Документ с описанием импорта данных - http://rpubs.com/Petr001/454541

Документ с описательной статистикой - http://rpubs.com/Petr001/455155

Документ с описанием различий - http://rpubs.com/Petr001/DifferencesDLT

Проверка достоверности различий - http://rpubs.com/Petr001/CriteriaDifferencesDLT

date()
## [1] "Mon Jan  7 23:50:46 2019"
sessionInfo()
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS  10.14.2
## 
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## loaded via a namespace (and not attached):
##  [1] compiler_3.5.1  backports_1.1.2 magrittr_1.5    rprojroot_1.3-2
##  [5] tools_3.5.1     htmltools_0.3.6 yaml_2.2.0      Rcpp_1.0.0     
##  [9] stringi_1.2.4   rmarkdown_1.10  knitr_1.20      stringr_1.3.1  
## [13] digest_0.6.15   evaluate_0.11

Загрузка данных и библиотек

library(ggplot2)
library(reshape2)
library(likert)
## Loading required package: xtable
load("Import.RData")
load("DecriptiveStatistics.RData")
load("Differences.RData")

Минюрова

Minurova <- data.frame(Minurova, dfGroup)

Проверка распределения

shapiro.test(Minurova$PriverzhSum)
## 
##  Shapiro-Wilk normality test
## 
## data:  Minurova$PriverzhSum
## W = 0.94918, p-value = 0.00112
by(Minurova$PriverzhSum, INDICES = dfGroup$Q3_DC1, FUN = shapiro.test)
## dfGroup$Q3_DC1: Да, являюсь
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.93152, p-value = 0.01311
## 
## -------------------------------------------------------- 
## dfGroup$Q3_DC1: Нет, не являюсь
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.95434, p-value = 0.04796
by(Minurova$PriverzhSum, INDICES = dfGroup$Q5_DLT1, FUN = shapiro.test)
## dfGroup$Q5_DLT1: Да, использую
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.93638, p-value = 0.002356
## 
## -------------------------------------------------------- 
## dfGroup$Q5_DLT1: Нет, не использую
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.95997, p-value = 0.3281
by(Minurova$PriverzhSum, INDICES = dfGroup$Group, FUN = shapiro.test)
## dfGroup$Group: Не включен
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.92509, p-value = 0.1591
## 
## -------------------------------------------------------- 
## dfGroup$Group: Пользователь
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.95428, p-value = 0.1772
## 
## -------------------------------------------------------- 
## dfGroup$Group: Разработчик
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.92787, p-value = 0.3897
## 
## -------------------------------------------------------- 
## dfGroup$Group: Разработчик и пользователь
## 
##  Shapiro-Wilk normality test
## 
## data:  dd[x, ]
## W = 0.89614, p-value = 0.004945

Есть значимые отличия в некоторых подвыборках.

Проверка на равенство дисперсий

bartlett.test(PriverzhSum ~ Group, Minurova)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  PriverzhSum by Group
## Bartlett's K-squared = 5.6532, df = 3, p-value = 0.1298
bartlett.test(PriverzhSum ~ Q3_DC1, Minurova)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  PriverzhSum by Q3_DC1
## Bartlett's K-squared = 0.025327, df = 1, p-value = 0.8736
bartlett.test(PriverzhSum ~ Q5_DLT1, Minurova)
## 
##  Bartlett test of homogeneity of variances
## 
## data:  PriverzhSum by Q5_DLT1
## Bartlett's K-squared = 0.48027, df = 1, p-value = 0.4883

Сравнение по всем трём направлениям не показывает отличия в дисперсиях.

T-test

С некоторой натяжкой можно попробовать сделать Т-тест. не везде сохраняется нормальность распределения. Есть скосы. Но есть равенство дисперсий.

t.test(PriverzhSum ~ Q3_DC1, Minurova)
## 
##  Welch Two Sample t-test
## 
## data:  PriverzhSum by Q3_DC1
## t = -0.41499, df = 90, p-value = 0.6791
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -8.734984  5.716289
## sample estimates:
##     mean in group Да, являюсь mean in group Нет, не являюсь 
##                      44.62791                      46.13725
t.test(PriverzhSum ~ Q5_DLT1, Minurova)
## 
##  Welch Two Sample t-test
## 
## data:  PriverzhSum by Q5_DLT1
## t = -0.8175, df = 48.887, p-value = 0.4176
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -11.562003   4.875531
## sample estimates:
##     mean in group Да, использую mean in group Нет, не использую 
##                        44.41538                        47.75862

Нет значимых различий ни по использованию ДОТ ни по Авторству ДОТ

Посмотрим на отдельные шкалыъ

Авторство ДОТ:

t.test(Affection ~ Q3_DC1, Minurova)
## 
##  Welch Two Sample t-test
## 
## data:  Affection by Q3_DC1
## t = -0.023188, df = 89.684, p-value = 0.9816
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.320178  3.243571
## sample estimates:
##     mean in group Да, являюсь mean in group Нет, не являюсь 
##                      21.25581                      21.29412
t.test(Stability ~ Q3_DC1, Minurova)
## 
##  Welch Two Sample t-test
## 
## data:  Stability by Q3_DC1
## t = -0.20148, df = 91.452, p-value = 0.8408
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.668803  2.177239
## sample estimates:
##     mean in group Да, являюсь mean in group Нет, не являюсь 
##                      12.55814                      12.80392
t.test(Activity ~ Q3_DC1, Minurova)
## 
##  Welch Two Sample t-test
## 
## data:  Activity by Q3_DC1
## t = -0.73179, df = 92.755, p-value = 0.4661
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.521734  1.625121
## sample estimates:
##     mean in group Да, являюсь mean in group Нет, не являюсь 
##                      11.09091                      12.03922

Отличий нет.

Использование ДОТ:

t.test(Affection ~ Q5_DLT1, Minurova)
## 
##  Welch Two Sample t-test
## 
## data:  Affection by Q5_DLT1
## t = -0.60617, df = 51.928, p-value = 0.547
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.724392  2.532350
## sample estimates:
##     mean in group Да, использую mean in group Нет, не использую 
##                        20.93846                        22.03448
t.test(Stability ~ Q5_DLT1, Minurova)
## 
##  Welch Two Sample t-test
## 
## data:  Stability by Q5_DLT1
## t = -0.39104, df = 47.924, p-value = 0.6975
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -3.352807  2.261030
## sample estimates:
##     mean in group Да, использую mean in group Нет, не использую 
##                        12.52308                        13.06897
t.test(Activity ~ Q5_DLT1, Minurova)
## 
##  Welch Two Sample t-test
## 
## data:  Activity by Q5_DLT1
## t = -1.0089, df = 47.031, p-value = 0.3182
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -4.547187  1.509569
## sample estimates:
##     mean in group Да, использую mean in group Нет, не использую 
##                        11.13636                        12.65517

По второму напрвалению различий тоже нет.

Анкета

Переводим в числа факторы анкеты. дипазон 1:4

df2 <- df
df2[ ,22:57] <- sapply(df[ ,22:57], as.numeric)

Автор/не автор

Средний ранг

t(aggregate(df2[22:57], by = list(df2$Q3_DC1), FUN = mean))
##               [,1]          [,2]             
## Group.1       "Да, являюсь" "Нет, не являюсь"
## Q22_Mot_pos1  "3.318182"    "3.274510"       
## Q23_Mot_neg2  "1.909091"    "2.176471"       
## Q24_Cog_pos3  "3.000000"    "2.509804"       
## Q25_Em_pos4   "2.954545"    "2.705882"       
## Q26_Beh_pos5  "3.159091"    "2.803922"       
## Q27_Mot_neg6  "2.090909"    "2.294118"       
## Q28_Cog_neg7  "2.090909"    "2.686275"       
## Q29_Em_neg8   "1.977273"    "2.176471"       
## Q30_Beh_neg9  "1.568182"    "1.960784"       
## Q31_Mot_pos10 "3.340909"    "3.254902"       
## Q32_Cog_pos11 "3.363636"    "3.078431"       
## Q33_Em_pos12  "3.272727"    "3.019608"       
## Q34_Beh_pos13 "2.954545"    "2.803922"       
## Q35_Mot_neg14 "2.727273"    "2.666667"       
## Q36_Cog_neg15 "2.568182"    "2.921569"       
## Q37_Em_neg16  "1.818182"    "2.000000"       
## Q38_Beh_neg17 "1.431818"    "1.823529"       
## Q39_Mot_pos18 "3.386364"    "3.196078"       
## Q40_Cog_pos19 "1.704545"    "1.745098"       
## Q41_Em_pos20  "3.250000"    "3.078431"       
## Q42_Beh_pos21 "3.181818"    "2.784314"       
## Q43_Mot_neg22 "1.409091"    "1.705882"       
## Q44_Cog_neg23 "3.363636"    "3.509804"       
## Q45_Em_neg24  "1.636364"    "1.960784"       
## Q46_Mot_pos25 "3.159091"    "2.960784"       
## Q47_Cog_pos26 "2.772727"    "2.333333"       
## Q48_Beh_pos27 "3.045455"    "2.862745"       
## Q49_Mot_neg28 "1.659091"    "1.980392"       
## Q50_Cog_neg29 "2.340909"    "2.137255"       
## Q51_Beh_neg30 "1.568182"    "1.960784"       
## Q52_Mot_pos31 "3.250000"    "3.137255"       
## Q53_Cog_pos32 "2.727273"    "2.705882"       
## Q54_Mot_neg33 "2.386364"    "2.352941"       
## Q55_Cog_neg34 "2.750000"    "2.666667"       
## Q56_Beh_neg35 "2.340909"    "2.588235"       
## Q57_Mot_pos36 "3.136364"    "3.058824"

Критерий Манна-Уитни

for (i in 22:57) {
        #m <- aggregate(df2[i], by = list(df2$Q3_DC1), FUN = mean)
        w <- wilcox.test(df2[df2$Q3_DC1 == "Да, являюсь", i]
            , df2[df2$Q3_DC1 == "Нет, не являюсь", i])
        print(names(df[i]))
        print(w)
}
## [1] "Q22_Mot_pos1"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1219.5, p-value = 0.4284
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q23_Mot_neg2"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 873, p-value = 0.04751
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q24_Cog_pos3"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1486.5, p-value = 0.00322
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q25_Em_pos4"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1306.5, p-value = 0.1391
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q26_Beh_pos5"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1403.5, p-value = 0.02323
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q27_Mot_neg6"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 981.5, p-value = 0.2701
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q28_Cog_neg7"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 699, p-value = 0.0008403
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q29_Em_neg8"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 978.5, p-value = 0.252
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q30_Beh_neg9"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 826.5, p-value = 0.01641
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q31_Mot_pos10"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1173, p-value = 0.6801
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q32_Cog_pos11"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1349.5, p-value = 0.06651
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q33_Em_pos12"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1265, p-value = 0.2545
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q34_Beh_pos13"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1235.5, p-value = 0.3674
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q35_Mot_neg14"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1157, p-value = 0.781
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q36_Cog_neg15"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 873.5, p-value = 0.0516
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q37_Em_neg16"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1005, p-value = 0.3506
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q38_Beh_neg17"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 874.5, p-value = 0.04074
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q39_Mot_pos18"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1300, p-value = 0.1484
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q40_Cog_pos19"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1112, p-value = 0.9386
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q41_Em_pos20"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1272, p-value = 0.2309
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q42_Beh_pos21"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1421.5, p-value = 0.01735
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q43_Mot_neg22"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 922.5, p-value = 0.09392
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q44_Cog_neg23"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 984.5, p-value = 0.2436
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q45_Em_neg24"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 853, p-value = 0.02958
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q46_Mot_pos25"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1293.5, p-value = 0.1671
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q47_Cog_pos26"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1399.5, p-value = 0.02896
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q48_Beh_pos27"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1251, p-value = 0.3058
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q49_Mot_neg28"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 906.5, p-value = 0.08355
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q50_Cog_neg29"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1234, p-value = 0.3814
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q51_Beh_neg30"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 777.5, p-value = 0.005175
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q52_Mot_pos31"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1174.5, p-value = 0.6744
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q53_Cog_pos32"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1139.5, p-value = 0.8953
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q54_Mot_neg33"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1149.5, p-value = 0.8335
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q55_Cog_neg34"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1179, p-value = 0.6556
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q56_Beh_neg35"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 970.5, p-value = 0.2356
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q57_Mot_pos36"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q3_DC1 == "Да, являюсь", i] and df2[df2$Q3_DC1 == "Нет, не являюсь", i]
## W = 1232, p-value = 0.3788
## alternative hypothesis: true location shift is not equal to 0

Значимые коэфициенты

for (i in 22:57) {
        w <- wilcox.test(df2[df2$Q3_DC1 == "Да, являюсь", i]
            , df2[df2$Q3_DC1 == "Нет, не являюсь", i])
        if (w$p.value <= 0.05) {
          print(c(dfNames$Name[i]
                  , round(w$p.value, 4)
                  , t(aggregate(df2[i], by = list(df2$Q3_DC1), FUN = mean))
                  , dfNames$Descript[i]
                  , " "))
        }
}
## [1] "Q23_Mot_neg2"                                       
## [2] "0.0475"                                             
## [3] "Да, являюсь"                                        
## [4] "1.909091"                                           
## [5] "Нет, не являюсь"                                    
## [6] "2.176471"                                           
## [7] "[Я как преподаватель не обязан(а) использовать ДОТ]"
## [8] " "                                                  
## [1] "Q24_Cog_pos3"                                      
## [2] "0.0032"                                            
## [3] "Да, являюсь"                                       
## [4] "3.000000"                                          
## [5] "Нет, не являюсь"                                   
## [6] "2.509804"                                          
## [7] "[Я хорошо знаю алгоритм действий при работе с ДОТ]"
## [8] " "                                                 
## [1] "Q26_Beh_pos5"                                   
## [2] "0.0232"                                         
## [3] "Да, являюсь"                                    
## [4] "3.159091"                                       
## [5] "Нет, не являюсь"                                
## [6] "2.803922"                                       
## [7] "[Я готов(а) тратить свое время на освоение ДОТ]"
## [8] " "                                              
## [1] "Q28_Cog_neg7"                                                                  
## [2] "8e-04"                                                                         
## [3] "Да, являюсь"                                                                   
## [4] "2.090909"                                                                      
## [5] "Нет, не являюсь"                                                               
## [6] "2.686275"                                                                      
## [7] "[Многое для меня является незнакомым и непонятным в дистанционных технологиях]"
## [8] " "                                                                             
## [1] "Q30_Beh_neg9"                                                                                                          
## [2] "0.0164"                                                                                                                
## [3] "Да, являюсь"                                                                                                           
## [4] "1.568182"                                                                                                              
## [5] "Нет, не являюсь"                                                                                                       
## [6] "1.960784"                                                                                                              
## [7] "[Я не готов(а) включаться в работу по использованию ДОТ, т.к. все равно не буду чувствовать себя уверенно в этом деле]"
## [8] " "                                                                                                                     
## [1] "Q38_Beh_neg17"                                                                                                                       
## [2] "0.0407"                                                                                                                              
## [3] "Да, являюсь"                                                                                                                         
## [4] "1.431818"                                                                                                                            
## [5] "Нет, не являюсь"                                                                                                                     
## [6] "1.823529"                                                                                                                            
## [7] "[Я не готов(а) включаться в работу по использованию ДОТ, т.к. у меня все равно не получится хорошо разобраться с этими технологиями]"
## [8] " "                                                                                                                                   
## [1] "Q42_Beh_pos21"                                            
## [2] "0.0174"                                                   
## [3] "Да, являюсь"                                              
## [4] "3.181818"                                                 
## [5] "Нет, не являюсь"                                          
## [6] "2.784314"                                                 
## [7] "[В процессе работы с ДОТ я отмечаю у себя видимые успехи]"
## [8] " "                                                        
## [1] "Q45_Em_neg24"                                                                                                              
## [2] "0.0296"                                                                                                                    
## [3] "Да, являюсь"                                                                                                               
## [4] "1.636364"                                                                                                                  
## [5] "Нет, не являюсь"                                                                                                           
## [6] "1.960784"                                                                                                                  
## [7] "[Как правило, я испытываю негативные эмоции (страх, тревогу), когда вынужден(а) разбираться с дистанционными технологиями]"
## [8] " "                                                                                                                         
## [1] "Q47_Cog_pos26"                                                                   
## [2] "0.029"                                                                           
## [3] "Да, являюсь"                                                                     
## [4] "2.772727"                                                                        
## [5] "Нет, не являюсь"                                                                 
## [6] "2.333333"                                                                        
## [7] "[Я знаю, как можно справиться с негативными последствиями при использовании ДОТ]"
## [8] " "                                                                               
## [1] "Q51_Beh_neg30"                                                                            
## [2] "0.0052"                                                                                   
## [3] "Да, являюсь"                                                                              
## [4] "1.568182"                                                                                 
## [5] "Нет, не являюсь"                                                                          
## [6] "1.960784"                                                                                 
## [7] "[Процесс работы с ДОТ сопровождается низкой результативность, у меня мало что получается]"
## [8] " "

Пользователь / не пользовать ДОТ

Средний ранг

t(aggregate(df2[22:57], by = list(df2$Q5_DLT1), FUN = mean))
##               [,1]            [,2]               
## Group.1       "Да, использую" "Нет, не использую"
## Q22_Mot_pos1  "3.318182"      "3.241379"         
## Q23_Mot_neg2  "2.045455"      "2.068966"         
## Q24_Cog_pos3  "2.803030"      "2.586207"         
## Q25_Em_pos4   "2.893939"      "2.655172"         
## Q26_Beh_pos5  "3.060606"      "2.758621"         
## Q27_Mot_neg6  "2.075758"      "2.482759"         
## Q28_Cog_neg7  "2.393939"      "2.448276"         
## Q29_Em_neg8   "1.954545"      "2.379310"         
## Q30_Beh_neg9  "1.666667"      "2.034483"         
## Q31_Mot_pos10 "3.272727"      "3.344828"         
## Q32_Cog_pos11 "3.257576"      "3.103448"         
## Q33_Em_pos12  "3.151515"      "3.103448"         
## Q34_Beh_pos13 "2.939394"      "2.724138"         
## Q35_Mot_neg14 "2.742424"      "2.586207"         
## Q36_Cog_neg15 "2.787879"      "2.689655"         
## Q37_Em_neg16  "1.803030"      "2.172414"         
## Q38_Beh_neg17 "1.545455"      "1.862069"         
## Q39_Mot_pos18 "3.333333"      "3.172414"         
## Q40_Cog_pos19 "1.772727"      "1.620690"         
## Q41_Em_pos20  "3.227273"      "3.000000"         
## Q42_Beh_pos21 "3.060606"      "2.758621"         
## Q43_Mot_neg22 "1.469697"      "1.793103"         
## Q44_Cog_neg23 "3.484848"      "3.344828"         
## Q45_Em_neg24  "1.787879"      "1.862069"         
## Q46_Mot_pos25 "3.106061"      "2.931034"         
## Q47_Cog_pos26 "2.651515"      "2.275862"         
## Q48_Beh_pos27 "2.969697"      "2.896552"         
## Q49_Mot_neg28 "1.787879"      "1.931034"         
## Q50_Cog_neg29 "2.181818"      "2.344828"         
## Q51_Beh_neg30 "1.727273"      "1.896552"         
## Q52_Mot_pos31 "3.227273"      "3.103448"         
## Q53_Cog_pos32 "2.757576"      "2.620690"         
## Q54_Mot_neg33 "2.424242"      "2.241379"         
## Q55_Cog_neg34 "2.742424"      "2.620690"         
## Q56_Beh_neg35 "2.454545"      "2.517241"         
## Q57_Mot_pos36 "3.227273"      "2.793103"

Критерий Манна-Уитни

for (i in 22:57) {
        #m <- aggregate(df2[i], by = list(df2$Q5_DLT1), FUN = mean)
        w <- wilcox.test(df2[df2$Q5_DLT1 == "Да, использую", i]
            , df2[df2$Q5_DLT1 == "Нет, не использую", i])
        print(names(df[i]))
        print(w)
}
## [1] "Q22_Mot_pos1"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1017, p-value = 0.5989
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q23_Mot_neg2"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 951, p-value = 0.9621
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q24_Cog_pos3"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1054, p-value = 0.3978
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q25_Em_pos4"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1100, p-value = 0.2149
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q26_Beh_pos5"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1112, p-value = 0.1766
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q27_Mot_neg6"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 731, p-value = 0.05443
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q28_Cog_neg7"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 945.5, p-value = 0.925
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q29_Em_neg8"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 714.5, p-value = 0.03582
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q30_Beh_neg9"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 777, p-value = 0.1139
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q31_Mot_pos10"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 916.5, p-value = 0.7236
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q32_Cog_pos11"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1054, p-value = 0.3983
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q33_Em_pos12"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 994, p-value = 0.752
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q34_Beh_pos13"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1044, p-value = 0.455
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q35_Mot_neg14"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1056, p-value = 0.39
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q36_Cog_neg15"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 994, p-value = 0.7564
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q37_Em_neg16"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 773.5, p-value = 0.1123
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q38_Beh_neg17"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 793.5, p-value = 0.1437
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q39_Mot_pos18"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1057, p-value = 0.3803
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q40_Cog_pos19"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1075.5, p-value = 0.3
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q41_Em_pos20"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1046.5, p-value = 0.4399
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q42_Beh_pos21"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1115, p-value = 0.1748
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q43_Mot_neg22"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 822, p-value = 0.2202
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q44_Cog_neg23"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1081, p-value = 0.2551
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q45_Em_neg24"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 932.5, p-value = 0.8332
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q46_Mot_pos25"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1028, p-value = 0.5374
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q47_Cog_pos26"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1155.5, p-value = 0.09095
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q48_Beh_pos27"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 945.5, p-value = 0.9244
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q49_Mot_neg28"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 922, p-value = 0.7637
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q50_Cog_neg29"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 903.5, p-value = 0.6523
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q51_Beh_neg30"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 870, p-value = 0.4465
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q52_Mot_pos31"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1001.5, p-value = 0.7003
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q53_Cog_pos32"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1020, p-value = 0.6004
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q54_Mot_neg33"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1059.5, p-value = 0.3898
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q55_Cog_neg34"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1033, p-value = 0.5188
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q56_Beh_neg35"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 936, p-value = 0.8616
## alternative hypothesis: true location shift is not equal to 0
## 
## [1] "Q57_Mot_pos36"
## 
##  Wilcoxon rank sum test with continuity correction
## 
## data:  df2[df2$Q5_DLT1 == "Да, использую", i] and df2[df2$Q5_DLT1 == "Нет, не использую", i]
## W = 1169.5, p-value = 0.06501
## alternative hypothesis: true location shift is not equal to 0

Значимые коэфициенты

for (i in 22:57) {
        #m <- aggregate(df2[i], by = list(df2$Q5_DLT1), FUN = mean)
        w <- wilcox.test(df2[df2$Q5_DLT1 == "Да, использую", i]
            , df2[df2$Q5_DLT1 == "Нет, не использую", i])
        if (w$p.value <= 0.05) {
          print(c(dfNames$Name[i]
                  , round(w$p.value, 4)
                  , t(aggregate(df2[i], by = list(df2$Q5_DLT1), FUN = mean))
                  , dfNames$Descript[i]
                  , " "))
        }
}
## [1] "Q29_Em_neg8"                                                        
## [2] "0.0358"                                                             
## [3] "Да, использую"                                                      
## [4] "1.954545"                                                           
## [5] "Нет, не использую"                                                  
## [6] "2.379310"                                                           
## [7] "[В основном я чувствую неудовлетворенность в процессе работы с ДОТ]"
## [8] " "

Фобии

Используем критерий Хи-квадрат. так как у нас номинальная шкала.

Автор/не автор

Хи-квадрат

Fobia_DC_t <- list()
for (i in 60:65) {
        t <- table(df[[i]], df$Q3_DC1)
        chi <- chisq.test(t)
        print(names(df[i]))
        print(t)
        print(chi)
}
## [1] "Q60_Att1"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                       5              11
##   Нет                     33              34
##   Трудно сказать           6               6
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 1.7587, df = 2, p-value = 0.4151
## 
## [1] "Q61_Att2"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                      19              17
##   Нет                     18              25
##   Трудно сказать           7               9
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.99023, df = 2, p-value = 0.6095
## Warning in chisq.test(t): Chi-squared approximation may be incorrect
## [1] "Q62_Att3"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                      12              19
##   Нет                     30              25
##   Трудно сказать           2               7
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 4.3206, df = 2, p-value = 0.1153
## 
## [1] "Q63_Att4"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                       3              10
##   Нет                     30              34
##   Трудно сказать          11               7
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 4.4163, df = 2, p-value = 0.1099
## 
## [1] "Q64_Att5"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                       9              11
##   Нет                     28              26
##   Трудно сказать           7              14
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 2.103, df = 2, p-value = 0.3494
## 
## [1] "Q65_Att6"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                      20              26
##   Нет                     17              19
##   Трудно сказать           7               6
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.45734, df = 2, p-value = 0.7956

Критерий Фишера

(так как в некоторых ячейках меньше пяти и хи-квадрат может давать ошибку)

Fobia_DC_t <- list()
for (i in 60:65) {
        t <- table(df[[i]], df$Q3_DC1)
        fi <- fisher.test(t)
        print(names(df[i]))
        print(t)
        print(chi)
}
## [1] "Q60_Att1"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                       5              11
##   Нет                     33              34
##   Трудно сказать           6               6
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.45734, df = 2, p-value = 0.7956
## 
## [1] "Q61_Att2"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                      19              17
##   Нет                     18              25
##   Трудно сказать           7               9
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.45734, df = 2, p-value = 0.7956
## 
## [1] "Q62_Att3"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                      12              19
##   Нет                     30              25
##   Трудно сказать           2               7
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.45734, df = 2, p-value = 0.7956
## 
## [1] "Q63_Att4"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                       3              10
##   Нет                     30              34
##   Трудно сказать          11               7
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.45734, df = 2, p-value = 0.7956
## 
## [1] "Q64_Att5"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                       9              11
##   Нет                     28              26
##   Трудно сказать           7              14
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.45734, df = 2, p-value = 0.7956
## 
## [1] "Q65_Att6"
##                 
##                  Да, являюсь Нет, не являюсь
##   Да                      20              26
##   Нет                     17              19
##   Трудно сказать           7               6
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.45734, df = 2, p-value = 0.7956

Пользователь/не пользователь

Хи-квадрат

Fobia_DC_t <- list()
for (i in 60:65) {
        t <- table(df[[i]], df$Q5_DLT1)
        chi <- chisq.test(t)
        print(names(df[i]))
        print(t)
        print(chi)
}
## Warning in chisq.test(t): Chi-squared approximation may be incorrect
## [1] "Q60_Att1"
##                 
##                  Да, использую Нет, не использую
##   Да                        12                 4
##   Нет                       47                20
##   Трудно сказать             7                 5
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.94706, df = 2, p-value = 0.6228
## Warning in chisq.test(t): Chi-squared approximation may be incorrect
## [1] "Q61_Att2"
##                 
##                  Да, использую Нет, не использую
##   Да                        26                10
##   Нет                       27                16
##   Трудно сказать            13                 3
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 2.0801, df = 2, p-value = 0.3534
## Warning in chisq.test(t): Chi-squared approximation may be incorrect
## [1] "Q62_Att3"
##                 
##                  Да, использую Нет, не использую
##   Да                        24                 7
##   Нет                       34                21
##   Трудно сказать             8                 1
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 4.0424, df = 2, p-value = 0.1325
## Warning in chisq.test(t): Chi-squared approximation may be incorrect
## [1] "Q63_Att4"
##                 
##                  Да, использую Нет, не использую
##   Да                         8                 5
##   Нет                       45                19
##   Трудно сказать            13                 5
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.47133, df = 2, p-value = 0.79
## 
## [1] "Q64_Att5"
##                 
##                  Да, использую Нет, не использую
##   Да                        14                 6
##   Нет                       37                17
##   Трудно сказать            15                 6
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 0.063684, df = 2, p-value = 0.9687
## Warning in chisq.test(t): Chi-squared approximation may be incorrect
## [1] "Q65_Att6"
##                 
##                  Да, использую Нет, не использую
##   Да                        34                12
##   Нет                       21                15
##   Трудно сказать            11                 2
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 3.9396, df = 2, p-value = 0.1395

Критерий Фишера

(так как в некоторых ячейках меньше пяти и хи-квадрат может давать ошибку)

Fobia_DC_t <- list()
for (i in 60:65) {
        t <- table(df[[i]], df$Q5_DLT1)
        fi <- fisher.test(t)
        print(names(df[i]))
        print(t)
        print(chi)
}
## [1] "Q60_Att1"
##                 
##                  Да, использую Нет, не использую
##   Да                        12                 4
##   Нет                       47                20
##   Трудно сказать             7                 5
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 3.9396, df = 2, p-value = 0.1395
## 
## [1] "Q61_Att2"
##                 
##                  Да, использую Нет, не использую
##   Да                        26                10
##   Нет                       27                16
##   Трудно сказать            13                 3
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 3.9396, df = 2, p-value = 0.1395
## 
## [1] "Q62_Att3"
##                 
##                  Да, использую Нет, не использую
##   Да                        24                 7
##   Нет                       34                21
##   Трудно сказать             8                 1
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 3.9396, df = 2, p-value = 0.1395
## 
## [1] "Q63_Att4"
##                 
##                  Да, использую Нет, не использую
##   Да                         8                 5
##   Нет                       45                19
##   Трудно сказать            13                 5
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 3.9396, df = 2, p-value = 0.1395
## 
## [1] "Q64_Att5"
##                 
##                  Да, использую Нет, не использую
##   Да                        14                 6
##   Нет                       37                17
##   Трудно сказать            15                 6
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 3.9396, df = 2, p-value = 0.1395
## 
## [1] "Q65_Att6"
##                 
##                  Да, использую Нет, не использую
##   Да                        34                12
##   Нет                       21                15
##   Трудно сказать            11                 2
## 
##  Pearson's Chi-squared test
## 
## data:  t
## X-squared = 3.9396, df = 2, p-value = 0.1395