1. Find 12 factorial

factorial <- function(x) {
  if x<=0 {
    return 0
  }
  fact <- 1
  for (i in 1:x) {
    fact <- fact * i
  }
  return fact
}
x <- factorial(12)
print(x)
## [1] 479001600

2. Create a numeric vector containing numbers from 20 to 50 in a sequence of 5

print(seq(from = 20, to = 50, by = 5))
## [1] 20 25 30 35 40 45 50

3.Create the function “factorial” that takes a trio of input numbers a, b, and c and solve the quadratic

equation. The function should print as output the two solutions.

factorialQ <- function(a, b, c) {
  if(a == 0) {
    return("This is not a quadratic function")
  }
  ## going by quadratic formula 
  delta = b^2 - 4*a*c
  if(delta >0) {
    x <- (-b + sqrt(delta)) / (2*a)
    y <- (-b - sqrt(delta)) /(2*a)
    result <- paste("Two possible real values = ", x, " and ", y)
    return(result)
  } else if(delta == 0) {
    x <- -b /2*a
    result <- paste("real root is ", x)
    return(result)
  } else {
    return("There are no real roots")
  }
}
result <- factorialQ(4,0,-9)
print(result)
## [1] "Two possible real values =  1.5  and  -1.5"