   North America: 0               Max.   :6.925  
##  (Other)     :47   (Other)      : 0                              
##      ppgdp            lifeExpF        pctUrban     infantMortality 
##  Min.   :  114.8   Min.   :48.11   Min.   :11.00   Min.   : 12.11  
##  1st Qu.:  509.0   1st Qu.:53.14   1st Qu.:28.00   1st Qu.: 46.94  
##  Median :  980.7   Median :58.59   Median :40.00   Median : 67.02  
##  Mean   : 2508.8   Mean   :59.77   Mean   :42.62   Mean   : 65.32  
##  3rd Qu.: 2865.0   3rd Qu.:63.82   3rd Qu.:59.00   3rd Qu.: 85.88  
##  Max.   :16852.4   Max.   :78.00   Max.   :86.00   Max.   :123.94  
##                                                    NA's   :1
#Dataframe with group as "oecd" and "other"

nonAfricanCountriesData <- subset.data.frame(UNStatistics,group=="oecd" | group=="other", select=c(X,region,group,fertility,ppgdp,lifeExpF,pctUrban,infantMortality))
summary.data.frame(nonAfricanCountriesData)
##            X                 region      group       fertility    
##  Afghanistan:  1   Asia         :50   africa:  0   Min.   :1.134  
##  Albania    :  1   Europe       :39   oecd  : 31   1st Qu.:1.578  
##  Anguilla   :  1   Latin Amer   :20   other :115   Median :2.011  
##  Argentina  :  1   Caribbean    :17                Mean   :2.226  
##  Armenia    :  1   Oceania      :17                3rd Qu.:2.498  
##  Aruba      :  1   North America: 2                Max.   :5.968  
##  (Other)    :140   (Other)      : 1                               
##      ppgdp           lifeExpF        pctUrban      infantMortality  
##  Min.   :   499   Min.   :49.49   Min.   : 13.00   Min.   :  1.916  
##  1st Qu.:  3005   1st Qu.:73.70   1st Qu.: 49.25   1st Qu.:  5.405  
##  Median :  7568   Median :77.50   Median : 67.00   Median : 13.063  
##  Mean   : 16825   Mean   :76.84   Mean   : 63.49   Mean   : 17.985  
##  3rd Qu.: 24279   3rd Qu.:81.26   3rd Qu.: 81.75   3rd Qu.: 23.515  
##  Max.   :105095   Max.   :87.12   Max.   :100.00   Max.   :124.535  
##                                                    NA's   :5
#Dataframe with group as "oecd"

oecdCountriesData <- subset.data.frame(UNStatistics,group=="oecd" , select=c(X,region,group,fertility,ppgdp,lifeExpF,pctUrban,infantMortality))
summary.data.frame(oecdCountriesData)
##               X                region      group      fertility    
##  Australia     : 1   Europe       :22   africa: 0   Min.   :1.312  
##  Austria       : 1   Asia         : 3   oecd  :31   1st Qu.:1.476  
##  Belgium       : 1   Latin Amer   : 2   other : 0   Median :1.794  
##  Canada        : 1   North America: 2               Mean   :1.765  
##  Chile         : 1   Oceania      : 2               3rd Qu.:1.948  
##  Czech Republic: 1   Africa       : 0               Max.   :2.909  
##  (Other)       :25   (Other)      : 0                              
##      ppgdp           lifeExpF        pctUrban     infantMortality 
##  Min.   :  9101   Min.   :76.61   Min.   :49.00   Min.   : 2.289  
##  1st Qu.: 20138   1st Qu.:81.34   1st Qu.:68.00   1st Qu.: 3.346  
##  Median : 39546   Median :82.79   Median :78.00   Median : 3.914  
##  Mean   : 37761   Mean   :82.45   Mean   :75.81   Mean   : 4.890  
##  3rd Qu.: 46453   3rd Qu.:83.52   3rd Qu.:85.00   3rd Qu.: 4.841  
##  Max.   :105095   Max.   :87.12   Max.   :97.00   Max.   :19.901  
## 
#Dataframe with group as "other"

otherCountriesData <- subset.data.frame(UNStatistics,group== "other" , select=c(X,region,group,fertility,ppgdp,lifeExpF,pctUrban,infantMortality))
summary.data.frame(otherCountriesData)
##            X                 region      group       fertility    
##  Afghanistan:  1   Asia         :47   africa:  0   Min.   :1.134  
##  Albania    :  1   Latin Amer   :18   oecd  :  0   1st Qu.:1.650  
##  Anguilla   :  1   Caribbean    :17   other :115   Median :2.171  
##  Argentina  :  1   Europe       :17                Mean   :2.350  
##  Armenia    :  1   Oceania      :15                3rd Qu.:2.611  
##  Aruba      :  1   NorthAtlantic: 1                Max.   :5.968  
##  (Other)    :109   (Other)      : 0                               
##      ppgdp          lifeExpF        pctUrban      infantMortality  
##  Min.   :  499   Min.   :49.49   Min.   : 13.00   Min.   :  1.916  
##  1st Qu.: 2527   1st Qu.:72.47   1st Qu.: 44.50   1st Qu.: 10.558  
##  Median : 5195   Median :76.37   Median : 60.00   Median : 18.268  
##  Mean   :11181   Mean   :75.33   Mean   : 60.17   Mean   : 21.676  
##  3rd Qu.:12857   3rd Qu.:78.34   3rd Qu.: 76.00   3rd Qu.: 26.098  
##  Max.   :92625   Max.   :86.35   Max.   :100.00   Max.   :124.535  
##                                                   NA's   :5
#Drawing inferential statistics using t.test function for the above data frames.
#Comparing african data frame with OECD and other country details

#Below t.test() results gives us a positive number for 't', meaning, the urban population in all the non african countries is greater than african nations. 

t.test(nonAfricanCountriesData$pctUrban,africanCountriesData$pctUrban)
## 
##  Welch Two Sample t-test
## 
## data:  nonAfricanCountriesData$pctUrban and africanCountriesData$pctUrban
## t = 6.7903, df = 118.74, p-value = 4.7e-10
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  14.77952 26.94780
## sample estimates:
## mean of x mean of y 
##  63.48630  42.62264
#Below t.test() results gives us a positive number for 't', meaning, the GDP for all the non african countries is greater than african nations.Implies the quality of living is better in non african countries when compared to african nations.

t.test(nonAfricanCountriesData$ppgdp,africanCountriesData$ppgdp)
## 
##  Welch Two Sample t-test
## 
## data:  nonAfricanCountriesData$ppgdp and africanCountriesData$ppgdp
## t = 8.2533, df = 168.3, p-value = 4.288e-14
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  10891.68 17740.33
## sample estimates:
## mean of x mean of y 
## 16824.758  2508.751
#Below t.test() results gives us a positive number for 't', meaning, the fertiltiy or children/woman is higher in african countries compared to non african nations.

t.test(africanCountriesData$fertility,nonAfricanCountriesData$fertility)
## 
##  Welch Two Sample t-test
## 
## data:  africanCountriesData$fertility and nonAfricanCountriesData$fertility
## t = 10.414, df = 69.529, p-value = 7.79e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  1.625143 2.395165
## sample estimates:
## mean of x mean of y 
##  4.236170  2.226016
#Below t.test() results gives us a positive number for 't', meaning, the life expectancy in woman is higher in non african countries when compared to african nations.

t.test(nonAfricanCountriesData$lifeExpF,africanCountriesData$lifeExpF)
## 
##  Welch Two Sample t-test
## 
## data:  nonAfricanCountriesData$lifeExpF and africanCountriesData$lifeExpF
## t = 13.235, df = 70.134, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  14.49443 19.63796
## sample estimates:
## mean of x mean of y 
##  76.83846  59.77226
#Below t.test() results gives us a positive number for 't', meaning, the infant mortality rate per 1000 live births is higher in african countries when compared to non african nations.

t.test(africanCountriesData$infantMortality,nonAfricanCountriesData$infantMortality)
## 
##  Welch Two Sample t-test
## 
## data:  africanCountriesData$infantMortality and nonAfricanCountriesData$infantMortality
## t = 11.616, df = 65.906, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  39.19908 55.47145
## sample estimates:
## mean of x mean of y 
##  65.32077  17.98550

Hypothesis (Preliminary Conclusions observing the dataset) : All the variables look to be dependent on each other, the higher the urban percentage (pcturban), the better GDP/ quality of living (ppgdp), the lower the fertility ratio (fertiltiy - number of children/woman) - which means better education on family planning/population control, higher the life expectancy for female - probability of deaths during pregnancy is lower as the fertility ratio is low and lower the infant mortality ratio (death of infants under age 1 per 1000 live births).

#2. Data wrangling: Please perform some basic transformations. They will need to make sense but could include column renaming, creating a subset of the data, replacing values, or creating new columns with derived data (for example - if it makes sense you could sum two columns together)

#We have already created four subset data frames -
#africanCountriesData
#nonAfricanCountriesData
#oecdCountriesData
#otherCountriesData

#Renaming the column names in both the data frames with meaningful names

colnames(africanCountriesData) <- c("COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","INFANT_DEATH_RATE_PER_THOUSAND")
summary.data.frame(africanCountriesData)
##        COUNTRY_NAME       COUNTRY_REGION COUNTRY_GROUP
##  Algeria     : 1    Africa       :53     africa:53    
##  Angola      : 1    Asia         : 0     oecd  : 0    
##  Benin       : 1    Caribbean    : 0     other : 0    
##  Botswana    : 1    Europe       : 0                  
##  Burkina Faso: 1    Latin Amer   : 0                  
##  Burundi     : 1    North America: 0                  
##  (Other)     :47    (Other)      : 0                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP          FEMALE_LIFE_EXPECTANCY
##  Min.   :1.590            Min.   :  114.8   Min.   :48.11         
##  1st Qu.:3.174            1st Qu.:  509.0   1st Qu.:53.14         
##  Median :4.423            Median :  980.7   Median :58.59         
##  Mean   :4.236            Mean   : 2508.8   Mean   :59.77         
##  3rd Qu.:5.078            3rd Qu.: 2865.0   3rd Qu.:63.82         
##  Max.   :6.925            Max.   :16852.4   Max.   :78.00         
##                                                                   
##  URBAN_POPULATION_PERCENTAGE INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   :11.00               Min.   : 12.11                
##  1st Qu.:28.00               1st Qu.: 46.94                
##  Median :40.00               Median : 67.02                
##  Mean   :42.62               Mean   : 65.32                
##  3rd Qu.:59.00               3rd Qu.: 85.88                
##  Max.   :86.00               Max.   :123.94                
##                              NA's   :1
colnames(nonAfricanCountriesData) <- c("COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","INFANT_DEATH_RATE_PER_THOUSAND")
summary.data.frame(nonAfricanCountriesData)
##       COUNTRY_NAME       COUNTRY_REGION COUNTRY_GROUP
##  Afghanistan:  1   Asia         :50     africa:  0   
##  Albania    :  1   Europe       :39     oecd  : 31   
##  Anguilla   :  1   Latin Amer   :20     other :115   
##  Argentina  :  1   Caribbean    :17                  
##  Armenia    :  1   Oceania      :17                  
##  Aruba      :  1   North America: 2                  
##  (Other)    :140   (Other)      : 1                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP         FEMALE_LIFE_EXPECTANCY
##  Min.   :1.134            Min.   :   499   Min.   :49.49         
##  1st Qu.:1.578            1st Qu.:  3005   1st Qu.:73.70         
##  Median :2.011            Median :  7568   Median :77.50         
##  Mean   :2.226            Mean   : 16825   Mean   :76.84         
##  3rd Qu.:2.498            3rd Qu.: 24279   3rd Qu.:81.26         
##  Max.   :5.968            Max.   :105095   Max.   :87.12         
##                                                                  
##  URBAN_POPULATION_PERCENTAGE INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   : 13.00              Min.   :  1.916               
##  1st Qu.: 49.25              1st Qu.:  5.405               
##  Median : 67.00              Median : 13.063               
##  Mean   : 63.49              Mean   : 17.985               
##  3rd Qu.: 81.75              3rd Qu.: 23.515               
##  Max.   :100.00              Max.   :124.535               
##                              NA's   :5
colnames(oecdCountriesData) <- c("COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","INFANT_DEATH_RATE_PER_THOUSAND")
summary.data.frame(oecdCountriesData)
##          COUNTRY_NAME       COUNTRY_REGION COUNTRY_GROUP
##  Australia     : 1    Europe       :22     africa: 0    
##  Austria       : 1    Asia         : 3     oecd  :31    
##  Belgium       : 1    Latin Amer   : 2     other : 0    
##  Canada        : 1    North America: 2                  
##  Chile         : 1    Oceania      : 2                  
##  Czech Republic: 1    Africa       : 0                  
##  (Other)       :25    (Other)      : 0                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP         FEMALE_LIFE_EXPECTANCY
##  Min.   :1.312            Min.   :  9101   Min.   :76.61         
##  1st Qu.:1.476            1st Qu.: 20138   1st Qu.:81.34         
##  Median :1.794            Median : 39546   Median :82.79         
##  Mean   :1.765            Mean   : 37761   Mean   :82.45         
##  3rd Qu.:1.948            3rd Qu.: 46453   3rd Qu.:83.52         
##  Max.   :2.909            Max.   :105095   Max.   :87.12         
##                                                                  
##  URBAN_POPULATION_PERCENTAGE INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   :49.00               Min.   : 2.289                
##  1st Qu.:68.00               1st Qu.: 3.346                
##  Median :78.00               Median : 3.914                
##  Mean   :75.81               Mean   : 4.890                
##  3rd Qu.:85.00               3rd Qu.: 4.841                
##  Max.   :97.00               Max.   :19.901                
## 
colnames(otherCountriesData) <- c("COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","INFANT_DEATH_RATE_PER_THOUSAND")
summary.data.frame(otherCountriesData)
##       COUNTRY_NAME       COUNTRY_REGION COUNTRY_GROUP
##  Afghanistan:  1   Asia         :47     africa:  0   
##  Albania    :  1   Latin Amer   :18     oecd  :  0   
##  Anguilla   :  1   Caribbean    :17     other :115   
##  Argentina  :  1   Europe       :17                  
##  Armenia    :  1   Oceania      :15                  
##  Aruba      :  1   NorthAtlantic: 1                  
##  (Other)    :109   (Other)      : 0                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP        FEMALE_LIFE_EXPECTANCY
##  Min.   :1.134            Min.   :  499   Min.   :49.49         
##  1st Qu.:1.650            1st Qu.: 2527   1st Qu.:72.47         
##  Median :2.171            Median : 5195   Median :76.37         
##  Mean   :2.350            Mean   :11181   Mean   :75.33         
##  3rd Qu.:2.611            3rd Qu.:12857   3rd Qu.:78.34         
##  Max.   :5.968            Max.   :92625   Max.   :86.35         
##                                                                 
##  URBAN_POPULATION_PERCENTAGE INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   : 13.00              Min.   :  1.916               
##  1st Qu.: 44.50              1st Qu.: 10.558               
##  Median : 60.00              Median : 18.268               
##  Mean   : 60.17              Mean   : 21.676               
##  3rd Qu.: 76.00              3rd Qu.: 26.098               
##  Max.   :100.00              Max.   :124.535               
##                              NA's   :5
colnames(UNStatistics) <- c("COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","INFANT_DEATH_RATE_PER_THOUSAND")
summary.data.frame(UNStatistics)
##          COUNTRY_NAME    COUNTRY_REGION COUNTRY_GROUP
##  Afghanistan   :  1   Africa    :53     africa: 53   
##  Albania       :  1   Asia      :50     oecd  : 31   
##  Algeria       :  1   Europe    :39     other :115   
##  American Samoa:  1   Latin Amer:20     NA's  : 14   
##  Angola        :  1   Caribbean :17                  
##  Anguilla      :  1   (Other)   :20                  
##  (Other)       :207   NA's      :14                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP           FEMALE_LIFE_EXPECTANCY
##  Min.   :1.134            Min.   :   114.8   Min.   :48.11         
##  1st Qu.:1.754            1st Qu.:  1283.0   1st Qu.:65.66         
##  Median :2.262            Median :  4684.5   Median :75.89         
##  Mean   :2.761            Mean   : 13012.0   Mean   :72.29         
##  3rd Qu.:3.545            3rd Qu.: 15520.5   3rd Qu.:79.58         
##  Max.   :6.925            Max.   :105095.4   Max.   :87.12         
##  NA's   :14               NA's   :14         NA's   :14            
##  URBAN_POPULATION_PERCENTAGE INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   : 11.00              Min.   :  1.916               
##  1st Qu.: 39.00              1st Qu.:  7.019               
##  Median : 59.00              Median : 19.007               
##  Mean   : 57.93              Mean   : 29.440               
##  3rd Qu.: 75.00              3rd Qu.: 44.477               
##  Max.   :100.00              Max.   :124.535               
##  NA's   :14                  NA's   :6
#Creating new columns with derived data

#Adding a new column called "SERIAL_NUMBER"

africanCountriesData$SERIAL_NUMBER <- c(1:nrow(africanCountriesData))

#Get Rural population percentage by subtracting 100 from urban population

africanRuralPercentage <- as.integer(100 - africanCountriesData$URBAN_POPULATION_PERCENTAGE)

#Add RURAL_POPULATION_PERCENTAGE to the data frame

africanCountriesData$RURAL_POPULATION_PERCENTAGE <- africanRuralPercentage

#Find the GDP contribution by URBAN_POPULATION 
africanUrbanGDPContribution <- africanCountriesData$GDP * (africanCountriesData$URBAN_POPULATION_PERCENTAGE / 100)
africanCountriesData$GDP_URBAN_CONTRIBUTION <- africanUrbanGDPContribution


#Find the GDP contribution by RURAL_POPULATION 
africanRuralGDPContribution <- africanCountriesData$GDP * (africanCountriesData$RURAL_POPULATION_PERCENTAGE / 100)
africanCountriesData$GDP_RURAL_CONTRIBUTION <- africanRuralGDPContribution

#Arranging the columns to a meaningful order

africanCountriesData <- africanCountriesData[,c("SERIAL_NUMBER","COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","RURAL_POPULATION_PERCENTAGE","GDP_URBAN_CONTRIBUTION","GDP_RURAL_CONTRIBUTION","INFANT_DEATH_RATE_PER_THOUSAND")] 
names(africanCountriesData)
##  [1] "SERIAL_NUMBER"                  "COUNTRY_NAME"                  
##  [3] "COUNTRY_REGION"                 "COUNTRY_GROUP"                 
##  [5] "NO_OF_CHILDREN_PER_WOMAN"       "GDP"                           
##  [7] "FEMALE_LIFE_EXPECTANCY"         "URBAN_POPULATION_PERCENTAGE"   
##  [9] "RURAL_POPULATION_PERCENTAGE"    "GDP_URBAN_CONTRIBUTION"        
## [11] "GDP_RURAL_CONTRIBUTION"         "INFANT_DEATH_RATE_PER_THOUSAND"
summary.data.frame(africanCountriesData)
##  SERIAL_NUMBER       COUNTRY_NAME       COUNTRY_REGION COUNTRY_GROUP
##  Min.   : 1    Algeria     : 1    Africa       :53     africa:53    
##  1st Qu.:14    Angola      : 1    Asia         : 0     oecd  : 0    
##  Median :27    Benin       : 1    Caribbean    : 0     other : 0    
##  Mean   :27    Botswana    : 1    Europe       : 0                  
##  3rd Qu.:40    Burkina Faso: 1    Latin Amer   : 0                  
##  Max.   :53    Burundi     : 1    North America: 0                  
##                (Other)     :47    (Other)      : 0                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP          FEMALE_LIFE_EXPECTANCY
##  Min.   :1.590            Min.   :  114.8   Min.   :48.11         
##  1st Qu.:3.174            1st Qu.:  509.0   1st Qu.:53.14         
##  Median :4.423            Median :  980.7   Median :58.59         
##  Mean   :4.236            Mean   : 2508.8   Mean   :59.77         
##  3rd Qu.:5.078            3rd Qu.: 2865.0   3rd Qu.:63.82         
##  Max.   :6.925            Max.   :16852.4   Max.   :78.00         
##                                                                   
##  URBAN_POPULATION_PERCENTAGE RURAL_POPULATION_PERCENTAGE
##  Min.   :11.00               Min.   :14.00              
##  1st Qu.:28.00               1st Qu.:41.00              
##  Median :40.00               Median :60.00              
##  Mean   :42.62               Mean   :57.38              
##  3rd Qu.:59.00               3rd Qu.:72.00              
##  Max.   :86.00               Max.   :89.00              
##                                                         
##  GDP_URBAN_CONTRIBUTION GDP_RURAL_CONTRIBUTION
##  Min.   :   19.43       Min.   :   71.18      
##  1st Qu.:  140.32       1st Qu.:  296.89      
##  Median :  341.67       Median :  523.73      
##  Mean   : 1381.27       Mean   : 1127.48      
##  3rd Qu.: 1679.01       3rd Qu.: 1232.72      
##  Max.   :10723.17       Max.   :10111.44      
##                                               
##  INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   : 12.11                
##  1st Qu.: 46.94                
##  Median : 67.02                
##  Mean   : 65.32                
##  3rd Qu.: 85.88                
##  Max.   :123.94                
##  NA's   :1
#---------------------------------------------
#---------------------------------------------

#Creating new columns with derived data for 'nonAfricanCountriesData'

#Adding a new column called "SERIAL_NUMBER"

nonAfricanCountriesData$SERIAL_NUMBER <- c(1:nrow(nonAfricanCountriesData))

#Get Rural population percentage by subtracting 100 from urban population

nonAfricanRuralPercentage <- as.integer(100 - nonAfricanCountriesData$URBAN_POPULATION_PERCENTAGE)

#Add RURAL_POPULATION_PERCENTAGE to the data frame

nonAfricanCountriesData$RURAL_POPULATION_PERCENTAGE <- nonAfricanRuralPercentage

#Find the GDP contribution by URBAN_POPULATION 
nonAfricanUrbanGDPContribution <- nonAfricanCountriesData$GDP * (nonAfricanCountriesData$URBAN_POPULATION_PERCENTAGE / 100)
nonAfricanCountriesData$GDP_URBAN_CONTRIBUTION <- nonAfricanUrbanGDPContribution


#Find the GDP contribution by RURAL_POPULATION 
nonAfricanRuralGDPContribution <- nonAfricanCountriesData$GDP * (nonAfricanCountriesData$RURAL_POPULATION_PERCENTAGE / 100)
nonAfricanCountriesData$GDP_RURAL_CONTRIBUTION <- nonAfricanRuralGDPContribution

#Arranging the columns to a meaningful order

nonAfricanCountriesData <- nonAfricanCountriesData[,c("SERIAL_NUMBER","COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","RURAL_POPULATION_PERCENTAGE","GDP_URBAN_CONTRIBUTION","GDP_RURAL_CONTRIBUTION","INFANT_DEATH_RATE_PER_THOUSAND")] 

summary.data.frame(nonAfricanCountriesData)
##  SERIAL_NUMBER         COUNTRY_NAME       COUNTRY_REGION COUNTRY_GROUP
##  Min.   :  1.00   Afghanistan:  1   Asia         :50     africa:  0   
##  1st Qu.: 37.25   Albania    :  1   Europe       :39     oecd  : 31   
##  Median : 73.50   Anguilla   :  1   Latin Amer   :20     other :115   
##  Mean   : 73.50   Argentina  :  1   Caribbean    :17                  
##  3rd Qu.:109.75   Armenia    :  1   Oceania      :17                  
##  Max.   :146.00   Aruba      :  1   North America: 2                  
##                   (Other)    :140   (Other)      : 1                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP         FEMALE_LIFE_EXPECTANCY
##  Min.   :1.134            Min.   :   499   Min.   :49.49         
##  1st Qu.:1.578            1st Qu.:  3005   1st Qu.:73.70         
##  Median :2.011            Median :  7568   Median :77.50         
##  Mean   :2.226            Mean   : 16825   Mean   :76.84         
##  3rd Qu.:2.498            3rd Qu.: 24279   3rd Qu.:81.26         
##  Max.   :5.968            Max.   :105095   Max.   :87.12         
##                                                                  
##  URBAN_POPULATION_PERCENTAGE RURAL_POPULATION_PERCENTAGE
##  Min.   : 13.00              Min.   : 0.00              
##  1st Qu.: 49.25              1st Qu.:18.25              
##  Median : 67.00              Median :33.00              
##  Mean   : 63.49              Mean   :36.51              
##  3rd Qu.: 81.75              3rd Qu.:50.75              
##  Max.   :100.00              Max.   :87.00              
##                                                         
##  GDP_URBAN_CONTRIBUTION GDP_RURAL_CONTRIBUTION
##  Min.   :  101.6        Min.   :    0.0       
##  1st Qu.: 1473.0        1st Qu.:  968.2       
##  Median : 4960.0        Median : 2052.5       
##  Mean   :13273.0        Mean   : 3551.7       
##  3rd Qu.:18805.6        3rd Qu.: 4513.4       
##  Max.   :92624.7        Max.   :17908.9       
##                                               
##  INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   :  1.916               
##  1st Qu.:  5.405               
##  Median : 13.063               
##  Mean   : 17.985               
##  3rd Qu.: 23.515               
##  Max.   :124.535               
##  NA's   :5
#---------------------------------------------
#---------------------------------------------

#Creating new columns with derived data for 'oecdCountriesData'

#Adding a new column called "SERIAL_NUMBER"

oecdCountriesData$SERIAL_NUMBER <- c(1:nrow(oecdCountriesData))

#Get Rural population percentage by subtracting 100 from urban population

oecdCountriesRuralPercentage <- as.integer(100 - oecdCountriesData$URBAN_POPULATION_PERCENTAGE)
oecdCountriesRuralPercentage
##  [1] 11 32  3 19 11 26 13 30 15 14 26 38 32 38  8 31 33 15 22 17 14 20 39
## [24] 39 45 51 15 26 30 20 17
#Add RURAL_POPULATION_PERCENTAGE to the data frame

oecdCountriesData$RURAL_POPULATION_PERCENTAGE <- oecdCountriesRuralPercentage

#Find the GDP contribution by URBAN_POPULATION 
oecdUrbanGDPContribution <- oecdCountriesData$GDP * (oecdCountriesData$URBAN_POPULATION_PERCENTAGE / 100)
oecdCountriesData$GDP_URBAN_CONTRIBUTION <- oecdUrbanGDPContribution


#Find the GDP contribution by RURAL_POPULATION 
oecdRuralGDPContribution <- oecdCountriesData$GDP * (oecdCountriesData$RURAL_POPULATION_PERCENTAGE / 100)
oecdCountriesData$GDP_RURAL_CONTRIBUTION <- oecdRuralGDPContribution

#Arranging the columns to a meaningful order

oecdCountriesData <- oecdCountriesData[,c("SERIAL_NUMBER","COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","RURAL_POPULATION_PERCENTAGE","GDP_URBAN_CONTRIBUTION","GDP_RURAL_CONTRIBUTION","INFANT_DEATH_RATE_PER_THOUSAND")] 

summary.data.frame(oecdCountriesData)
##  SERIAL_NUMBER          COUNTRY_NAME       COUNTRY_REGION COUNTRY_GROUP
##  Min.   : 1.0   Australia     : 1    Europe       :22     africa: 0    
##  1st Qu.: 8.5   Austria       : 1    Asia         : 3     oecd  :31    
##  Median :16.0   Belgium       : 1    Latin Amer   : 2     other : 0    
##  Mean   :16.0   Canada        : 1    North America: 2                  
##  3rd Qu.:23.5   Chile         : 1    Oceania      : 2                  
##  Max.   :31.0   Czech Republic: 1    Africa       : 0                  
##                 (Other)       :25    (Other)      : 0                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP         FEMALE_LIFE_EXPECTANCY
##  Min.   :1.312            Min.   :  9101   Min.   :76.61         
##  1st Qu.:1.476            1st Qu.: 20138   1st Qu.:81.34         
##  Median :1.794            Median : 39546   Median :82.79         
##  Mean   :1.765            Mean   : 37761   Mean   :82.45         
##  3rd Qu.:1.948            3rd Qu.: 46453   3rd Qu.:83.52         
##  Max.   :2.909            Max.   :105095   Max.   :87.12         
##                                                                  
##  URBAN_POPULATION_PERCENTAGE RURAL_POPULATION_PERCENTAGE
##  Min.   :49.00               Min.   : 3.00              
##  1st Qu.:68.00               1st Qu.:15.00              
##  Median :78.00               Median :22.00              
##  Mean   :75.81               Mean   :24.19              
##  3rd Qu.:85.00               3rd Qu.:32.00              
##  Max.   :97.00               Max.   :51.00              
##                                                         
##  GDP_URBAN_CONTRIBUTION GDP_RURAL_CONTRIBUTION
##  Min.   : 7067          Min.   : 1308         
##  1st Qu.:12200          1st Qu.: 4657         
##  Median :28904          Median : 7265         
##  Mean   :29608          Mean   : 8153         
##  3rd Qu.:38784          3rd Qu.:10432         
##  Max.   :89331          Max.   :17909         
##                                               
##  INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   : 2.289                
##  1st Qu.: 3.346                
##  Median : 3.914                
##  Mean   : 4.890                
##  3rd Qu.: 4.841                
##  Max.   :19.901                
## 
#---------------------------------------------
#---------------------------------------------

#Creating new columns with derived data for 'otherCountriesData'

#Adding a new column called "SERIAL_NUMBER"

otherCountriesData$SERIAL_NUMBER <- c(1:nrow(otherCountriesData))

#Get Rural population percentage by subtracting 100 from urban population

otherCountriesRuralPercentage <- as.integer(100 - otherCountriesData$URBAN_POPULATION_PERCENTAGE)

#Add RURAL_POPULATION_PERCENTAGE to the data frame

otherCountriesData$RURAL_POPULATION_PERCENTAGE <- otherCountriesRuralPercentage

#Find the GDP contribution by URBAN_POPULATION 
otherUrbanGDPContribution <- otherCountriesData$GDP * (otherCountriesData$URBAN_POPULATION_PERCENTAGE / 100)
otherCountriesData$GDP_URBAN_CONTRIBUTION <- otherUrbanGDPContribution


#Find the GDP contribution by RURAL_POPULATION 
otherRuralGDPContribution <- otherCountriesData$GDP * (otherCountriesData$RURAL_POPULATION_PERCENTAGE / 100)
otherCountriesData$GDP_RURAL_CONTRIBUTION <- otherRuralGDPContribution

#Arranging the columns to a meaningful order

otherCountriesData <- otherCountriesData[,c("SERIAL_NUMBER","COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","RURAL_POPULATION_PERCENTAGE","GDP_URBAN_CONTRIBUTION","GDP_RURAL_CONTRIBUTION","INFANT_DEATH_RATE_PER_THOUSAND")] 

summary.data.frame(otherCountriesData)
##  SERIAL_NUMBER        COUNTRY_NAME       COUNTRY_REGION COUNTRY_GROUP
##  Min.   :  1.0   Afghanistan:  1   Asia         :47     africa:  0   
##  1st Qu.: 29.5   Albania    :  1   Latin Amer   :18     oecd  :  0   
##  Median : 58.0   Anguilla   :  1   Caribbean    :17     other :115   
##  Mean   : 58.0   Argentina  :  1   Europe       :17                  
##  3rd Qu.: 86.5   Armenia    :  1   Oceania      :15                  
##  Max.   :115.0   Aruba      :  1   NorthAtlantic: 1                  
##                  (Other)    :109   (Other)      : 0                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP        FEMALE_LIFE_EXPECTANCY
##  Min.   :1.134            Min.   :  499   Min.   :49.49         
##  1st Qu.:1.650            1st Qu.: 2527   1st Qu.:72.47         
##  Median :2.171            Median : 5195   Median :76.37         
##  Mean   :2.350            Mean   :11181   Mean   :75.33         
##  3rd Qu.:2.611            3rd Qu.:12857   3rd Qu.:78.34         
##  Max.   :5.968            Max.   :92625   Max.   :86.35         
##                                                                 
##  URBAN_POPULATION_PERCENTAGE RURAL_POPULATION_PERCENTAGE
##  Min.   : 13.00              Min.   : 0.00              
##  1st Qu.: 44.50              1st Qu.:24.00              
##  Median : 60.00              Median :40.00              
##  Mean   : 60.17              Mean   :39.83              
##  3rd Qu.: 76.00              3rd Qu.:55.50              
##  Max.   :100.00              Max.   :87.00              
##                                                         
##  GDP_URBAN_CONTRIBUTION GDP_RURAL_CONTRIBUTION
##  Min.   :  101.6        Min.   :    0         
##  1st Qu.:  958.7        1st Qu.:  834         
##  Median : 2869.0        Median : 1516         
##  Mean   : 8869.6        Mean   : 2311         
##  3rd Qu.: 9185.8        3rd Qu.: 2695         
##  Max.   :92624.7        Max.   :15187         
##                                               
##  INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   :  1.916               
##  1st Qu.: 10.558               
##  Median : 18.268               
##  Mean   : 21.676               
##  3rd Qu.: 26.098               
##  Max.   :124.535               
##  NA's   :5
#---------------------------------------------
#---------------------------------------------

#Creating new columns with derived data for 'UNStatistics'

#Adding a new column called "SERIAL_NUMBER"

UNStatistics$SERIAL_NUMBER <- c(1:nrow(UNStatistics))

#Get Rural population percentage by subtracting 100 from urban population

UNCountriesRuralPercentage <- as.integer(100 - UNStatistics$URBAN_POPULATION_PERCENTAGE)

#Add RURAL_POPULATION_PERCENTAGE to the data frame

UNStatistics$RURAL_POPULATION_PERCENTAGE <- UNCountriesRuralPercentage

#Find the GDP contribution by URBAN_POPULATION 
UNCountriesUrbanGDPContribution <- UNStatistics$GDP * (UNStatistics$URBAN_POPULATION_PERCENTAGE / 100)
UNStatistics$GDP_URBAN_CONTRIBUTION <- UNCountriesUrbanGDPContribution


#Find the GDP contribution by RURAL_POPULATION 
UNCountriesRuralGDPContribution <- UNStatistics$GDP * (UNStatistics$RURAL_POPULATION_PERCENTAGE / 100)
UNStatistics$GDP_RURAL_CONTRIBUTION <- UNCountriesRuralGDPContribution

#Arranging the columns to a meaningful order


UNStatistics <- UNStatistics[,c("SERIAL_NUMBER","COUNTRY_NAME","COUNTRY_REGION","COUNTRY_GROUP","NO_OF_CHILDREN_PER_WOMAN","GDP","FEMALE_LIFE_EXPECTANCY","URBAN_POPULATION_PERCENTAGE","RURAL_POPULATION_PERCENTAGE","GDP_URBAN_CONTRIBUTION","GDP_RURAL_CONTRIBUTION","INFANT_DEATH_RATE_PER_THOUSAND")] 

UNStatistics
##     SERIAL_NUMBER                     COUNTRY_NAME COUNTRY_REGION
## 1               1                      Afghanistan           Asia
## 2               2                          Albania         Europe
## 3               3                          Algeria         Africa
## 4               4                   American Samoa           <NA>
## 5               5                           Angola         Africa
## 6               6                         Anguilla      Caribbean
## 7               7                        Argentina     Latin Amer
## 8               8                          Armenia           Asia
## 9               9                            Aruba      Caribbean
## 10             10                        Australia        Oceania
## 11             11                          Austria         Europe
## 12             12                       Azerbaijan           Asia
## 13             13                          Bahamas      Caribbean
## 14             14                          Bahrain           Asia
## 15             15                       Bangladesh           Asia
## 16             16                         Barbados      Caribbean
## 17             17                          Belarus         Europe
## 18             18                          Belgium         Europe
## 19             19                           Belize     Latin Amer
## 20             20                            Benin         Africa
## 21             21                          Bermuda      Caribbean
## 22             22                           Bhutan           Asia
## 23             23                          Bolivia     Latin Amer
## 24             24           Bosnia and Herzegovina         Europe
## 25             25                         Botswana         Africa
## 26             26                           Brazil     Latin Amer
## 27             27                Brunei Darussalam           Asia
## 28             28                         Bulgaria         Europe
## 29             29                     Burkina Faso         Africa
## 30             30                          Burundi         Africa
## 31             31                         Cambodia           Asia
## 32             32                         Cameroon         Africa
## 33             33                           Canada  North America
## 34             34                       Cape Verde         Africa
## 35             35                   Cayman Islands      Caribbean
## 36             36         Central African Republic         Africa
## 37             37                             Chad         Africa
## 38             38                  Channel Islands           <NA>
## 39             39                            Chile     Latin Amer
## 40             40                            China           Asia
## 41             41                         Colombia     Latin Amer
## 42             42                          Comoros         Africa
## 43             43                            Congo         Africa
## 44             44                     Cook Islands        Oceania
## 45             45                       Costa Rica     Latin Amer
## 46             46                     Cote dIvoire         Africa
## 47             47                          Croatia         Europe
## 48             48                             Cuba      Caribbean
## 49             49                           Cyprus           Asia
## 50             50                   Czech Republic         Europe
## 51             51 Democratic Republic of the Congo         Africa
## 52             52                          Denmark         Europe
## 53             53                         Djibouti         Africa
## 54             54                         Dominica      Caribbean
## 55             55               Dominican Republic      Caribbean
## 56             56                      Timor Leste           Asia
## 57             57                          Ecuador     Latin Amer
## 58             58                            Egypt         Africa
## 59             59                      El Salvador     Latin Amer
## 60             60                Equatorial Guinea         Africa
## 61             61                          Eritrea         Africa
## 62             62                          Estonia         Europe
## 63             63                         Ethiopia         Africa
## 64             64                             Fiji        Oceania
## 65             65                          Finland         Europe
## 66             66                           France         Europe
## 67             67                    French Guiana           <NA>
## 68             68                 French Polynesia        Oceania
## 69             69                            Gabon         Africa
## 70             70                           Gambia         Africa
## 71             71                          Georgia           Asia
## 72             72                          Germany         Europe
## 73             73                            Ghana         Africa
## 74             74                           Greece         Europe
## 75             75                        Greenland  NorthAtlantic
## 76             76                          Grenada      Caribbean
## 77             77                       Guadeloupe           <NA>
## 78             78                             Guam           <NA>
## 79             79                        Guatemala     Latin Amer
## 80             80                           Guinea         Africa
## 81             81                    Guinea-Bissau         Africa
## 82             82                           Guyana     Latin Amer
## 83             83                            Haiti      Caribbean
## 84             84                         Honduras     Latin Amer
## 85             85                        Hong Kong           Asia
## 86             86                          Hungary         Europe
## 87             87                          Iceland         Europe
## 88             88                            India           Asia
## 89             89                        Indonesia           Asia
## 90             90                             Iran           Asia
## 91             91                             Iraq           Asia
## 92             92                          Ireland         Europe
## 93             93                           Israel           Asia
## 94             94                            Italy         Europe
## 95             95                          Jamaica      Caribbean
## 96             96                            Japan           Asia
## 97             97                           Jordan           Asia
## 98             98                       Kazakhstan           Asia
## 99             99                            Kenya         Africa
## 100           100                         Kiribati        Oceania
## 101           101                           Kuwait           Asia
## 102           102                       Kyrgyzstan           Asia
## 103           103                             Laos           Asia
## 104           104                           Latvia         Europe
## 105           105                          Lebanon           Asia
## 106           106                          Lesotho         Africa
## 107           107                          Liberia         Africa
## 108           108                            Libya         Africa
## 109           109                        Lithuania         Europe
## 110           110                       Luxembourg         Europe
## 111           111                            Macao           Asia
## 112           112                       Madagascar         Africa
## 113           113                           Malawi         Africa
## 114           114                         Malaysia           Asia
## 115           115                         Maldives           Asia
## 116           116                             Mali         Africa
## 117           117                            Malta         Europe
## 118           118                 Marshall Islands        Oceania
## 119           119                       Martinique           <NA>
## 120           120                       Mauritania         Africa
## 121           121                        Mauritius         Africa
## 122           122                          Mayotte           <NA>
## 123           123                           Mexico     Latin Amer
## 124           124                       Micronesia        Oceania
## 125           125                          Moldova         Europe
## 126           126                         Mongolia           Asia
## 127           127                       Montenegro         Europe
## 128           128                          Morocco         Africa
## 129           129                       Mozambique         Africa
## 130           130                          Myanmar           Asia
## 131           131                          Namibia         Africa
## 132           132                            Nauru        Oceania
## 133           133                            Nepal           Asia
## 134           134                    Neth Antilles      Caribbean
## 135           135                      Netherlands         Europe
## 136           136                    New Caledonia        Oceania
## 137           137                      New Zealand        Oceania
## 138           138                        Nicaragua     Latin Amer
## 139           139                            Niger         Africa
## 140           140                          Nigeria         Africa
## 141           141                             Niue           <NA>
## 142           142                      North Korea           Asia
## 143           143         Northern Mariana Islands           <NA>
## 144           144                           Norway         Europe
## 145           145                             Oman           Asia
## 146           146                         Pakistan           Asia
## 147           147                            Palau        Oceania
## 148           148            Palestinian Territory           Asia
## 149           149                           Panama     Latin Amer
## 150           150                 Papua New Guinea        Oceania
## 151           151                         Paraguay     Latin Amer
## 152           152                             Peru     Latin Amer
## 153           153                      Philippines           Asia
## 154           154                           Poland         Europe
## 155           155                         Portugal         Europe
## 156           156                      Puerto Rico      Caribbean
## 157           157                            Qatar           Asia
## 158           158                Republic of Korea           Asia
## 159           159                          Reunion           <NA>
## 160           160                          Romania         Europe
## 161           161               Russian Federation         Europe
## 162           162                           Rwanda         Africa
## 163           163                      Saint Lucia      Caribbean
## 164           164                            Samoa        Oceania
## 165           165            Sao Tome and Principe         Africa
## 166           166                     Saudi Arabia           Asia
## 167           167                          Senegal         Africa
## 168           168                           Serbia         Europe
## 169           169                       Seychelles         Africa
## 170           170                     Sierra Leone         Africa
## 171           171                        Singapore           Asia
## 172           172                         Slovakia         Europe
## 173           173                         Slovenia         Europe
## 174           174                  Solomon Islands        Oceania
## 175           175                          Somalia         Africa
## 176           176                     South Africa         Africa
## 177           177                            Spain         Europe
## 178           178                        Sri Lanka           Asia
## 179           179        St Vincent and Grenadines      Caribbean
## 180           180                            Sudan         Africa
## 181           181                         Suriname     Latin Amer
## 182           182                        Swaziland         Africa
## 183           183                           Sweden         Europe
## 184           184                      Switzerland         Europe
## 185           185                            Syria           Asia
## 186           186                       Tajikistan           Asia
## 187           187                         Tanzania         Africa
## 188           188                   TFYR Macedonia         Europe
## 189           189                         Thailand           Asia
## 190           190                             Togo         Africa
## 191           191                          Tokelau           <NA>
## 192           192                            Tonga        Oceania
## 193           193              Trinidad and Tobago      Caribbean
## 194           194                          Tunisia         Africa
## 195           195                           Turkey           Asia
## 196           196                     Turkmenistan           Asia
## 197           197                           Tuvalu        Oceania
## 198           198                           Uganda         Africa
## 199           199                          Ukraine         Europe
## 200           200             United Arab Emirates           Asia
## 201           201                   United Kingdom         Europe
## 202           202                    United States  North America
## 203           203     United States Virgin Islands           <NA>
## 204           204                          Uruguay     Latin Amer
## 205           205                       Uzbekistan           Asia
## 206           206                          Vanuatu        Oceania
## 207           207                        Venezuela     Latin Amer
## 208           208                         Viet Nam           Asia
## 209           209        Wallis and Futuna Islands           <NA>
## 210           210                   Western Sahara           <NA>
## 211           211                            Yemen           Asia
## 212           212                           Zambia         Africa
## 213           213                         Zimbabwe         Africa
##     COUNTRY_GROUP NO_OF_CHILDREN_PER_WOMAN      GDP FEMALE_LIFE_EXPECTANCY
## 1           other                 5.968000    499.0               49.49000
## 2           other                 1.525000   3677.2               80.40000
## 3          africa                 2.142000   4473.0               75.00000
## 4            <NA>                       NA       NA                     NA
## 5          africa                 5.135000   4321.9               53.17000
## 6           other                 2.000000  13750.1               81.10000
## 7           other                 2.172000   9162.1               79.89000
## 8           other                 1.735000   3030.7               77.33000
## 9           other                 1.671000  22851.5               77.75000
## 10           oecd                 1.949000  57118.9               84.27000
## 11           oecd                 1.346000  45158.8               83.55000
## 12          other                 2.148000   5637.6               73.66000
## 13          other                 1.877000  22461.6               78.85000
## 14          other                 2.430000  18184.1               76.06000
## 15          other                 2.157000    670.4               70.23000
## 16          other                 1.575000  14497.3               80.26000
## 17          other                 1.479000   5702.0               76.37000
## 18           oecd                 1.835000  43814.8               82.81000
## 19          other                 2.679000   4495.8               77.81000
## 20         africa                 5.078000    741.1               58.66000
## 21          other                 1.760000  92624.7               82.30000
## 22          other                 2.258000   2047.2               69.84000
## 23          other                 3.229000   1977.9               69.40000
## 24          other                 1.134000   4477.7               78.40000
## 25         africa                 2.617000   7402.9               51.34000
## 26          other                 1.800000  10715.6               77.41000
## 27          other                 1.984000  32647.6               80.64000
## 28          other                 1.546000   6365.1               77.12000
## 29         africa                 5.750000    519.7               57.02000
## 30         africa                 4.051000    176.6               52.58000
## 31          other                 2.422000    797.2               65.10000
## 32         africa                 4.287000   1206.6               53.56000
## 33           oecd                 1.691000  46360.9               83.49000
## 34         africa                 2.279000   3244.0               77.70000
## 35          other                 1.600000  57047.9               83.80000
## 36         africa                 4.423000    450.8               51.30000
## 37         africa                 5.737000    727.4               51.61000
## 38           <NA>                       NA       NA                     NA
## 39           oecd                 1.832000  11887.7               82.35000
## 40          other                 1.559000   4354.0               75.61000
## 41          other                 2.293000   6222.8               77.69000
## 42         africa                 4.742000    736.6               63.18000
## 43         africa                 4.442000   2665.1               59.33000
## 44          other                 2.530806  12212.1               76.24547
## 45          other                 1.812000   7703.8               81.99000
## 46         africa                 4.224000   1154.1               57.71000
## 47          other                 1.501000  13819.5               80.37000
## 48          other                 1.451000   5704.4               81.33000
## 49          other                 1.458000  28364.3               82.14000
## 50           oecd                 1.501000  18838.8               81.00000
## 51         africa                 5.485000    200.6               50.56000
## 52           oecd                 1.885000  55830.2               81.37000
## 53         africa                 3.589000   1282.6               60.04000
## 54          other                 3.000000   7020.8               78.20000
## 55          other                 2.490000   5195.4               76.57000
## 56          other                 5.918000    706.1               64.20000
## 57          other                 2.393000   4072.6               78.91000
## 58         africa                 2.636000   2653.7               75.52000
## 59          other                 2.171000   3425.6               77.09000
## 60         africa                 4.980000  16852.4               52.91000
## 61         africa                 4.243000    429.1               64.41000
## 62           oecd                 1.702000  14135.4               79.95000
## 63         africa                 3.848000    324.6               61.59000
## 64          other                 2.602000   3545.7               72.27000
## 65           oecd                 1.875000  44501.7               83.28000
## 66           oecd                 1.987000  39545.9               84.90000
## 67           <NA>                       NA       NA                     NA
## 68          other                 2.033000  24669.0               78.07000
## 69         africa                 3.195000  12468.8               64.32000
## 70         africa                 4.689000    579.1               60.30000
## 71          other                 1.528000   2680.3               77.31000
## 72           oecd                 1.457000  39857.1               82.99000
## 73         africa                 3.988000   1333.2               65.80000
## 74           oecd                 1.540000  26503.8               82.58000
## 75          other                 2.217000  35292.7               71.60000
## 76          other                 2.171000   7429.0               77.72000
## 77           <NA>                       NA       NA                     NA
## 78           <NA>                       NA       NA                     NA
## 79          other                 3.840000   2882.3               75.10000
## 80         africa                 5.032000    427.5               56.39000
## 81         africa                 4.877000    539.4               50.40000
## 82          other                 2.190000   2996.0               73.45000
## 83          other                 3.159000    612.7               63.87000
## 84          other                 2.996000   2026.2               75.92000
## 85          other                 1.137000  31823.7               86.35000
## 86           oecd                 1.430000  12884.0               78.47000
## 87          other                 2.098000  39278.0               83.77000
## 88          other                 2.538000   1406.4               67.62000
## 89          other                 2.055000   2949.3               71.80000
## 90          other                 1.587000   5227.1               75.28000
## 91          other                 4.535000    888.5               72.60000
## 92           oecd                 2.097000  46220.3               83.17000
## 93           oecd                 2.909000  29311.6               84.19000
## 94           oecd                 1.476000  33877.1               84.62000
## 95          other                 2.262000   4899.0               75.98000
## 96           oecd                 1.418000  43140.9               87.12000
## 97          other                 2.889000   4445.3               75.17000
## 98          other                 2.481000   9166.7               72.84000
## 99         africa                 4.623000    801.8               59.16000
## 100         other                 3.500000   1468.2               63.10000
## 101         other                 2.251000  45430.4               75.89000
## 102         other                 2.621000    865.4               72.36000
## 103         other                 2.543000   1047.6               69.42000
## 104         other                 1.506000  10663.0               78.51000
## 105         other                 1.764000   9283.7               75.07000
## 106        africa                 3.051000    980.7               48.11000
## 107        africa                 5.038000    218.6               58.59000
## 108        africa                 2.410000  11320.8               77.86000
## 109         other                 1.495000  10975.5               78.28000
## 110          oecd                 1.683000 105095.4               82.67000
## 111         other                 1.163000  49990.2               83.80000
## 112        africa                 4.493000    421.9               68.61000
## 113        africa                 5.968000    357.4               55.17000
## 114         other                 2.572000   8372.8               76.86000
## 115         other                 1.668000   4684.5               78.70000
## 116        africa                 6.117000    598.8               53.14000
## 117         other                 1.284000  19599.2               82.29000
## 118         other                 4.384466   3069.4               70.60000
## 119          <NA>                       NA       NA                     NA
## 120        africa                 4.361000   1131.1               60.95000
## 121        africa                 1.590000   7488.3               76.89000
## 122          <NA>                       NA       NA                     NA
## 123          oecd                 2.227000   9100.7               79.64000
## 124         other                 3.307000   2678.2               70.17000
## 125         other                 1.450000   1625.8               73.48000
## 126         other                 2.446000   2246.7               72.83000
## 127         other                 1.630000   6509.8               77.37000
## 128        africa                 2.183000   2865.0               74.86000
## 129        africa                 4.713000    407.5               51.81000
## 130         other                 1.939000    876.2               67.87000
## 131        africa                 3.055000   5124.7               63.04000
## 132         other                 3.300000   6190.1               57.10000
## 133         other                 2.587000    534.7               70.05000
## 134         other                 1.900000  20321.1               79.86000
## 135          oecd                 1.794000  46909.7               82.79000
## 136         other                 2.091000  35319.5               80.49000
## 137          oecd                 2.135000  32372.1               82.77000
## 138         other                 2.500000   1131.9               77.45000
## 139        africa                 6.925000    357.7               55.77000
## 140        africa                 5.431000   1239.8               53.38000
## 141          <NA>                       NA       NA                     NA
## 142         other                 1.988000    504.0               72.12000
## 143          <NA>                       NA       NA                     NA
## 144          oecd                 1.948000  84588.7               83.47000
## 145         other                 2.146000  20791.0               76.44000
## 146         other                 3.201000   1003.2               66.88000
## 147         other                 2.000000  10821.8               72.10000
## 148         other                 4.270000   1819.5               74.81000
## 149         other                 2.409000   7614.0               79.07000
## 150         other                 3.799000   1428.4               65.52000
## 151         other                 2.858000   2771.1               74.91000
## 152         other                 2.410000   5410.7               76.90000
## 153         other                 3.050000   2140.1               72.57000
## 154          oecd                 1.415000  12263.2               80.56000
## 155          oecd                 1.312000  21437.6               82.76000
## 156         other                 1.757000  26461.0               83.20000
## 157         other                 2.204000  72397.9               78.24000
## 158         other                 1.389000  21052.2               83.95000
## 159          <NA>                       NA       NA                     NA
## 160         other                 1.428000   7522.4               77.95000
## 161         other                 1.529000  10351.4               75.01000
## 162        africa                 5.282000    532.3               57.13000
## 163         other                 1.907000   6677.1               77.54000
## 164         other                 3.763000   3343.3               76.02000
## 165        africa                 3.488000   1283.3               66.48000
## 166         other                 2.639000  15835.9               75.57000
## 167        africa                 4.605000   1032.7               60.92000
## 168         other                 1.562000   5123.2               77.05000
## 169        africa                 2.340000  11450.6               78.00000
## 170        africa                 4.728000    351.7               48.87000
## 171         other                 1.367000  43783.1               83.71000
## 172          oecd                 1.372000  15976.0               79.53000
## 173          oecd                 1.477000  23109.8               82.84000
## 174         other                 4.041000   1193.5               70.00000
## 175        africa                 6.283000    114.8               53.38000
## 176        africa                 2.383000   7254.8               54.09000
## 177         other                 1.504000  30542.8               84.76000
## 178         other                 2.235000   2375.3               78.40000
## 179         other                 1.995000   6171.7               74.73000
## 180        africa                 4.225000   1824.9               63.82000
## 181         other                 2.266000   7018.0               74.18000
## 182        africa                 3.174000   3311.2               48.54000
## 183          oecd                 1.925000  48906.2               83.65000
## 184          oecd                 1.536000  68880.2               84.71000
## 185         other                 2.772000   2931.5               77.72000
## 186         other                 3.162000    816.0               71.23000
## 187        africa                 5.499000    516.0               60.31000
## 188         other                 1.397000   4434.5               77.14000
## 189         other                 1.528000   4612.8               77.76000
## 190        africa                 3.864000    524.6               59.40000
## 191          <NA>                       NA       NA                     NA
## 192         other                 3.783000   3543.1               75.38000
## 193         other                 1.632000  15205.1               73.82000
## 194        africa                 1.909000   4222.1               77.05000
## 195          oecd                 2.022000  10095.1               76.61000
## 196         other                 2.316000   4587.5               69.40000
## 197         other                 3.700000   3187.2               65.10000
## 198        africa                 5.901000    509.0               55.44000
## 199         other                 1.483000   3035.0               74.58000
## 200         other                 1.707000  39624.7               78.02000
## 201          oecd                 1.867000  36326.8               82.42000
## 202          oecd                 2.077000  46545.9               81.31000
## 203          <NA>                       NA       NA                     NA
## 204         other                 2.043000  11952.4               80.66000
## 205         other                 2.264000   1427.3               71.90000
## 206         other                 3.750000   2963.5               73.58000
## 207         other                 2.391000  13502.7               77.73000
## 208         other                 1.750000   1182.7               77.44000
## 209          <NA>                       NA       NA                     NA
## 210          <NA>                       NA       NA                     NA
## 211         other                 4.938000   1437.2               67.66000
## 212        africa                 6.300000   1237.8               50.04000
## 213        africa                 3.109000    573.1               52.72000
##     URBAN_POPULATION_PERCENTAGE RURAL_POPULATION_PERCENTAGE
## 1                            23                          77
## 2                            53                          47
## 3                            67                          33
## 4                            NA                          NA
## 5                            59                          41
## 6                           100                           0
## 7                            93                           7
## 8                            64                          36
## 9                            47                          53
## 10                           89                          11
## 11                           68                          32
## 12                           52                          48
## 13                           84                          16
## 14                           89                          11
## 15                           29                          71
## 16                           45                          55
## 17                           75                          25
## 18                           97                           3
## 19                           53                          47
## 20                           42                          58
## 21                          100                           0
## 22                           35                          65
## 23                           67                          33
## 24                           49                          51
## 25                           62                          38
## 26                           87                          13
## 27                           76                          24
## 28                           72                          28
## 29                           27                          73
## 30                           11                          89
## 31                           20                          80
## 32                           59                          41
## 33                           81                          19
## 34                           62                          38
## 35                          100                           0
## 36                           39                          61
## 37                           28                          72
## 38                           NA                          NA
## 39                           89                          11
## 40                           48                          52
## 41                           75                          25
## 42                           28                          72
## 43                           63                          37
## 44                           76                          24
## 45                           65                          35
## 46                           51                          49
## 47                           58                          42
## 48                           75                          25
## 49                           71                          29
## 50                           74                          26
## 51                           36                          64
## 52                           87                          13
## 53                           76                          24
## 54                           67                          33
## 55                           70                          30
## 56                           29                          71
## 57                           68                          32
## 58                           44                          56
## 59                           65                          35
## 60                           40                          60
## 61                           22                          78
## 62                           70                          30
## 63                           17                          83
## 64                           52                          48
## 65                           85                          15
## 66                           86                          14
## 67                           NA                          NA
## 68                           51                          49
## 69                           86                          14
## 70                           59                          41
## 71                           53                          47
## 72                           74                          26
## 73                           52                          48
## 74                           62                          38
## 75                           84                          16
## 76                           40                          60
## 77                           NA                          NA
## 78                           NA                          NA
## 79                           50                          50
## 80                           36                          64
## 81                           30                          70
## 82                           29                          71
## 83                           54                          46
## 84                           52                          48
## 85                          100                           0
## 86                           68                          32
## 87                           94                           6
## 88                           30                          70
## 89                           45                          55
## 90                           71                          29
## 91                           66                          34
## 92                           62                          38
## 93                           92                           8
## 94                           69                          31
## 95                           52                          48
## 96                           67                          33
## 97                           79                          21
## 98                           59                          41
## 99                           23                          77
## 100                          44                          56
## 101                          98                           2
## 102                          35                          65
## 103                          34                          66
## 104                          68                          32
## 105                          87                          13
## 106                          28                          72
## 107                          48                          52
## 108                          78                          22
## 109                          67                          33
## 110                          85                          15
## 111                         100                           0
## 112                          31                          69
## 113                          20                          80
## 114                          73                          27
## 115                          41                          59
## 116                          37                          63
## 117                          95                           5
## 118                          72                          28
## 119                          NA                          NA
## 120                          42                          58
## 121                          42                          58
## 122                          NA                          NA
## 123                          78                          22
## 124                          23                          77
## 125                          48                          52
## 126                          63                          37
## 127                          61                          39
## 128                          59                          41
## 129                          39                          61
## 130                          34                          66
## 131                          39                          61
## 132                         100                           0
## 133                          19                          81
## 134                          93                           7
## 135                          83                          17
## 136                          57                          43
## 137                          86                          14
## 138                          58                          42
## 139                          17                          83
## 140                          51                          49
## 141                          NA                          NA
## 142                          60                          40
## 143                          NA                          NA
## 144                          80                          20
## 145                          73                          27
## 146                          36                          64
## 147                          84                          16
## 148                          74                          26
## 149                          75                          25
## 150                          13                          87
## 151                          62                          38
## 152                          77                          23
## 153                          49                          51
## 154                          61                          39
## 155                          61                          39
## 156                          99                           1
## 157                          96                           4
## 158                          83                          17
## 159                          NA                          NA
## 160                          58                          42
## 161                          73                          27
## 162                          19                          81
## 163                          28                          72
## 164                          20                          80
## 165                          63                          37
## 166                          82                          18
## 167                          43                          57
## 168                          56                          44
## 169                          56                          44
## 170                          39                          61
## 171                         100                           0
## 172                          55                          45
## 173                          49                          51
## 174                          19                          81
## 175                          38                          62
## 176                          62                          38
## 177                          78                          22
## 178                          14                          86
## 179                          50                          50
## 180                          41                          59
## 181                          70                          30
## 182                          21                          79
## 183                          85                          15
## 184                          74                          26
## 185                          56                          44
## 186                          26                          74
## 187                          27                          73
## 188                          59                          41
## 189                          34                          66
## 190                          44                          56
## 191                          NA                          NA
## 192                          24                          76
## 193                          14                          86
## 194                          68                          32
## 195                          70                          30
## 196                          50                          50
## 197                          51                          49
## 198                          13                          87
## 199                          69                          31
## 200                          84                          16
## 201                          80                          20
## 202                          83                          17
## 203                          NA                          NA
## 204                          93                           7
## 205                          36                          64
## 206                          26                          74
## 207                          94                           6
## 208                          31                          69
## 209                          NA                          NA
## 210                          NA                          NA
## 211                          32                          68
## 212                          36                          64
## 213                          39                          61
##     GDP_URBAN_CONTRIBUTION GDP_RURAL_CONTRIBUTION
## 1                  114.770                384.230
## 2                 1948.916               1728.284
## 3                 2996.910               1476.090
## 4                       NA                     NA
## 5                 2549.921               1771.979
## 6                13750.100                  0.000
## 7                 8520.753                641.347
## 8                 1939.648               1091.052
## 9                10740.205              12111.295
## 10               50835.821               6283.079
## 11               30707.984              14450.816
## 12                2931.552               2706.048
## 13               18867.744               3593.856
## 14               16183.849               2000.251
## 15                 194.416                475.984
## 16                6523.785               7973.515
## 17                4276.500               1425.500
## 18               42500.356               1314.444
## 19                2382.774               2113.026
## 20                 311.262                429.838
## 21               92624.700                  0.000
## 22                 716.520               1330.680
## 23                1325.193                652.707
## 24                2194.073               2283.627
## 25                4589.798               2813.102
## 26                9322.572               1393.028
## 27               24812.176               7835.424
## 28                4582.872               1782.228
## 29                 140.319                379.381
## 30                  19.426                157.174
## 31                 159.440                637.760
## 32                 711.894                494.706
## 33               37552.329               8808.571
## 34                2011.280               1232.720
## 35               57047.900                  0.000
## 36                 175.812                274.988
## 37                 203.672                523.728
## 38                      NA                     NA
## 39               10580.053               1307.647
## 40                2089.920               2264.080
## 41                4667.100               1555.700
## 42                 206.248                530.352
## 43                1679.013                986.087
## 44                9281.196               2930.904
## 45                5007.470               2696.330
## 46                 588.591                565.509
## 47                8015.310               5804.190
## 48                4278.300               1426.100
## 49               20138.653               8225.647
## 50               13940.712               4898.088
## 51                  72.216                128.384
## 52               48572.274               7257.926
## 53                 974.776                307.824
## 54                4703.936               2316.864
## 55                3636.780               1558.620
## 56                 204.769                501.331
## 57                2769.368               1303.232
## 58                1167.628               1486.072
## 59                2226.640               1198.960
## 60                6740.960              10111.440
## 61                  94.402                334.698
## 62                9894.780               4240.620
## 63                  55.182                269.418
## 64                1843.764               1701.936
## 65               37826.445               6675.255
## 66               34009.474               5536.426
## 67                      NA                     NA
## 68               12581.190              12087.810
## 69               10723.168               1745.632
## 70                 341.669                237.431
## 71                1420.559               1259.741
## 72               29494.254              10362.846
## 73                 693.264                639.936
## 74               16432.356              10071.444
## 75               29645.868               5646.832
## 76                2971.600               4457.400
## 77                      NA                     NA
## 78                      NA                     NA
## 79                1441.150               1441.150
## 80                 153.900                273.600
## 81                 161.820                377.580
## 82                 868.840               2127.160
## 83                 330.858                281.842
## 84                1053.624                972.576
## 85               31823.700                  0.000
## 86                8761.120               4122.880
## 87               36921.320               2356.680
## 88                 421.920                984.480
## 89                1327.185               1622.115
## 90                3711.241               1515.859
## 91                 586.410                302.090
## 92               28656.586              17563.714
## 93               26966.672               2344.928
## 94               23375.199              10501.901
## 95                2547.480               2351.520
## 96               28904.403              14236.497
## 97                3511.787                933.513
## 98                5408.353               3758.347
## 99                 184.414                617.386
## 100                646.008                822.192
## 101              44521.792                908.608
## 102                302.890                562.510
## 103                356.184                691.416
## 104               7250.840               3412.160
## 105               8076.819               1206.881
## 106                274.596                706.104
## 107                104.928                113.672
## 108               8830.224               2490.576
## 109               7353.585               3621.915
## 110              89331.090              15764.310
## 111              49990.200                  0.000
## 112                130.789                291.111
## 113                 71.480                285.920
## 114               6112.144               2260.656
## 115               1920.645               2763.855
## 116                221.556                377.244
## 117              18619.240                979.960
## 118               2209.968                859.432
## 119                     NA                     NA
## 120                475.062                656.038
## 121               3145.086               4343.214
## 122                     NA                     NA
## 123               7098.546               2002.154
## 124                615.986               2062.214
## 125                780.384                845.416
## 126               1415.421                831.279
## 127               3970.978               2538.822
## 128               1690.350               1174.650
## 129                158.925                248.575
## 130                297.908                578.292
## 131               1998.633               3126.067
## 132               6190.100                  0.000
## 133                101.593                433.107
## 134              18898.623               1422.477
## 135              38935.051               7974.649
## 136              20132.115              15187.385
## 137              27840.006               4532.094
## 138                656.502                475.398
## 139                 60.809                296.891
## 140                632.298                607.502
## 141                     NA                     NA
## 142                302.400                201.600
## 143                     NA                     NA
## 144              67670.960              16917.740
## 145              15177.430               5613.570
## 146                361.152                642.048
## 147               9090.312               1731.488
## 148               1346.430                473.070
## 149               5710.500               1903.500
## 150                185.692               1242.708
## 151               1718.082               1053.018
## 152               4166.239               1244.461
## 153               1048.649               1091.451
## 154               7480.552               4782.648
## 155              13076.936               8360.664
## 156              26196.390                264.610
## 157              69501.984               2895.916
## 158              17473.326               3578.874
## 159                     NA                     NA
## 160               4362.992               3159.408
## 161               7556.522               2794.878
## 162                101.137                431.163
## 163               1869.588               4807.512
## 164                668.660               2674.640
## 165                808.479                474.821
## 166              12985.438               2850.462
## 167                444.061                588.639
## 168               2868.992               2254.208
## 169               6412.336               5038.264
## 170                137.163                214.537
## 171              43783.100                  0.000
## 172               8786.800               7189.200
## 173              11323.802              11785.998
## 174                226.765                966.735
## 175                 43.624                 71.176
## 176               4497.976               2756.824
## 177              23823.384               6719.416
## 178                332.542               2042.758
## 179               3085.850               3085.850
## 180                748.209               1076.691
## 181               4912.600               2105.400
## 182                695.352               2615.848
## 183              41570.270               7335.930
## 184              50971.348              17908.852
## 185               1641.640               1289.860
## 186                212.160                603.840
## 187                139.320                376.680
## 188               2616.355               1818.145
## 189               1568.352               3044.448
## 190                230.824                293.776
## 191                     NA                     NA
## 192                850.344               2692.756
## 193               2128.714              13076.386
## 194               2871.028               1351.072
## 195               7066.570               3028.530
## 196               2293.750               2293.750
## 197               1625.472               1561.728
## 198                 66.170                442.830
## 199               2094.150                940.850
## 200              33284.748               6339.952
## 201              29061.440               7265.360
## 202              38633.097               7912.803
## 203                     NA                     NA
## 204              11115.732                836.668
## 205                513.828                913.472
## 206                770.510               2192.990
## 207              12692.538                810.162
## 208                366.637                816.063
## 209                     NA                     NA
## 210                     NA                     NA
## 211                459.904                977.296
## 212                445.608                792.192
## 213                223.509                349.591
##     INFANT_DEATH_RATE_PER_THOUSAND
## 1                       124.535000
## 2                        16.561000
## 3                        21.458000
## 4                        11.293887
## 5                        96.191000
## 6                               NA
## 7                        12.337000
## 8                        24.272000
## 9                        14.687000
## 10                        4.455000
## 11                        3.713000
## 12                       37.566000
## 13                       14.135000
## 14                        6.663000
## 15                       41.786000
## 16                       12.284000
## 17                        6.494000
## 18                        3.739000
## 19                       16.200000
## 20                       76.674000
## 21                              NA
## 22                       37.995000
## 23                       40.684000
## 24                       12.695000
## 25                       35.117000
## 26                       19.016000
## 27                        4.529000
## 28                        9.149000
## 29                       70.958000
## 30                       94.083000
## 31                       52.835000
## 32                       84.915000
## 33                        4.926000
## 34                       18.458000
## 35                              NA
## 36                       95.781000
## 37                      123.940000
## 38                        8.169000
## 39                        6.792000
## 40                       19.637000
## 41                       16.671000
## 42                       62.830000
## 43                       66.738000
## 44                       11.551788
## 45                        9.172000
## 46                       68.845000
## 47                        5.571000
## 48                        4.959000
## 49                        4.434000
## 50                        2.997000
## 51                      109.477000
## 52                        3.914000
## 53                       74.950000
## 54                              NA
## 55                       21.589000
## 56                       56.499000
## 57                       19.070000
## 58                       22.029000
## 59                       19.007000
## 60                       93.315000
## 61                       47.508000
## 62                        4.382000
## 63                       62.902000
## 64                       17.216000
## 65                        2.783000
## 66                        3.345000
## 67                       12.714000
## 68                        7.159000
## 69                       43.770000
## 70                       66.374000
## 71                       25.585000
## 72                        3.487000
## 73                       43.867000
## 74                        4.488000
## 75                              NA
## 76                       13.042000
## 77                        6.725000
## 78                        8.070000
## 79                       26.269000
## 80                       84.176000
## 81                      109.818000
## 82                       36.830000
## 83                       58.260000
## 84                       23.515000
## 85                        2.026000
## 86                        5.304000
## 87                        2.057000
## 88                       47.894000
## 89                       24.929000
## 90                       23.385000
## 91                       33.293000
## 92                        3.859000
## 93                        3.347000
## 94                        3.417000
## 95                       22.023000
## 96                        2.549000
## 97                       19.140000
## 98                       23.716000
## 99                       58.142000
## 100                      52.000000
## 101                       7.563000
## 102                      32.765000
## 103                      36.809000
## 104                       6.700000
## 105                      20.223000
## 106                      62.103000
## 107                      76.853000
## 108                      13.248000
## 109                       5.941000
## 110                       2.289000
## 111                       4.130000
## 112                      41.030000
## 113                      86.060000
## 114                       6.880000
## 115                       8.070000
## 116                      92.206000
## 117                       5.405000
## 118                      21.000000
## 119                       7.158000
## 120                      69.930000
## 121                      12.112000
## 122                       5.884000
## 123                      14.146000
## 124                      31.447000
## 125                      14.344000
## 126                      30.705000
## 127                       7.733000
## 128                      28.502000
## 129                      77.858000
## 130                      44.802000
## 131                      29.761000
## 132                      45.800000
## 133                      32.013000
## 134                      12.281000
## 135                       4.168000
## 136                       4.680000
## 137                       4.757000
## 138                      18.315000
## 139                      85.820000
## 140                      87.561000
## 141                       7.800000
## 142                      25.053000
## 143                       4.859086
## 144                       2.940000
## 145                       8.414000
## 146                      65.724000
## 147                      20.075282
## 148                      19.503000
## 149                      16.168000
## 150                      44.474000
## 151                      27.375000
## 152                      18.273000
## 153                      20.886000
## 154                       5.546000
## 155                       4.175000
## 156                       7.243000
## 157                       8.195000
## 158                       3.647000
## 159                       5.884000
## 160                      12.216000
## 161                      10.534000
## 162                      92.870000
## 163                      12.260000
## 164                      19.848000
## 165                      47.486000
## 166                      16.202000
## 167                      49.802000
## 168                      10.630000
## 169                             NA
## 170                     103.459000
## 171                       1.916000
## 172                       5.676000
## 173                       3.279000
## 174                      34.569000
## 175                     100.017000
## 176                      45.892000
## 177                       3.573000
## 178                      11.213000
## 179                      20.974000
## 180                      57.328000
## 181                      19.775000
## 182                      64.622000
## 183                       2.544000
## 184                       3.513000
## 185                      13.764000
## 186                      50.947000
## 187                      53.658000
## 188                      13.063000
## 189                      11.398000
## 190                      67.297000
## 191                      31.250000
## 192                      20.591000
## 193                      24.458000
## 194                      18.384000
## 195                      19.901000
## 196                      48.797000
## 197                      17.322835
## 198                      72.265000
## 199                      11.822000
## 200                       6.608000
## 201                       4.702000
## 202                       6.460000
## 203                       9.990000
## 204                      11.754000
## 205                      44.481000
## 206                      24.135000
## 207                      15.278000
## 208                      18.263000
## 209                       5.200000
## 210                      36.350000
## 211                      44.412000
## 212                      80.956000
## 213                      47.284000
summary.data.frame(UNStatistics)
##  SERIAL_NUMBER         COUNTRY_NAME    COUNTRY_REGION COUNTRY_GROUP
##  Min.   :  1   Afghanistan   :  1   Africa    :53     africa: 53   
##  1st Qu.: 54   Albania       :  1   Asia      :50     oecd  : 31   
##  Median :107   Algeria       :  1   Europe    :39     other :115   
##  Mean   :107   American Samoa:  1   Latin Amer:20     NA's  : 14   
##  3rd Qu.:160   Angola        :  1   Caribbean :17                  
##  Max.   :213   Anguilla      :  1   (Other)   :20                  
##                (Other)       :207   NA's      :14                  
##  NO_OF_CHILDREN_PER_WOMAN      GDP           FEMALE_LIFE_EXPECTANCY
##  Min.   :1.134            Min.   :   114.8   Min.   :48.11         
##  1st Qu.:1.754            1st Qu.:  1283.0   1st Qu.:65.66         
##  Median :2.262            Median :  4684.5   Median :75.89         
##  Mean   :2.761            Mean   : 13012.0   Mean   :72.29         
##  3rd Qu.:3.545            3rd Qu.: 15520.5   3rd Qu.:79.58         
##  Max.   :6.925            Max.   :105095.4   Max.   :87.12         
##  NA's   :14               NA's   :14         NA's   :14            
##  URBAN_POPULATION_PERCENTAGE RURAL_POPULATION_PERCENTAGE
##  Min.   : 11.00              Min.   : 0.00              
##  1st Qu.: 39.00              1st Qu.:25.00              
##  Median : 59.00              Median :41.00              
##  Mean   : 57.93              Mean   :42.07              
##  3rd Qu.: 75.00              3rd Qu.:61.00              
##  Max.   :100.00              Max.   :89.00              
##  NA's   :14                  NA's   :14                 
##  GDP_URBAN_CONTRIBUTION GDP_RURAL_CONTRIBUTION
##  Min.   :   19.43       Min.   :    0.0       
##  1st Qu.:  587.50       1st Qu.:  605.7       
##  Median : 2616.36       Median : 1441.2       
##  Mean   :10105.88       Mean   : 2906.1       
##  3rd Qu.:10927.97       3rd Qu.: 3106.0       
##  Max.   :92624.70       Max.   :17908.9       
##  NA's   :14             NA's   :14            
##  INFANT_DEATH_RATE_PER_THOUSAND
##  Min.   :  1.916               
##  1st Qu.:  7.019               
##  Median : 19.007               
##  Mean   : 29.440               
##  3rd Qu.: 44.477               
##  Max.   :124.535               
##  NA's   :6
#3. Graphics: Please make sure to display at least one scatter plot, box plot and histogram. Don't be limited to this. Please explore the many other options in R packages such as ggplot2.

#Comparing all other variables against GDPs for countires falling under 3 categories 'africa, 'oecd' and 'other'

#Scatter plots
install.packages("ggplot2",repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/bhara/OneDrive/Documents/R/win-library/3.5'
## (as 'lib' is unspecified)
## package 'ggplot2' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\Public\Documents\Wondershare\CreatorTemp\RtmpuWAcdI\downloaded_packages
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.2
#Compare Urban population against GDP

plot(GDP~URBAN_POPULATION_PERCENTAGE, data = africanCountriesData,las = 1)
abline(lm(GDP~URBAN_POPULATION_PERCENTAGE, data = africanCountriesData))

plot(GDP~URBAN_POPULATION_PERCENTAGE, data = oecdCountriesData,las = 1)
abline(lm(GDP~URBAN_POPULATION_PERCENTAGE, data = oecdCountriesData))

plot(GDP~URBAN_POPULATION_PERCENTAGE, data = otherCountriesData,las = 1)
abline(lm(GDP~URBAN_POPULATION_PERCENTAGE, data = otherCountriesData))

#Compare Female life expectancy against GDP

plot(GDP~FEMALE_LIFE_EXPECTANCY, data = africanCountriesData, las = 1)
abline(lm(GDP~FEMALE_LIFE_EXPECTANCY, data = africanCountriesData))

plot(GDP~FEMALE_LIFE_EXPECTANCY, data = oecdCountriesData, las = 1)
abline(lm(GDP~FEMALE_LIFE_EXPECTANCY, data = oecdCountriesData))

plot(GDP~FEMALE_LIFE_EXPECTANCY, data = otherCountriesData, las = 1)
abline(lm(GDP~FEMALE_LIFE_EXPECTANCY, data = otherCountriesData))

#Compare Number Of Children per woman against GDP

plot(GDP~NO_OF_CHILDREN_PER_WOMAN, data = africanCountriesData, las = 1)
abline(lm(GDP~NO_OF_CHILDREN_PER_WOMAN, data = africanCountriesData))

plot(GDP~NO_OF_CHILDREN_PER_WOMAN, data = oecdCountriesData, las = 1)
abline(lm(GDP~NO_OF_CHILDREN_PER_WOMAN, data = oecdCountriesData))

plot(GDP~NO_OF_CHILDREN_PER_WOMAN, data = otherCountriesData, las = 1)
abline(lm(GDP~NO_OF_CHILDREN_PER_WOMAN, data = otherCountriesData))

#Compare Infant deaht rate per thousand against GDP

plot(GDP~INFANT_DEATH_RATE_PER_THOUSAND, data = africanCountriesData, las = 1)
abline(lm(GDP~INFANT_DEATH_RATE_PER_THOUSAND, data = africanCountriesData))

plot(GDP~INFANT_DEATH_RATE_PER_THOUSAND, data = oecdCountriesData, las = 1)
abline(lm(GDP~INFANT_DEATH_RATE_PER_THOUSAND, data = oecdCountriesData))

plot(GDP~INFANT_DEATH_RATE_PER_THOUSAND, data = otherCountriesData, las = 1)
abline(lm(GDP~INFANT_DEATH_RATE_PER_THOUSAND, data = otherCountriesData))

#Histograms For GDP of the countries categorized under 3 groups 'africa', 'oecd' and 'other'

ggplot(africanCountriesData, aes(x = GDP)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(oecdCountriesData, aes(x = GDP)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(otherCountriesData, aes(x = GDP)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(UNStatistics,aes(x=GDP)) +
  geom_histogram()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 14 rows containing non-finite values (stat_bin).

#Box Plots

boxplot(GDP~COUNTRY_NAME,data=UNStatistics, main="UN Statistics For Nations", 
   xlab="GDP", ylab="Country Name")

boxplot(africanCountriesData$GDP_RURAL_CONTRIBUTION)

boxplot(oecdCountriesData$GDP_RURAL_CONTRIBUTION)

boxplot(otherCountriesData$GDP_RURAL_CONTRIBUTION)

boxplot(africanCountriesData$GDP_URBAN_CONTRIBUTION)

boxplot(oecdCountriesData$GDP_RURAL_CONTRIBUTION)

boxplot(otherCountriesData$GDP_RURAL_CONTRIBUTION)

#Density Plots

plot(density(africanCountriesData$GDP),main = "GDP Density Plot For African Countries",col="gold")
polygon(density(africanCountriesData$GDP),main = "GDP Density Plot For African Countries",col="blue",border = "red")

plot(density(oecdCountriesData$GDP),main = "GDP Density Plot For OECD Countries",col="gold")
polygon(density(oecdCountriesData$GDP),main = "GDP Density Plot For OECD Countries",col="gold",border = "red")

plot(density(otherCountriesData$GDP),main = "GDP Density Plot For Other Countries",col="gold")
polygon(density(otherCountriesData$GDP),main = "GDP Density Plot For Other Countries",col="purple",border = "red")

#Violin Plots
install.packages("vioplot",repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/bhara/OneDrive/Documents/R/win-library/3.5'
## (as 'lib' is unspecified)
## package 'vioplot' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\Public\Documents\Wondershare\CreatorTemp\RtmpuWAcdI\downloaded_packages
library(vioplot)
## Warning: package 'vioplot' was built under R version 3.5.2
## Loading required package: sm
## Warning: package 'sm' was built under R version 3.5.2
## Package 'sm', version 2.2-5.6: type help(sm) for summary information
GDP_Africa <- africanCountriesData$GDP
GDP_OECD <- oecdCountriesData$GDP
GDP_Other <- otherCountriesData$GDP
vioplot(GDP_Africa, GDP_OECD,GDP_Other, names=c("Africa", "OECD", "Other"), 
   col="blue")
title("GDP Comparision")

FLP_Africa <- africanCountriesData$FEMALE_LIFE_EXPECTANCY
FLP_OECD <- oecdCountriesData$FEMALE_LIFE_EXPECTANCY
FLP_Other <- otherCountriesData$FEMALE_LIFE_EXPECTANCY
vioplot(FLP_Africa, FLP_OECD,FLP_Other, names=c("Africa", "OECD", "Other"), 
   col="gold")
title("FEMALE_LIFE_EXPECTANCY Comparision")

#Bag Plots - 2D extensions of Box Plots

install.packages("aplpack",repos = "http://cran.us.r-project.org")
## Installing package into 'C:/Users/bhara/OneDrive/Documents/R/win-library/3.5'
## (as 'lib' is unspecified)
## package 'aplpack' successfully unpacked and MD5 sums checked
## 
## The downloaded binary packages are in
##  C:\Users\Public\Documents\Wondershare\CreatorTemp\RtmpuWAcdI\downloaded_packages
library(aplpack)
## Warning: package 'aplpack' was built under R version 3.5.2
## Loading required package: tcltk
attach(africanCountriesData)
bagplot(GDP,RURAL_POPULATION_PERCENTAGE, xlab="GDP", ylab="% Rural Population",
  main="GDP Impact By Rural Population")

#Comparing GDP's for the countries categorized as one of the 3 Groups 'africa', 'oecd' and 'other'

gdpDataFrame <- data.frame(africanCountriesData$GDP[c(1:nrow(oecdCountriesData))],oecdCountriesData$GDP,otherCountriesData$GDP[c(1:nrow(oecdCountriesData))])
colnames(gdpDataFrame) <- c("GDP_AFRICAN_NATIONS","GDP_OECD_NATIONS","GDP_OTHER_NATIONS")

ggplot(gdpDataFrame, aes(c(1:nrow(gdpDataFrame)), y = value, color = variable)) +
    geom_point(aes(y = GDP_AFRICAN_NATIONS, col = "GDP_AFRICAN_NATIONS")) +
    geom_point(aes(y = GDP_OECD_NATIONS, col = "GDP_OECD_NATIONS")) +     geom_point(aes(y = GDP_OTHER_NATIONS, col = "GDP_OTHER_NATIONS"))

#4. Meaningful question for analysis: Please state at the beginning a meaningful question for analysis. Use the first three steps and anything else that would be helpful to answer the question you are posing from the data set you chose. Please write a brief conclusion paragraph in R markdown at the end.

Question For Analysis :

Is GDP (Quality OF Living) is dependent on other variables in the observation, such as ‘Urban Population Percentage’ ?

It is clearly observed from above graphs, summary details, that the major contribution of GDP is by urban population. The slope of the linear regression line for the scatter plots are also positive, indicating more the people staying in urban areas, more will be the GDP for the country and the quality of life.

It can also be observed, higher the urban population and GDP, lesser is the probability for infant mortality, lesser will be the children per woman and higher will be the expectancy of females living in the country. We can observe these from the scatter plots and their slopes, which are all negative, indicating, higher the GDP value, lesser will be these values.

Quality of life is dependent on the level of urbanization in the country, which also impacts other variables in the observation.

Also sampling out the observations, with respect to different groups such as ‘africa’, ‘oecd’ and ‘other’, this behavior is observed in all respects. We have also captured different plots for each one of them above.

#5. BONUS - place the original .csv in a github file and have R read from the link. This will be a very useful skill as you progress in your data science education and career.

# This project uses the checked data set in github, this is the url for the dataset, from which this R program reads it - https://raw.githubusercontent.com/samsri01/Repo-For-CSV-File-Storage/master/UN_Statistics.csv