January 3, 2019

Overview

The Dataset

The airquality dataset from the datasets package was used:

library(datasets)
data("airquality")
airquality <- airquality[complete.cases(airquality),]
str(airquality)
'data.frame':   111 obs. of  6 variables:
 $ Ozone  : int  41 36 12 18 23 19 8 16 11 14 ...
 $ Solar.R: int  190 118 149 313 299 99 19 256 290 274 ...
 $ Wind   : num  7.4 8 12.6 11.5 8.6 13.8 20.1 9.7 9.2 10.9 ...
 $ Temp   : int  67 72 74 62 65 59 61 69 66 68 ...
 $ Month  : int  5 5 5 5 5 5 5 5 5 5 ...
 $ Day    : int  1 2 3 4 7 8 9 12 13 14 ...

The Application

  • Select a prediction model from the radio button.
  • Choose your desired value from the corresponding slider.
  • The app will show an appropriate plot with the corresponding linear model.
  • Moreover, it will predict the Ozone quality based for your choice.

THANK YOU