讀入檔案

把年份轉成類別變數(1=2013,2=2014…..)

Ta <- read.csv("ANOVAT.csv")
Ta$Year <- as.factor(Ta$Year)

年分 vs 駁油量

result2 <- aov(Ta$KL  ~ Ta$Year)
summary(result2) #無顯著差異
##              Df   Sum Sq Mean Sq F value Pr(>F)
## Ta$Year       5   571445  114289   0.822  0.535
## Residuals   186 25863097  139049
TukeyHSD(result2)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Ta$KL ~ Ta$Year)
## 
## $`Ta$Year`
##            diff       lwr      upr     p adj
## 2-1    2.582961 -219.1270 224.2929 1.0000000
## 3-1  -50.794794 -281.1798 179.5902 0.9882478
## 4-1   94.128323 -185.2195 373.4762 0.9267727
## 5-1  173.936278 -238.0779 585.9505 0.8287804
## 6-1   50.185701 -214.3363 314.7077 0.9941238
## 3-2  -53.377755 -279.1775 172.4220 0.9838921
## 4-2   91.545362 -184.0331 367.1238 0.9308429
## 5-2  171.353316 -238.1146 580.8213 0.8339723
## 6-2   47.602739 -212.9355 308.1410 0.9950733
## 4-3  144.923117 -137.6817 427.5279 0.6795283
## 5-3  224.731071 -189.4983 638.9604 0.6243601
## 6-3  100.980495 -166.9787 368.9397 0.8867918
## 5-4   79.807955 -363.5248 523.1407 0.9954048
## 6-4  -43.942622 -355.0055 267.1202 0.9985510
## 6-5 -123.750577 -557.8941 310.3929 0.9633907
# 2-1 表示第二年和第一年的比較
# diff 表示兩年之間的駁油量差距
# P adj 看有沒有顯著

駁油量 VS 運費

Tb <- read.csv("T.csv")
colnames(Tb) <- c("Date","Spinfo","KL","Bill","trans_fee","TotalP","O_price")
Tb$trans_fee <- as.factor(Tb$trans_fee)

把運費轉成類別變數

result1 <- aov(Tb$KL ~ Tb$trans_fee)
summary(result1)
##               Df   Sum Sq Mean Sq F value Pr(>F)
## Tb$trans_fee   4   129690   32423    0.23  0.921
## Residuals    187 26304851  140668
TukeyHSD(result1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Tb$KL ~ Tb$trans_fee)
## 
## $`Tb$trans_fee`
##               diff       lwr      upr     p adj
## 188-168 -65.431372 -402.4422 271.5795 0.9836293
## 407-168 -69.820250 -559.8736 420.2331 0.9949500
## 414-168 -37.311500 -527.3649 452.7419 0.9995662
## 489-168  33.518000 -428.5088 495.5448 0.9996417
## 407-188  -4.388878 -378.9018 370.1240 0.9999998
## 414-188  28.119872 -346.3930 402.6328 0.9995894
## 489-188  98.949372 -238.0615 435.9602 0.9276815
## 414-407  32.508750 -484.0529 549.0704 0.9997961
## 489-407 103.338250 -386.7151 593.3916 0.9777567
## 489-414  70.829500 -419.2239 560.8829 0.9946629

不同的運費(類別) VS 石油價格 是否具有顯著差異

result3 <- aov(Tb$O_price ~ Tb$trans_fee)
summary(result3)
##               Df    Sum Sq  Mean Sq F value  Pr(>F)   
## Tb$trans_fee   4 3.259e+08 81480639   3.942 0.00427 **
## Residuals    187 3.865e+09 20670709                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
TukeyHSD(result3)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Tb$O_price ~ Tb$trans_fee)
## 
## $`Tb$trans_fee`
##               diff        lwr        upr     p adj
## 188-168 -4779.3308  -8864.635  -694.0261 0.0128777
## 407-168 -8144.1000 -14084.613 -2203.5868 0.0019749
## 414-168 -5769.1000 -11709.613   171.4132 0.0615573
## 489-168 -4669.1000 -10269.870   931.6696 0.1506418
## 407-188 -3364.7692  -7904.680  1175.1418 0.2504251
## 414-188  -989.7692  -5529.680  3550.1418 0.9748581
## 489-188   110.2308  -3975.074  4195.5355 0.9999930
## 414-407  2375.0000  -3886.851  8636.8508 0.8341315
## 489-407  3475.0000  -2465.513  9415.5132 0.4920353
## 489-414  1100.0000  -4840.513  7040.5132 0.9862909

我們可以得知不同的運費下的石油價格具有顯著差異,其中運費168對於運費188和407具有顯著差異。