1. Use the summary function to gain an overview of the data set. Then display the mean and median for at least two attributes.
# require(RCurl)
#fuel_economy<-read.csv(text=getURL("https://raw.githubusercontent.com/Jagdish16/jagdish_r_repo/master/FuelEconomy.csv"), header=T)
theURL<-"https://raw.githubusercontent.com/Jagdish16/jagdish_r_repo/master/FuelEconomy.csv"
fuel_economy<-read.table(file=theURL, header=TRUE, sep=",",quote="\"")
summary(fuel_economy)
##        X              manufacturer                 model    
##  Min.   :  1.00   dodge     :37    caravan 2wd        : 11  
##  1st Qu.: 59.25   toyota    :34    ram 1500 pickup 4wd: 10  
##  Median :117.50   volkswagen:27    civic              :  9  
##  Mean   :117.50   ford      :25    dakota pickup 4wd  :  9  
##  3rd Qu.:175.75   chevrolet :19    jetta              :  9  
##  Max.   :234.00   audi      :18    mustang            :  9  
##                   (Other)   :74    (Other)            :177  
##      displ            year           cyl               trans    drv    
##  Min.   :1.600   Min.   :1999   Min.   :4.000   auto(l4)  :83   4:103  
##  1st Qu.:2.400   1st Qu.:1999   1st Qu.:4.000   manual(m5):58   f:106  
##  Median :3.300   Median :2004   Median :6.000   auto(l5)  :39   r: 25  
##  Mean   :3.472   Mean   :2004   Mean   :5.889   manual(m6):19          
##  3rd Qu.:4.600   3rd Qu.:2008   3rd Qu.:8.000   auto(s6)  :16          
##  Max.   :7.000   Max.   :2008   Max.   :8.000   auto(l6)  : 6          
##                                                 (Other)   :13          
##       cty             hwy        fl             class   
##  Min.   : 9.00   Min.   :12.00   c:  1   2seater   : 5  
##  1st Qu.:14.00   1st Qu.:18.00   d:  5   compact   :47  
##  Median :17.00   Median :24.00   e:  8   midsize   :41  
##  Mean   :16.86   Mean   :23.44   p: 52   minivan   :11  
##  3rd Qu.:19.00   3rd Qu.:27.00   r:168   pickup    :33  
##  Max.   :35.00   Max.   :44.00           subcompact:35  
##                                          suv       :62
cat("The mean of cty is ", mean(fuel_economy$cty), "and its median is ", median(fuel_economy$cty), "\n")
## The mean of cty is  16.85897 and its median is  17
#mean(fuel_economy$cty)
cat("The mean of hwy is ", mean(fuel_economy$hwy), "and its median is ", median(fuel_economy$hwy), "\n")
## The mean of hwy is  23.44017 and its median is  24
  1. Create a new data frame with a subset of the columns and rows. Make sure to rename it.
fe<-data.frame(fuel_economy$model, fuel_economy$cty, fuel_economy$hwy, fuel_economy$class)
#fuel.economy<-subset(fe, fuel_economy$class == "suv",)
fuel.economy<-fe[fe$fuel_economy.class=="suv",]
fuel.economy
##         fuel_economy.model fuel_economy.cty fuel_economy.hwy
## 19      c1500 suburban 2wd               14               20
## 20      c1500 suburban 2wd               11               15
## 21      c1500 suburban 2wd               14               20
## 22      c1500 suburban 2wd               13               17
## 23      c1500 suburban 2wd               12               17
## 29         k1500 tahoe 4wd               14               19
## 30         k1500 tahoe 4wd               11               14
## 31         k1500 tahoe 4wd               11               15
## 32         k1500 tahoe 4wd               14               17
## 58             durango 4wd               13               17
## 59             durango 4wd               13               17
## 60             durango 4wd                9               12
## 61             durango 4wd               13               17
## 62             durango 4wd               11               16
## 63             durango 4wd               13               18
## 64             durango 4wd               11               15
## 75          expedition 2wd               11               17
## 76          expedition 2wd               11               17
## 77          expedition 2wd               12               18
## 78            explorer 4wd               14               17
## 79            explorer 4wd               15               19
## 80            explorer 4wd               14               17
## 81            explorer 4wd               13               19
## 82            explorer 4wd               13               19
## 83            explorer 4wd               13               17
## 123     grand cherokee 4wd               17               22
## 124     grand cherokee 4wd               15               19
## 125     grand cherokee 4wd               15               20
## 126     grand cherokee 4wd               14               17
## 127     grand cherokee 4wd                9               12
## 128     grand cherokee 4wd               14               19
## 129     grand cherokee 4wd               13               18
## 130     grand cherokee 4wd               11               14
## 131            range rover               11               15
## 132            range rover               12               18
## 133            range rover               12               18
## 134            range rover               11               15
## 135          navigator 2wd               11               17
## 136          navigator 2wd               11               16
## 137          navigator 2wd               12               18
## 138        mountaineer 4wd               14               17
## 139        mountaineer 4wd               13               19
## 140        mountaineer 4wd               13               19
## 141        mountaineer 4wd               13               17
## 151         pathfinder 4wd               14               17
## 152         pathfinder 4wd               15               17
## 153         pathfinder 4wd               14               20
## 154         pathfinder 4wd               12               18
## 160           forester awd               18               25
## 161           forester awd               18               24
## 162           forester awd               20               27
## 163           forester awd               19               25
## 164           forester awd               20               26
## 165           forester awd               18               23
## 174            4runner 4wd               15               20
## 175            4runner 4wd               16               20
## 176            4runner 4wd               15               19
## 177            4runner 4wd               15               17
## 178            4runner 4wd               16               20
## 179            4runner 4wd               14               17
## 199 land cruiser wagon 4wd               11               15
## 200 land cruiser wagon 4wd               13               18
##     fuel_economy.class
## 19                 suv
## 20                 suv
## 21                 suv
## 22                 suv
## 23                 suv
## 29                 suv
## 30                 suv
## 31                 suv
## 32                 suv
## 58                 suv
## 59                 suv
## 60                 suv
## 61                 suv
## 62                 suv
## 63                 suv
## 64                 suv
## 75                 suv
## 76                 suv
## 77                 suv
## 78                 suv
## 79                 suv
## 80                 suv
## 81                 suv
## 82                 suv
## 83                 suv
## 123                suv
## 124                suv
## 125                suv
## 126                suv
## 127                suv
## 128                suv
## 129                suv
## 130                suv
## 131                suv
## 132                suv
## 133                suv
## 134                suv
## 135                suv
## 136                suv
## 137                suv
## 138                suv
## 139                suv
## 140                suv
## 141                suv
## 151                suv
## 152                suv
## 153                suv
## 154                suv
## 160                suv
## 161                suv
## 162                suv
## 163                suv
## 164                suv
## 165                suv
## 174                suv
## 175                suv
## 176                suv
## 177                suv
## 178                suv
## 179                suv
## 199                suv
## 200                suv
  1. Create new column names for the new data frame.
colnames(fuel.economy) = c("CarModel", "CityMileage", "HighwayMileage", "Type")
fuel.economy
##                   CarModel CityMileage HighwayMileage Type
## 19      c1500 suburban 2wd          14             20  suv
## 20      c1500 suburban 2wd          11             15  suv
## 21      c1500 suburban 2wd          14             20  suv
## 22      c1500 suburban 2wd          13             17  suv
## 23      c1500 suburban 2wd          12             17  suv
## 29         k1500 tahoe 4wd          14             19  suv
## 30         k1500 tahoe 4wd          11             14  suv
## 31         k1500 tahoe 4wd          11             15  suv
## 32         k1500 tahoe 4wd          14             17  suv
## 58             durango 4wd          13             17  suv
## 59             durango 4wd          13             17  suv
## 60             durango 4wd           9             12  suv
## 61             durango 4wd          13             17  suv
## 62             durango 4wd          11             16  suv
## 63             durango 4wd          13             18  suv
## 64             durango 4wd          11             15  suv
## 75          expedition 2wd          11             17  suv
## 76          expedition 2wd          11             17  suv
## 77          expedition 2wd          12             18  suv
## 78            explorer 4wd          14             17  suv
## 79            explorer 4wd          15             19  suv
## 80            explorer 4wd          14             17  suv
## 81            explorer 4wd          13             19  suv
## 82            explorer 4wd          13             19  suv
## 83            explorer 4wd          13             17  suv
## 123     grand cherokee 4wd          17             22  suv
## 124     grand cherokee 4wd          15             19  suv
## 125     grand cherokee 4wd          15             20  suv
## 126     grand cherokee 4wd          14             17  suv
## 127     grand cherokee 4wd           9             12  suv
## 128     grand cherokee 4wd          14             19  suv
## 129     grand cherokee 4wd          13             18  suv
## 130     grand cherokee 4wd          11             14  suv
## 131            range rover          11             15  suv
## 132            range rover          12             18  suv
## 133            range rover          12             18  suv
## 134            range rover          11             15  suv
## 135          navigator 2wd          11             17  suv
## 136          navigator 2wd          11             16  suv
## 137          navigator 2wd          12             18  suv
## 138        mountaineer 4wd          14             17  suv
## 139        mountaineer 4wd          13             19  suv
## 140        mountaineer 4wd          13             19  suv
## 141        mountaineer 4wd          13             17  suv
## 151         pathfinder 4wd          14             17  suv
## 152         pathfinder 4wd          15             17  suv
## 153         pathfinder 4wd          14             20  suv
## 154         pathfinder 4wd          12             18  suv
## 160           forester awd          18             25  suv
## 161           forester awd          18             24  suv
## 162           forester awd          20             27  suv
## 163           forester awd          19             25  suv
## 164           forester awd          20             26  suv
## 165           forester awd          18             23  suv
## 174            4runner 4wd          15             20  suv
## 175            4runner 4wd          16             20  suv
## 176            4runner 4wd          15             19  suv
## 177            4runner 4wd          15             17  suv
## 178            4runner 4wd          16             20  suv
## 179            4runner 4wd          14             17  suv
## 199 land cruiser wagon 4wd          11             15  suv
## 200 land cruiser wagon 4wd          13             18  suv
  1. Use the summary function to create an overview of your new data frame. The print the mean and median for the same two attributes. Please compare.
summary(fuel.economy)
##                CarModel   CityMileage    HighwayMileage          Type   
##  grand cherokee 4wd: 8   Min.   : 9.00   Min.   :12.00   2seater   : 0  
##  durango 4wd       : 7   1st Qu.:12.00   1st Qu.:17.00   compact   : 0  
##  4runner 4wd       : 6   Median :13.00   Median :17.50   midsize   : 0  
##  explorer 4wd      : 6   Mean   :13.50   Mean   :18.13   minivan   : 0  
##  forester awd      : 6   3rd Qu.:14.75   3rd Qu.:19.00   pickup    : 0  
##  c1500 suburban 2wd: 5   Max.   :20.00   Max.   :27.00   subcompact: 0  
##  (Other)           :24                                   suv       :62
cat("The mean of SUV City Mileage is ", mean(fuel.economy$CityMileage), "and its median is ", median(fuel.economy$CityMileage), ". Compared to the overall population, the mean varies by ", ((mean(fuel.economy$CityMileage) / mean (fuel_economy$cty))-1)*100, "% and the median varies by ", ((median(fuel.economy$CityMileage) / median (fuel_economy$cty))-1)*100 ,"%\n")
## The mean of SUV City Mileage is  13.5 and its median is  13 . Compared to the overall population, the mean varies by  -19.92395 % and the median varies by  -23.52941 %
#mean(fuel_economy$cty)
cat("The mean of SUV Highway Mileage is ", mean(fuel.economy$HighwayMileage), "and its median is ", median(fuel.economy$HighwayMileage), ". Compared to the overall population, the mean varies by ", ((mean(fuel.economy$HighwayMileage) / mean (fuel_economy$hwy))-1)*100, "% and the median varies by ", ((median(fuel.economy$HighwayMileage) / median (fuel_economy$hwy))-1)*100 ,"%\n")
## The mean of SUV Highway Mileage is  18.12903 and its median is  17.5 . Compared to the overall population, the mean varies by  -22.65828 % and the median varies by  -27.08333 %
  1. For at least 3 values in a column please rename so that every value in that column is renamed. For example, suppose I have 20 values of the letter “e” in one column. Rename those values so that all 20 would show as “excellent”.
#grep("grand cherokee 4wd",as.character(fuel.economy$CarModel))
#fuel.economy<-gsub("pathfinder 4wd", "Pathfinder", as.character(fuel.economy$CarModel))
#fuel.economy$CarModel[fuel.economy$CarModel == "grand cherokee 4wd"] <- "Cherokee" 

levels(fuel.economy$CarModel)[match("grand cherokee 4wd",levels(fuel.economy$CarModel))] <- "Cherokee"
levels(fuel.economy$CarModel)[match("range rover",levels(fuel.economy$CarModel))] <- "Range Rover"
levels(fuel.economy$CarModel)[match("pathfinder 4wd",levels(fuel.economy$CarModel))] <- "Pathfinder"
  1. Display enough rows to see examples of all of steps 1-5 above.
fuel.economy
##                   CarModel CityMileage HighwayMileage Type
## 19      c1500 suburban 2wd          14             20  suv
## 20      c1500 suburban 2wd          11             15  suv
## 21      c1500 suburban 2wd          14             20  suv
## 22      c1500 suburban 2wd          13             17  suv
## 23      c1500 suburban 2wd          12             17  suv
## 29         k1500 tahoe 4wd          14             19  suv
## 30         k1500 tahoe 4wd          11             14  suv
## 31         k1500 tahoe 4wd          11             15  suv
## 32         k1500 tahoe 4wd          14             17  suv
## 58             durango 4wd          13             17  suv
## 59             durango 4wd          13             17  suv
## 60             durango 4wd           9             12  suv
## 61             durango 4wd          13             17  suv
## 62             durango 4wd          11             16  suv
## 63             durango 4wd          13             18  suv
## 64             durango 4wd          11             15  suv
## 75          expedition 2wd          11             17  suv
## 76          expedition 2wd          11             17  suv
## 77          expedition 2wd          12             18  suv
## 78            explorer 4wd          14             17  suv
## 79            explorer 4wd          15             19  suv
## 80            explorer 4wd          14             17  suv
## 81            explorer 4wd          13             19  suv
## 82            explorer 4wd          13             19  suv
## 83            explorer 4wd          13             17  suv
## 123               Cherokee          17             22  suv
## 124               Cherokee          15             19  suv
## 125               Cherokee          15             20  suv
## 126               Cherokee          14             17  suv
## 127               Cherokee           9             12  suv
## 128               Cherokee          14             19  suv
## 129               Cherokee          13             18  suv
## 130               Cherokee          11             14  suv
## 131            Range Rover          11             15  suv
## 132            Range Rover          12             18  suv
## 133            Range Rover          12             18  suv
## 134            Range Rover          11             15  suv
## 135          navigator 2wd          11             17  suv
## 136          navigator 2wd          11             16  suv
## 137          navigator 2wd          12             18  suv
## 138        mountaineer 4wd          14             17  suv
## 139        mountaineer 4wd          13             19  suv
## 140        mountaineer 4wd          13             19  suv
## 141        mountaineer 4wd          13             17  suv
## 151             Pathfinder          14             17  suv
## 152             Pathfinder          15             17  suv
## 153             Pathfinder          14             20  suv
## 154             Pathfinder          12             18  suv
## 160           forester awd          18             25  suv
## 161           forester awd          18             24  suv
## 162           forester awd          20             27  suv
## 163           forester awd          19             25  suv
## 164           forester awd          20             26  suv
## 165           forester awd          18             23  suv
## 174            4runner 4wd          15             20  suv
## 175            4runner 4wd          16             20  suv
## 176            4runner 4wd          15             19  suv
## 177            4runner 4wd          15             17  suv
## 178            4runner 4wd          16             20  suv
## 179            4runner 4wd          14             17  suv
## 199 land cruiser wagon 4wd          11             15  suv
## 200 land cruiser wagon 4wd          13             18  suv
  1. BONUS - place the original .csv in a github file and have R read from the link. This will be a very useful skill as you progress in your data science education and career.

See answer to question #1