Introducción

Servicios ecosistemicos y especies Selección de áreas prioritarias con Marxan. Teniendo en cuenta el la distribucion de especies amenazadas (73 sp con mapas en biomodelos) y Mamiferos. Tambien se tuvo en cuenta la red actual de areas protegidas y un costo representado por la aptitud agricola de UPRA.

Ver Wilson et al 2011.
Ver Cuesta et al 2017

Método breve

Servicios: modelados con Invest Mauro

Carbono

Nutrientes

Agua

## OGR data source with driver: ESRI Shapefile 
## Source: "D:\BoxFiles\Box Sync\CodigoR\Servicios_Biodiversidad\shp", layer: "mask_co"
## with 142 features
## It has 10 fields
## Integer64 fields read as strings:  OBJECTID FID_siluet ID GRIDCODE FID_tapar Id_1

Selección de especies

Se apilaron los modelos de distribución de Biomodelos del IAvH, seleccionando los grupos: Especies amenazadas, Mamiferos, aves reptiles, y anfibios. Los modelos apilados corelacionaron espacialmente con los servicios ecosistemicos

Modelos de distribución

Se descargaron 73 especies amenazadas y 116 mamiferos xx aves, xx reptiles xx anfibios

Load vertebrate layers

Results

Correlations

## OGR data source with driver: ESRI Shapefile 
## Source: "D:\BoxFiles\Box Sync\CodigoR\Servicios_Biodiversidad\shp\Amazonia", layer: "408_Amazonia"
## with 1 features
## It has 9 fields
## Integer64 fields read as strings:  COUNT Z_OF_SYS
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\BoxFiles\Box Sync\CodigoR\Servicios_Biodiversidad\shp\Caribbean", layer: "411_Caribbean"
## with 1 features
## It has 9 fields
## Integer64 fields read as strings:  COUNT Z_OF_SYS
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\BoxFiles\Box Sync\CodigoR\Servicios_Biodiversidad\shp\Meso_american_lowland", layer: "420_Meso-American_Lowland_Forest"
## with 1 features
## It has 9 fields
## Integer64 fields read as strings:  COUNT Z_OF_SYS
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\BoxFiles\Box Sync\CodigoR\Servicios_Biodiversidad\shp\North_central_moist_andes", layer: "409_North-Central_Moist_Andes"
## with 1 features
## It has 9 fields
## Integer64 fields read as strings:  COUNT Z_OF_SYS
## OGR data source with driver: ESRI Shapefile 
## Source: "D:\BoxFiles\Box Sync\CodigoR\Servicios_Biodiversidad\shp\Orinoquia", layer: "405_Orinoquia"
## with 1 features
## It has 9 fields
## Integer64 fields read as strings:  COUNT Z_OF_SYS

Carbon Nutrients Sediments Water Mammal Reptile Bird Amphibia Threatened
Carbon 1.0000000 0.6959749 -0.3457926 0.1691980 -0.1820663 -0.0782093 -0.2136615 -0.1715534 -0.1342105
Nutrients 0.6959749 1.0000000 -0.3874752 0.1601722 -0.1742258 -0.0679759 -0.2056112 -0.1561962 -0.1264445
Sediments -0.3457926 -0.3874752 1.0000000 -0.0457698 0.2100047 0.0321206 0.2196295 0.1385425 0.1532857
Water 0.1691980 0.1601722 -0.0457698 1.0000000 0.0029241 -0.1174603 -0.0729246 -0.0743108 -0.0506639
Mammal -0.1820663 -0.1742258 0.2100047 0.0029241 1.0000000 0.7956714 0.8232246 0.9317667 0.8073344
Reptile -0.0782093 -0.0679759 0.0321206 -0.1174603 0.7956714 1.0000000 0.8178706 0.8509066 0.8374619
Bird -0.2136615 -0.2056112 0.2196295 -0.0729246 0.8232246 0.8178706 1.0000000 0.8162272 0.9168312
Amphibia -0.1715534 -0.1561962 0.1385425 -0.0743108 0.9317667 0.8509066 0.8162272 1.0000000 0.7707557
Threatened -0.1342105 -0.1264445 0.1532857 -0.0506639 0.8073344 0.8374619 0.9168312 0.7707557 1.0000000

Carbon Nutrients Sediments Water Mammal Reptile Bird Amphibia Threatened
Carbon 1.0000000 0.4486914 0.2459836 0.2209631 0.0516946 -0.2203186 0.2258081 -0.1405714 0.3494772
Nutrients 0.4486914 1.0000000 0.2355710 0.2704853 0.1215836 -0.1307965 0.2499940 -0.0350756 0.3119661
Sediments 0.2459836 0.2355710 1.0000000 0.6818269 0.1935819 -0.1896959 0.1817719 -0.0307003 0.5387033
Water 0.2209631 0.2704853 0.6818269 1.0000000 0.5231647 0.1798495 0.3902003 0.3875528 0.6104257
Mammal 0.0516946 0.1215836 0.1935819 0.5231647 1.0000000 0.6434260 0.3736993 0.6467665 0.3156902
Reptile -0.2203186 -0.1307965 -0.1896959 0.1798495 0.6434260 1.0000000 -0.1031572 0.8668685 -0.3082301
Bird 0.2258081 0.2499940 0.1817719 0.3902003 0.3736993 -0.1031572 1.0000000 0.1873139 0.6157180
Amphibia -0.1405714 -0.0350756 -0.0307003 0.3875528 0.6467665 0.8668685 0.1873139 1.0000000 -0.1127891
Threatened 0.3494772 0.3119661 0.5387033 0.6104257 0.3156902 -0.3082301 0.6157180 -0.1127891 1.0000000

Carbon Nutrients Sediments Water Mammal Reptile Bird Amphibia Threatened
Carbon 1.0000000 0.7457283 0.1959647 0.5722948 -0.0433094 -0.2073358 -0.2034249 -0.1612182 0.1143046
Nutrients 0.7457283 1.0000000 0.1614918 0.5182750 -0.0324159 -0.1658559 -0.1869700 -0.1211938 0.1028128
Sediments 0.1959647 0.1614918 1.0000000 0.1709904 0.1733565 0.0263272 -0.0817930 0.0960048 0.1594391
Water 0.5722948 0.5182750 0.1709904 1.0000000 -0.1511210 -0.3536843 -0.5068695 -0.2548885 0.0124271
Mammal -0.0433094 -0.0324159 0.1733565 -0.1511210 1.0000000 0.8076963 0.6411362 0.8440115 0.8221579
Reptile -0.2073358 -0.1658559 0.0263272 -0.3536843 0.8076963 1.0000000 0.5698629 0.9244844 0.5708307
Bird -0.2034249 -0.1869700 -0.0817930 -0.5068695 0.6411362 0.5698629 1.0000000 0.5296217 0.7102935
Amphibia -0.1612182 -0.1211938 0.0960048 -0.2548885 0.8440115 0.9244844 0.5296217 1.0000000 0.6097827
Threatened 0.1143046 0.1028128 0.1594391 0.0124271 0.8221579 0.5708307 0.7102935 0.6097827 1.0000000

Carbon Nutrients Sediments Water Mammal Reptile Bird Amphibia Threatened
Carbon 1.0000000 0.7684310 0.2386746 0.3760061 0.0571707 -0.0421356 -0.0018815 0.0071693 0.1593514
Nutrients 0.7684310 1.0000000 0.2564793 0.3798009 0.0091817 -0.0803514 -0.0397636 -0.0226970 0.1591400
Sediments 0.2386746 0.2564793 1.0000000 0.5479447 0.1781147 0.0542397 0.0480534 0.1343344 0.2022619
Water 0.3760061 0.3798009 0.5479447 1.0000000 0.3403386 0.2319615 0.0018688 0.3338561 0.2451139
Mammal 0.0571707 0.0091817 0.1781147 0.3403386 1.0000000 0.8445903 0.6187383 0.8587301 0.6794045
Reptile -0.0421356 -0.0803514 0.0542397 0.2319615 0.8445903 1.0000000 0.3699837 0.8975206 0.3357763
Bird -0.0018815 -0.0397636 0.0480534 0.0018688 0.6187383 0.3699837 1.0000000 0.4606414 0.7391988
Amphibia 0.0071693 -0.0226970 0.1343344 0.3338561 0.8587301 0.8975206 0.4606414 1.0000000 0.5505224
Threatened 0.1593514 0.1591400 0.2022619 0.2451139 0.6794045 0.3357763 0.7391988 0.5505224 1.0000000

Statistics of correlations

Carbon Nutrients Sediments Water Mammal Reptile Bird Amphibia Threatened
Carbon 1.0000000 0.3370423 0.0286969 0.0502950 0.1049423 0.0799174 0.0494925 0.0426281 0.1209600
Nutrients 0.3370423 1.0000000 -0.1232427 -0.0809510 -0.0973369 -0.1294697 -0.0819302 -0.1700609 -0.0496550
Sediments 0.0286969 -0.1232427 1.0000000 0.1163070 0.4975159 0.4037481 0.4668249 0.5203646 0.4210377
Water 0.0502950 -0.0809510 0.1163070 1.0000000 0.4354258 0.4825927 0.1757094 0.4086294 0.5786776
Mammal 0.1049423 -0.0973369 0.4975159 0.4354258 1.0000000 0.8316978 0.7451743 0.9193044 0.8432187
Reptile 0.0799174 -0.1294697 0.4037481 0.4825927 0.8316978 1.0000000 0.5515067 0.8238283 0.7463610
Bird 0.0494925 -0.0819302 0.4668249 0.1757094 0.7451743 0.5515067 1.0000000 0.7353320 0.6826957
Amphibia 0.0426281 -0.1700609 0.5203646 0.4086294 0.9193044 0.8238283 0.7353320 1.0000000 0.7696441
Threatened 0.1209600 -0.0496550 0.4210377 0.5786776 0.8432187 0.7463610 0.6826957 0.7696441 1.0000000

Map correlations

# 
# RasterStack or Brick objects
  Amaz_mamif_sedimen <- corLocal(all_stack_masked_a[[5]],
                 all_stack_masked_a[[3]],
                ngb=11, method=c("pearson"))
  
  Amaz_ave_sedimen <-  corLocal(all_stack_masked_a[[7]],
                 all_stack_masked_a[[3]],
                ngb=11, method=c("pearson"))
  
  Amaz_amenaz_sedimen <-  corLocal(all_stack_masked_a[[9]],
                 all_stack_masked_a[[3]],
                ngb=11, method=c("pearson"))
  
  Caribe_agua_amenaz <-  corLocal(all_stack_masked_c[[4]],
                 all_stack_masked_c[[9]],
                ngb=11, method=c("pearson"))
    
  Caribe_sedimen_amenaz <-  corLocal(all_stack_masked_c[[3]],
                 all_stack_masked_c[[9]],
                ngb=11, method=c("pearson")) 
  
  Caribe_agua_reptil <-  corLocal(all_stack_masked_c[[4]],
                 all_stack_masked_c[[6]],
                ngb=11, method=c("pearson")) 
    
  Meso_sediment_amenaz <-  corLocal(all_stack_masked_m[[3]],
                 all_stack_masked_m[[9]],
                ngb=11, method=c("pearson")) 
    
  Meso_carbon_amenaza <-  corLocal(all_stack_masked_m[[1]],
                 all_stack_masked_m[[9]],
                ngb=11, method=c("pearson")) 
    
  Andes_agua_amenaz <- corLocal(all_stack_masked_an[[4]],
                 all_stack_masked_an[[9]],
                ngb=11, method=c("pearson"))  
  
  Andes_agua_anfi <- corLocal(all_stack_masked_an[[4]],
                 all_stack_masked_an[[8]],
                ngb=11, method=c("pearson"))  
  
  Orinoq_agua_anfi <- corLocal(all_stack_masked_o[[4]],
                 all_stack_masked_o[[9]],
                ngb=11, method=c("pearson")) 
  
  Orinoq_Sediments_anfi <- corLocal(all_stack_masked_o[[3]],
                 all_stack_masked_o[[9]],
                ngb=11, method=c("pearson")) 
    
    
 
  
# stack  
corr_stack <- stack(Amaz_mamif_sedimen, 
                    Amaz_ave_sedimen,
                    Caribe_agua_amenaz,
                    Caribe_sedimen_amenaz,
                    Meso_sediment_amenaz,
                    Meso_carbon_amenaza,
                    Andes_agua_amenaz,
                    Andes_agua_anfi, 
                    Orinoq_agua_anfi,
                    Orinoq_Sediments_anfi)
# names
names(corr_stack)<-c("Mamiferos_Sedimento", 
                     "Aves_Sedimento",
                     "Amenazadas_Agua1", 
                     "Amenazadas_Sedimento1", 
                     "Amenazadas_Sedimento2",
                     "Amenazadas_Carbono", 
                     "Amenazadas_Agua2",
                     "Anfibios_Agua1",
                     "Anfibios_Agua2",
                     "Anfibios_Sedimento")
# plot(corr_stack, col=brewer.pal('RdBu', n=20))
my_color2 <- brewer.pal('RdBu', n=10)

#### see as thematic map using tmap package
tm_shape(corr_stack) + 
    tm_raster(c("Mamiferos_Sedimento", 
                     "Aves_Sedimento",
                     "Amenazadas_Agua1", 
                     "Amenazadas_Sedimento1", 
                     "Amenazadas_Sedimento2",
                     "Amenazadas_Carbono", 
                     "Amenazadas_Agua2",
                     "Anfibios_Agua1",
                     "Anfibios_Agua2",
                     "Anfibios_Sedimento"), 
              breaks=c(-1, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75, 1),  
        palette = my_color2) +  
        # auto.palette.mapping=FALSE) +  
  tm_shape(col_limit) + 
  tm_borders() +
  # tm_legend(text.size=0.5,
  #   title.size=0.7,
  #   position = c("left", "bottom"),
  #   # panel.labels=c("Mamiferos_Sedimento", 
  #   #                  "Aves_Sedimento",
  #   #                  "Amenazadas_Agua1", 
  #   #                  "Amenazadas_Sedimento1", 
  #   #                  "Amenazadas_Sedimento2",
  #   #                  "Amenazadas_Carbono", 
  #   #                  "Amenazadas_Agua2",
  #   #                  "Anfibios_Agua1",
  #   #                  "Anfibios_Agua2",
  #   #                  "Anfibios_Sedimento"),
  #   bg.color = "white", 
  #   bg.alpha=.25, 
  #   frame="gray50", 
  #   height=.6, 
  #   hist.width=.2,
  #   hist.height=.2, 
  #   hist.bg.color="gray60", 
  #   hist.bg.alpha=.5)

  tm_layout(
     panel.labels=c("Mamiferos_Sedimento",
                      "Aves_Sedimento",
                     "Amenazadas_Agua1",
                      "Amenazadas_Sedimento1",
                      "Amenazadas_Sedimento2",
                      "Amenazadas_Carbono",
                      "Amenazadas_Agua2",
                     "Anfibios_Agua1",
                     "Anfibios_Agua2",
                      "Anfibios_Sedimento"),
    legend.show = FALSE)