Los packages
library("RCurl")
Loading required package: bitops
library("tidyverse")
Loading tidyverse: ggplot2
Loading tidyverse: tibble
Loading tidyverse: tidyr
Loading tidyverse: readr
Loading tidyverse: purrr
Loading tidyverse: dplyr
package 'dplyr' was built under R version 3.4.2Conflicts with tidy packages ------------------------------------------------------------------------
complete(): tidyr, RCurl
filter(): dplyr, stats
lag(): dplyr, stats
library("ggthemes")
library("forcats")
Abro el df de la pag.web, creo objeto df
df <- read.csv("https://docs.google.com/spreadsheets/d/e/2PACX-1vTGWDxQJDcety8tsxTvGQmk8Ul5I4nvpFRLz83DoIeX8h1tEN_Qgk21dvjtwx02xtfBNG8L0n6dlobT/pub?gid=119354125&single=true&output=csv")
Agrupo
df1<- df %>%
gather(key = "Extensiones", value = "Apreciacion", Extension.V.L:Extension.M.D)
combierto a objeto
df2 <- df1 %>%
group_by(Diente,Extensiones,Apreciacion) %>%
summarise(suma = n())
Graficas
df2 %>%
ggplot(aes(x=Diente, y=suma, fill=Apreciacion)) +
geom_boxplot()

diferencias entre dientes ???
aov1 <- aov(df2$suma~df2$Diente)
summary(aov1)
Df Sum Sq Mean Sq F value Pr(>F)
df2$Diente 3 525.8 175.3 13.69 4.39e-05 ***
Residuals 20 256.0 12.8
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
donde ???
TukeyHSD(aov1)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = df2$suma ~ df2$Diente)
$`df2$Diente`
diff lwr upr p adj
incisivo-canino -2.000000 -7.781458 3.781458 0.7686835
molar-canino 10.333333 4.551876 16.114791 0.0003684
premolar-canino 2.666667 -3.114791 8.448124 0.5789300
molar-incisivo 12.333333 6.551876 18.114791 0.0000427
premolar-incisivo 4.666667 -1.114791 10.448124 0.1416446
premolar-molar -7.666667 -13.448124 -1.885209 0.0069391
Agrupo para analizar todas las variables
df3 <- df %>%
gather(key = "total", value = "Apreciacion", Diseno:Cervical)
combierto a objeto
df4 <- df3 %>%
group_by(Diente,total,Apreciacion) %>%
summarise(suma = n())
grafico
df4 %>%
ggplot(aes(x=total, y=suma, fill=Apreciacion)) +
geom_boxplot()

diferencias ??
aov2 <- aov(df4$suma~df4$total)
summary(aov2)#NO EXISTEN
Df Sum Sq Mean Sq F value Pr(>F)
df4$total 4 0 0.00 0 1
Residuals 55 2175 39.54

sumo
df1 %>%
group_by(Diente, Nfresas,Apreciacion) %>%
summarise(suma = n())
que pasa con las fresas ??
df5 <- df1 %>%
group_by(Diente, Nfresas,Apreciacion) %>%
summarise(suma = n())
grafico
df5 %>%
ggplot(aes(x = Diente, y = suma, fill=Apreciacion)) +
facet_wrap(~Nfresas) +
geom_col()+
theme_classic()

df5 %>%
ggplot(aes(x = Nfresas, y = suma, color=Apreciacion, group=Apreciacion)) +
facet_wrap(~Diente) +
geom_line()+
theme_classic()

ejemplo para renombrar
df1 %>%
rename(xxx = Diente)
LS0tCnRpdGxlOiAiMjAxOV9DYXZpZGFkZXMgZGUgYWNjZXNvX0ludmVzdGlnYWNpb24iCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KI0xvcyBwYWNrYWdlcwpgYGB7cn0KbGlicmFyeSgiUkN1cmwiKQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpsaWJyYXJ5KCJnZ3RoZW1lcyIpCmxpYnJhcnkoImZvcmNhdHMiKQpgYGAKI0Ficm8gZWwgZGYgZGUgbGEgcGFnLndlYiwgY3JlbyBvYmpldG8gZGYKYGBge3J9CmRmIDwtIHJlYWQuY3N2KCJodHRwczovL2RvY3MuZ29vZ2xlLmNvbS9zcHJlYWRzaGVldHMvZC9lLzJQQUNYLTF2VEdXRHhRSkRjZXR5OHRzeFR2R1FtazhVbDVJNG52cEZSTHo4M0RvSWVYOGgxdEVOX1FnazIxZHZqdHd4MDJ4dGZCTkc4TDBuNmRsb2JUL3B1Yj9naWQ9MTE5MzU0MTI1JnNpbmdsZT10cnVlJm91dHB1dD1jc3YiKQpgYGAKI0FncnVwbwpgYGB7cn0KZGYxPC0gZGYgJT4lIApnYXRoZXIoa2V5ID0gIkV4dGVuc2lvbmVzIiwgdmFsdWUgPSAiQXByZWNpYWNpb24iLCBFeHRlbnNpb24uVi5MOkV4dGVuc2lvbi5NLkQpCmBgYAojY29tYmllcnRvIGEgb2JqZXRvCmBgYHtyfQpkZjIgPC0gZGYxICU+JSAKICBncm91cF9ieShEaWVudGUsRXh0ZW5zaW9uZXMsQXByZWNpYWNpb24pICU+JSAKICBzdW1tYXJpc2Uoc3VtYSA9IG4oKSkgICAKYGBgCiNHcmFmaWNhcwpgYGB7cn0KZGYyICU+JSAKICBnZ3Bsb3QoYWVzKHg9RGllbnRlLCB5PXN1bWEsIGZpbGw9QXByZWNpYWNpb24pKSArCiBnZW9tX2JveHBsb3QoKQpgYGAKI2RpZmVyZW5jaWFzIGVudHJlIGRpZW50ZXMgPz8/CmBgYHtyfQphb3YxIDwtIGFvdihkZjIkc3VtYX5kZjIkRGllbnRlKQpzdW1tYXJ5KGFvdjEpCmBgYAojZG9uZGUgPz8/CmBgYHtyfQpUdWtleUhTRChhb3YxKQpgYGAKI0FncnVwbyBwYXJhIGFuYWxpemFyIHRvZGFzIGxhcyB2YXJpYWJsZXMKYGBge3J9CmRmMyA8LSBkZiAlPiUgCmdhdGhlcihrZXkgPSAidG90YWwiLCB2YWx1ZSA9ICJBcHJlY2lhY2lvbiIsIERpc2VubzpDZXJ2aWNhbCkKYGBgCiNjb21iaWVydG8gYSBvYmpldG8gICAKYGBge3J9CmRmNCA8LSBkZjMgJT4lIAogIGdyb3VwX2J5KERpZW50ZSx0b3RhbCxBcHJlY2lhY2lvbikgJT4lIAogIHN1bW1hcmlzZShzdW1hID0gbigpKSAgIApgYGAKI2dyYWZpY28KYGBge3J9CmRmNCAlPiUgCiAgZ2dwbG90KGFlcyh4PXRvdGFsLCB5PXN1bWEsIGZpbGw9QXByZWNpYWNpb24pKSArCiBnZW9tX2JveHBsb3QoKQpgYGAKI2RpZmVyZW5jaWFzID8/CmBgYHtyfQphb3YyIDwtIGFvdihkZjQkc3VtYX5kZjQkdG90YWwpCnN1bW1hcnkoYW92MikjTk8gRVhJU1RFTiAKYGBgCmBgYHtyfQpkZjQgJT4lIAogIGdncGxvdChhZXMoeD1EaWVudGUsIHk9c3VtYSwgZmlsbD1BcHJlY2lhY2lvbikpICsKIGdlb21fY29sKCkrCiAgdGhlbWVfY2xhc3NpYygpKwogIGZhY2V0X3dyYXAofnRvdGFsKSAKYGBgCiNzdW1vCmBgYHtyfQpkZjEgJT4lIAogIGdyb3VwX2J5KERpZW50ZSwgTmZyZXNhcyxBcHJlY2lhY2lvbikgJT4lIAogIHN1bW1hcmlzZShzdW1hID0gbigpKSAKYGBgCiNxdWUgcGFzYSBjb24gbGFzIGZyZXNhcyA/PwpgYGB7cn0KZGY1IDwtIGRmMSAlPiUgCiAgZ3JvdXBfYnkoRGllbnRlLCBOZnJlc2FzLEFwcmVjaWFjaW9uKSAlPiUgCiAgc3VtbWFyaXNlKHN1bWEgPSBuKCkpICAgCmBgYAojZ3JhZmljbwpgYGB7cn0KZGY1ICU+JSAKICBnZ3Bsb3QoYWVzKHggPSBEaWVudGUsIHkgPSBzdW1hLCBmaWxsPUFwcmVjaWFjaW9uKSkgKwogIGZhY2V0X3dyYXAofk5mcmVzYXMpICsKICBnZW9tX2NvbCgpKwogIHRoZW1lX2NsYXNzaWMoKQpgYGAKYGBge3J9CmRmNSAlPiUgCiAgZ2dwbG90KGFlcyh4ID0gTmZyZXNhcywgeSA9IHN1bWEsIGNvbG9yPUFwcmVjaWFjaW9uLCBncm91cD1BcHJlY2lhY2lvbikpICsKICBmYWNldF93cmFwKH5EaWVudGUpICsKICBnZW9tX2xpbmUoKSsKICB0aGVtZV9jbGFzc2ljKCkKYGBgCgojZWplbXBsbyBwYXJhIHJlbm9tYnJhcgpgYGB7cn0KZGYxICU+JSAKcmVuYW1lKHh4eCA9IERpZW50ZSkgCmBgYAoKCgoKCgoK