Los packages

library("RCurl")
Loading required package: bitops
library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
package 'dplyr' was built under R version 3.4.2Conflicts with tidy packages ------------------------------------------------------------------------
complete(): tidyr, RCurl
filter():   dplyr, stats
lag():      dplyr, stats
library("ggthemes")
library("forcats")

Abro el df de la pag.web, creo objeto df

df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTGWDxQJDcety8tsxTvGQmk8Ul5I4nvpFRLz83DoIeX8h1tEN_Qgk21dvjtwx02xtfBNG8L0n6dlobT/pub?gid=119354125&single=true&output=csv")

Agrupo

df1<- df %>% 
gather(key = "Extensiones", value = "Apreciacion", Extension.V.L:Extension.M.D)

combierto a objeto

df2 <- df1 %>% 
  group_by(Diente,Extensiones,Apreciacion) %>% 
  summarise(suma = n())   

Graficas

df2 %>% 
  ggplot(aes(x=Diente, y=suma, fill=Apreciacion)) +
 geom_boxplot()

diferencias entre dientes ???

aov1 <- aov(df2$suma~df2$Diente)
summary(aov1)
            Df Sum Sq Mean Sq F value   Pr(>F)    
df2$Diente   3  525.8   175.3   13.69 4.39e-05 ***
Residuals   20  256.0    12.8                     
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

donde ???

TukeyHSD(aov1)
  Tukey multiple comparisons of means
    95% family-wise confidence level

Fit: aov(formula = df2$suma ~ df2$Diente)

$`df2$Diente`
                       diff        lwr       upr     p adj
incisivo-canino   -2.000000  -7.781458  3.781458 0.7686835
molar-canino      10.333333   4.551876 16.114791 0.0003684
premolar-canino    2.666667  -3.114791  8.448124 0.5789300
molar-incisivo    12.333333   6.551876 18.114791 0.0000427
premolar-incisivo  4.666667  -1.114791 10.448124 0.1416446
premolar-molar    -7.666667 -13.448124 -1.885209 0.0069391

Agrupo para analizar todas las variables

df3 <- df %>% 
gather(key = "total", value = "Apreciacion", Diseno:Cervical)

combierto a objeto

df4 <- df3 %>% 
  group_by(Diente,total,Apreciacion) %>% 
  summarise(suma = n())   

grafico

df4 %>% 
  ggplot(aes(x=total, y=suma, fill=Apreciacion)) +
 geom_boxplot()

diferencias ??

aov2 <- aov(df4$suma~df4$total)
summary(aov2)#NO EXISTEN 
            Df Sum Sq Mean Sq F value Pr(>F)
df4$total    4      0    0.00       0      1
Residuals   55   2175   39.54               

sumo

df1 %>% 
  group_by(Diente, Nfresas,Apreciacion) %>% 
  summarise(suma = n()) 

que pasa con las fresas ??

df5 <- df1 %>% 
  group_by(Diente, Nfresas,Apreciacion) %>% 
  summarise(suma = n())   

grafico

df5 %>% 
  ggplot(aes(x = Diente, y = suma, fill=Apreciacion)) +
  facet_wrap(~Nfresas) +
  geom_col()+
  theme_classic()

df5 %>% 
  ggplot(aes(x = Nfresas, y = suma, color=Apreciacion, group=Apreciacion)) +
  facet_wrap(~Diente) +
  geom_line()+
  theme_classic()

ejemplo para renombrar

df1 %>% 
rename(xxx = Diente) 
LS0tCnRpdGxlOiAiMjAxOV9DYXZpZGFkZXMgZGUgYWNjZXNvX0ludmVzdGlnYWNpb24iCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI0xvcyBwYWNrYWdlcwpgYGB7cn0KbGlicmFyeSgiUkN1cmwiKQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KCJnZ3RoZW1lcyIpCmxpYnJhcnkoImZvcmNhdHMiKQpgYGAKI0Ficm8gZWwgZGYgZGUgbGEgcGFnLndlYiwgY3JlbyBvYmpldG8gZGYKYGBge3J9CmRmIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2VEdXRHhRSkRjZXR5OHRzeFR2R1FtazhVbDVJNG52cEZSTHo4M0RvSWVYOGgxdEVOX1FnazIxZHZqdHd4MDJ4dGZCTkc4TDBuNmRsb2JUL3B1Yj9naWQ9MTE5MzU0MTI1JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI0FncnVwbwpgYGB7cn0KZGYxPC0gZGYgJT4lIApnYXRoZXIoa2V5ID0gIkV4dGVuc2lvbmVzIiwgdmFsdWUgPSAiQXByZWNpYWNpb24iLCBFeHRlbnNpb24uVi5MOkV4dGVuc2lvbi5NLkQpCmBgYAojY29tYmllcnRvIGEgb2JqZXRvCmBgYHtyfQpkZjIgPC0gZGYxICU+JSAKICBncm91cF9ieShEaWVudGUsRXh0ZW5zaW9uZXMsQXByZWNpYWNpb24pICU+JSAKICBzdW1tYXJpc2Uoc3VtYSA9IG4oKSkgICAKYGBgCiNHcmFmaWNhcwpgYGB7cn0KZGYyICU+JSAKICBnZ3Bsb3QoYWVzKHg9RGllbnRlLCB5PXN1bWEsIGZpbGw9QXByZWNpYWNpb24pKSArCiBnZW9tX2JveHBsb3QoKQpgYGAKI2RpZmVyZW5jaWFzIGVudHJlIGRpZW50ZXMgPz8/CmBgYHtyfQphb3YxIDwtIGFvdihkZjIkc3VtYX5kZjIkRGllbnRlKQpzdW1tYXJ5KGFvdjEpCmBgYAojZG9uZGUgPz8/CmBgYHtyfQpUdWtleUhTRChhb3YxKQpgYGAKI0FncnVwbyBwYXJhIGFuYWxpemFyIHRvZGFzIGxhcyB2YXJpYWJsZXMKYGBge3J9CmRmMyA8LSBkZiAlPiUgCmdhdGhlcihrZXkgPSAidG90YWwiLCB2YWx1ZSA9ICJBcHJlY2lhY2lvbiIsIERpc2VubzpDZXJ2aWNhbCkKYGBgCiNjb21iaWVydG8gYSBvYmpldG8gICAKYGBge3J9CmRmNCA8LSBkZjMgJT4lIAogIGdyb3VwX2J5KERpZW50ZSx0b3RhbCxBcHJlY2lhY2lvbikgJT4lIAogIHN1bW1hcmlzZShzdW1hID0gbigpKSAgIApgYGAKI2dyYWZpY28KYGBge3J9CmRmNCAlPiUgCiAgZ2dwbG90KGFlcyh4PXRvdGFsLCB5PXN1bWEsIGZpbGw9QXByZWNpYWNpb24pKSArCiBnZW9tX2JveHBsb3QoKQpgYGAKI2RpZmVyZW5jaWFzID8/CmBgYHtyfQphb3YyIDwtIGFvdihkZjQkc3VtYX5kZjQkdG90YWwpCnN1bW1hcnkoYW92MikjTk8gRVhJU1RFTiAKYGBgCmBgYHtyfQpkZjQgJT4lIAogIGdncGxvdChhZXMoeD1EaWVudGUsIHk9c3VtYSwgZmlsbD1BcHJlY2lhY2lvbikpICsKIGdlb21fY29sKCkrCiAgdGhlbWVfY2xhc3NpYygpKwogIGZhY2V0X3dyYXAofnRvdGFsKSAKYGBgCiNzdW1vCmBgYHtyfQpkZjEgJT4lIAogIGdyb3VwX2J5KERpZW50ZSwgTmZyZXNhcyxBcHJlY2lhY2lvbikgJT4lIAogIHN1bW1hcmlzZShzdW1hID0gbigpKSAKYGBgCiNxdWUgcGFzYSBjb24gbGFzIGZyZXNhcyA/PwpgYGB7cn0KZGY1IDwtIGRmMSAlPiUgCiAgZ3JvdXBfYnkoRGllbnRlLCBOZnJlc2FzLEFwcmVjaWFjaW9uKSAlPiUgCiAgc3VtbWFyaXNlKHN1bWEgPSBuKCkpICAgCmBgYAojZ3JhZmljbwpgYGB7cn0KZGY1ICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBEaWVudGUsIHkgPSBzdW1hLCBmaWxsPUFwcmVjaWFjaW9uKSkgKwogIGZhY2V0X3dyYXAofk5mcmVzYXMpICsKICBnZW9tX2NvbCgpKwogIHRoZW1lX2NsYXNzaWMoKQpgYGAKYGBge3J9CmRmNSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gTmZyZXNhcywgeSA9IHN1bWEsIGNvbG9yPUFwcmVjaWFjaW9uLCBncm91cD1BcHJlY2lhY2lvbikpICsKICBmYWNldF93cmFwKH5EaWVudGUpICsKICBnZW9tX2xpbmUoKSsKICB0aGVtZV9jbGFzc2ljKCkKYGBgCgojZWplbXBsbyBwYXJhIHJlbm9tYnJhcgpgYGB7cn0KZGYxICU+JSAKcmVuYW1lKHh4eCA9IERpZW50ZSkgCmBgYAoKCgoKCgoK