library(readr)
library(ggplot2)
library(MASS)
library(kableExtra)
library(psych)
##
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
library('dplyr') # for data manipulation
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:MASS':
##
## select
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library('tidyr') # for reshaping data
library('ggplot2') # plotting data
library('scales') # for scale_y_continuous(label = percent)
##
## Attaching package: 'scales'
## The following objects are masked from 'package:psych':
##
## alpha, rescale
## The following object is masked from 'package:readr':
##
## col_factor
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ tibble 1.4.2 ✔ stringr 1.3.1
## ✔ purrr 0.2.5 ✔ forcats 0.3.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ psych::%+%() masks ggplot2::%+%()
## ✖ scales::alpha() masks psych::alpha(), ggplot2::alpha()
## ✖ scales::col_factor() masks readr::col_factor()
## ✖ purrr::discard() masks scales::discard()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ✖ dplyr::select() masks MASS::select()
library(forcats)
Dissertation_Dataset <- read_csv("Dissertation_Dataset_2.csv")
## Parsed with column specification:
## cols(
## .default = col_double(),
## CASE = col_character(),
## SPEAKER_OR = col_character(),
## SENATE_COM = col_character(),
## HOUSE_COM = col_character(),
## GROUP_TYPE = col_character(),
## HEALTH_CJ = col_character(),
## FED_STATE = col_character()
## )
## See spec(...) for full column specifications.
Dissertation_Dataset$FED_STATE <- as.factor(Dissertation_Dataset$FED_STATE)
Dissertation_Dataset$GROUP_TYPE <- as.factor(Dissertation_Dataset$GROUP_TYPE)
Dissertation_Dataset$HEALTH_CJ <- as.factor(Dissertation_Dataset$HEALTH_CJ)
Dissertation_Dataset$SENATE <- as.factor(Dissertation_Dataset$SENATE)
str(Dissertation_Dataset)
## Classes 'spec_tbl_df', 'tbl_df', 'tbl' and 'data.frame': 150 obs. of 50 variables:
## $ CASE : chr "Case #125 - 77 - 2015 WL 1384258" "Case #65 - 097 - 2015 WL 5999232" "Case #67 - 099 - 2015 WL 1886240" "Case #47 - 069 - 2016 WL 223739" ...
## $ YEAR : num 2015 2015 2015 2016 2015 ...
## $ SPEAKER_OR : chr "Alcohol and Drug Abuse Institute University of Washington" "Allegheny Health Network" "American Academy of Addiction Psychiatry" "American Academy of Pain Management" ...
## $ SENATE_COM : chr NA "Finance" NA "Special Aging" ...
## $ HOUSE_COM : chr "Energy and Commerce" NA "Energy and Commerce" NA ...
## $ SENATE : Factor w/ 2 levels "0","1": 1 2 1 2 1 1 2 2 2 2 ...
## $ GROUP_TYPE : Factor w/ 27 levels "Child Welfare",..: 5 18 25 18 18 25 20 27 23 23 ...
## $ HEALTH_CJ : Factor w/ 3 levels "Health","Law Enforcement",..: 1 1 1 1 1 1 2 2 2 2 ...
## $ FED_STATE : Factor w/ 5 levels "Federal","Indian Affairs",..: 5 4 4 4 4 4 5 2 5 5 ...
## $ ps_OPR : num 0 0 0 0 0 0 0 0 0 115 ...
## $ ps_OPRS_H : num 0 0 0 0 46 0 54 0 11 166 ...
## $ ps_prescrip : num 0 245 0 0 0 0 0 0 0 0 ...
## $ ps_Prescribers : num 0 0 0 0 0 0 0 0 0 26 ...
## $ ps_Prescrib_Ed : num 0 63 0 0 0 0 0 0 0 0 ...
## $ ps_vital : num 0 62 0 0 0 0 0 0 0 0 ...
## $ ps_Manuf : num 0 61 0 0 0 0 0 0 0 0 ...
## $ ps_FDA : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ps_Left : num 0 0 0 0 0 0 56 0 0 0 ...
## $ ps_BadApp : num 0 150 0 336 0 38 107 23 45 0 ...
## $ ps_Foreign : num 0 0 0 0 0 ...
## $ pd_Disease : num 29 0 0 0 270 199 0 0 0 0 ...
## $ pd_Quality : num 0 0 0 0 0 116 0 0 0 0 ...
## $ pd_PSE : num 0 0 0 0 0 0 0 56 0 0 ...
## $ pd_CJ : num 0 0 0 0 0 0 0 0 15 0 ...
## $ pd_MAT : num 38 0 0 0 243 581 0 0 0 0 ...
## $ pd_Access : num 0 0 0 0 58 27 0 28 0 0 ...
## $ ds_PSE : num 0 0 413 0 0 119 0 0 0 0 ...
## $ ds_Prevent : num 222 0 0 0 216 44 111 90 207 29 ...
## $ ds_Stigma : num 0 0 0 0 231 0 0 0 0 0 ...
## $ ds_MAT : num 22 0 447 0 457 965 0 0 0 0 ...
## $ ds_Access : num 0 0 550 43 689 82 0 0 0 0 ...
## $ ds_Quality : num 0 0 50 0 17 205 0 0 0 0 ...
## $ ds_ODR : num 162 0 0 0 554 0 0 0 175 31 ...
## $ ds_Samari : num 0 0 0 0 244 0 0 0 0 37 ...
## $ ds_Coordinate : num 0 0 0 0 0 0 31 0 181 0 ...
## $ ds_Divert2PH : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ss_Take : num 17 0 0 0 0 0 0 0 31 0 ...
## $ ss_PDMP : num 33 136 0 980 519 0 0 0 0 34 ...
## $ ss_Reg : num 0 0 0 0 40 0 0 0 0 0 ...
## $ ss_New : num 0 0 0 0 0 0 0 0 0 0 ...
## $ ss_Guide : num 120 195 0 0 0 0 0 0 0 0 ...
## $ ss_Cautious : num 26 0 0 0 72 33 0 0 0 0 ...
## $ ss_Prescrib_Ed : num 12 0 0 929 488 22 0 0 0 0 ...
## $ ss_Crim_Enforce : num 0 0 0 0 0 0 588 377 0 76 ...
## $ ss_Penalt : num 0 19 0 0 0 0 0 0 0 0 ...
## $ Problem_Demand : num 67 0 0 0 571 923 0 84 15 0 ...
## $ Problem_Supply : num 0 581 0 336 46 ...
## $ Solutions_Demand: num 406 0 1460 43 2408 ...
## $ Solutions_Supply: num 208 350 0 1909 1119 ...
## $ TOTAL WORDS : num 870 1386 973 2859 3381 ...
## - attr(*, "spec")=
## .. cols(
## .. CASE = col_character(),
## .. YEAR = col_double(),
## .. SPEAKER_OR = col_character(),
## .. SENATE_COM = col_character(),
## .. HOUSE_COM = col_character(),
## .. SENATE = col_double(),
## .. GROUP_TYPE = col_character(),
## .. HEALTH_CJ = col_character(),
## .. FED_STATE = col_character(),
## .. ps_OPR = col_double(),
## .. ps_OPRS_H = col_double(),
## .. ps_prescrip = col_double(),
## .. ps_Prescribers = col_double(),
## .. ps_Prescrib_Ed = col_double(),
## .. ps_vital = col_double(),
## .. ps_Manuf = col_double(),
## .. ps_FDA = col_double(),
## .. ps_Left = col_double(),
## .. ps_BadApp = col_double(),
## .. ps_Foreign = col_double(),
## .. pd_Disease = col_double(),
## .. pd_Quality = col_double(),
## .. pd_PSE = col_double(),
## .. pd_CJ = col_double(),
## .. pd_MAT = col_double(),
## .. pd_Access = col_double(),
## .. ds_PSE = col_double(),
## .. ds_Prevent = col_double(),
## .. ds_Stigma = col_double(),
## .. ds_MAT = col_double(),
## .. ds_Access = col_double(),
## .. ds_Quality = col_double(),
## .. ds_ODR = col_double(),
## .. ds_Samari = col_double(),
## .. ds_Coordinate = col_double(),
## .. ds_Divert2PH = col_double(),
## .. ss_Take = col_double(),
## .. ss_PDMP = col_double(),
## .. ss_Reg = col_double(),
## .. ss_New = col_double(),
## .. ss_Guide = col_double(),
## .. ss_Cautious = col_double(),
## .. ss_Prescrib_Ed = col_double(),
## .. ss_Crim_Enforce = col_double(),
## .. ss_Penalt = col_double(),
## .. Problem_Demand = col_double(),
## .. Problem_Supply = col_double(),
## .. Solutions_Demand = col_double(),
## .. Solutions_Supply = col_double(),
## .. `TOTAL WORDS` = col_double()
## .. )
text_tbl <- data.frame(
Variables = c("HEALTH_CJ","FED_STATE","ps_OPR","ps_OPRS_H","ps_prescrip","ps_Prescribers",
"ps_Prescrib_Ed","ps_vital","ps_Manuf","ps_FDA","ps_Left","ps_BadApp","ps_Foreign","pd_Disease",
"pd_Quality","pd_PSE","pd_CJ","pd_MAT","pd_Access","ds_PSE","ds_Prevent","ds_Stigma","ds_MAT",
"ds_Access","ds_Quality","ds_ODR","ds_Samari","ds_Coordinate","ds_Divert2PH","ss_Take","ss_PDMP",
"ss_Reg","ss_New","ss_Guide","ss_Cautious","ss_Prescrib_Ed","ss_Crim_Enforce","ss_Penalt",
"Problem_Supply","Problem_Demand","Solutions_Demand","Solutions_Supply","TOTAL WORDS"),
Description = c(
"Categorical Variable, which groups speaker orgs based on either health focus, criminal justice (CJ) focus, or other",
"Categorical Variable, which groups speaker orgs based on either federal gov agency, state agency, local agency, regional group of agencies, or private entities",
"Word count of problem definition (WCPD) blaming the characteristics of opioid prescriptions",
"WCPD blaming opioid prescriptions for heroin use",
"WCPD generally blaming overprescription of opioids",
"WCPD blaming prescribers for overprescribing",
"WCPD blaming lack of prescriber education",
"WCPD blaming 5th vital sign of pain",
"WCPD blaming drug manufacturers",
"WCPD blaming FDA",
"WCPD blaming diversion of left-over prescriptions",
"WCPD blaming bad apples for increasing drug supply",
"WCPD blaming foreign actors for increasing drug supply",
"WCPD acknowleding addiction as a disease",
"WCPD blaming poor quality of addiction treatment",
"WCPD blaming psychological, sociological, environmental or economical (PSEE) factors",
"WCPD blaming the mischaracterization of the problem as a CJ problem rather than a health problem",
"WCPD blaming poor access to Medication Assisted Treatment (MAT)",
"WCPD blaming poor access to Treatment Generally",
"Word count of solutions (WCS) addressing PSEE factors",
"WCS addressing demand side prevention (excluse preventioon of supply tactics)",
"WCS addressing stigma",
"WCS increasing access to MAT",
"WCS increasing access to Treatment Generally",
"WCS increasing quality of Treatment",
"WCS increasing access to Overdose Reversal Medications",
"WCS passage or strengthening of Good Samaritan Laws",
"WCS coordinating between CJ and Health actors",
"WCS that are alterntives to incarceration, like drug courts or treatment",
"WCS involving drug take back programs",
"WCS regarding Prescription Drug Monitoring Programs (PDMP)",
"WCS involving rescheduling, adding black box labels, or regulation of opioids",
"WCS funding new drugs to address pain, with the intent of decreasing the prescribing of opioids",
"WCS promoting prescriber guidelines",
"WCS calling for more cautious prescribing practices generally",
"WCS of prescriber or distributor education",
"WCS commitment to criminal enforcement",
"WCS increasing or creating new criminal penalities",
"Total WC of all subcategories that define the problem as an issue of drug supply",
"Total WC of all subcategories that define the problem as the demand for drugs",
"Total WC of all subcategories that propose soltions aimed at decreasing the demand",
"Total WC of all subcategories that propose solutions aimed at decreasing the supply of drugs",
"Total WC of all words in each case"
)
)
kable(text_tbl, booktabs = T)%>%
kable_styling(font_size=10,latex_options = c("striped","scale_down")) %>%
group_rows("Interest Group Type", 1, 2) %>%
group_rows("Problem Definition - Supply", 3, 13) %>%
group_rows("Problem Definition - Demand", 14, 19) %>%
group_rows("Solutions - Demand", 20, 28) %>%
group_rows("Solutions - Supply", 29, 37) %>%
group_rows("Theme Definitions", 38, 42) %>%
group_rows("Other", 43, 43) %>%
column_spec(1, width = "10em") %>%
column_spec(2, width = "40em") %>%
row_spec(0, bold=T, color = "white", background = "black")
Variables | Description |
---|---|
Interest Group Type | |
HEALTH_CJ | Categorical Variable, which groups speaker orgs based on either health focus, criminal justice (CJ) focus, or other |
FED_STATE | Categorical Variable, which groups speaker orgs based on either federal gov agency, state agency, local agency, regional group of agencies, or private entities |
Problem Definition - Supply | |
ps_OPR | Word count of problem definition (WCPD) blaming the characteristics of opioid prescriptions |
ps_OPRS_H | WCPD blaming opioid prescriptions for heroin use |
ps_prescrip | WCPD generally blaming overprescription of opioids |
ps_Prescribers | WCPD blaming prescribers for overprescribing |
ps_Prescrib_Ed | WCPD blaming lack of prescriber education |
ps_vital | WCPD blaming 5th vital sign of pain |
ps_Manuf | WCPD blaming drug manufacturers |
ps_FDA | WCPD blaming FDA |
ps_Left | WCPD blaming diversion of left-over prescriptions |
ps_BadApp | WCPD blaming bad apples for increasing drug supply |
ps_Foreign | WCPD blaming foreign actors for increasing drug supply |
Problem Definition - Demand | |
pd_Disease | WCPD acknowleding addiction as a disease |
pd_Quality | WCPD blaming poor quality of addiction treatment |
pd_PSE | WCPD blaming psychological, sociological, environmental or economical (PSEE) factors |
pd_CJ | WCPD blaming the mischaracterization of the problem as a CJ problem rather than a health problem |
pd_MAT | WCPD blaming poor access to Medication Assisted Treatment (MAT) |
pd_Access | WCPD blaming poor access to Treatment Generally |
Solutions - Demand | |
ds_PSE | Word count of solutions (WCS) addressing PSEE factors |
ds_Prevent | WCS addressing demand side prevention (excluse preventioon of supply tactics) |
ds_Stigma | WCS addressing stigma |
ds_MAT | WCS increasing access to MAT |
ds_Access | WCS increasing access to Treatment Generally |
ds_Quality | WCS increasing quality of Treatment |
ds_ODR | WCS increasing access to Overdose Reversal Medications |
ds_Samari | WCS passage or strengthening of Good Samaritan Laws |
ds_Coordinate | WCS coordinating between CJ and Health actors |
Solutions - Supply | |
ds_Divert2PH | WCS that are alterntives to incarceration, like drug courts or treatment |
ss_Take | WCS involving drug take back programs |
ss_PDMP | WCS regarding Prescription Drug Monitoring Programs (PDMP) |
ss_Reg | WCS involving rescheduling, adding black box labels, or regulation of opioids |
ss_New | WCS funding new drugs to address pain, with the intent of decreasing the prescribing of opioids |
ss_Guide | WCS promoting prescriber guidelines |
ss_Cautious | WCS calling for more cautious prescribing practices generally |
ss_Prescrib_Ed | WCS of prescriber or distributor education |
ss_Crim_Enforce | WCS commitment to criminal enforcement |
Theme Definitions | |
ss_Penalt | WCS increasing or creating new criminal penalities |
Problem_Supply | Total WC of all subcategories that define the problem as an issue of drug supply |
Problem_Demand | Total WC of all subcategories that define the problem as the demand for drugs |
Solutions_Demand | Total WC of all subcategories that propose soltions aimed at decreasing the demand |
Solutions_Supply | Total WC of all subcategories that propose solutions aimed at decreasing the supply of drugs |
Other | |
TOTAL WORDS | Total WC of all words in each case |
sum_PD <- sum(Dissertation_Dataset$Problem_Demand)
sum_PS <- sum(Dissertation_Dataset$Problem_Supply)
sum_SD <- sum(Dissertation_Dataset$Solutions_Demand)
sum_SS <- sum(Dissertation_Dataset$Solutions_Supply)
total_words_coded = sum_PD +sum_PS + sum_SD +sum_SS
sum_PD
## [1] 25602
sum_PS
## [1] 56087
sum_SD
## [1] 104790
sum_SS
## [1] 95780
sum_total_words <- sum(Dissertation_Dataset$`TOTAL WORDS`)
sum_total_words
## [1] 376426
total_words_coded
## [1] 282259
total_words_coded/sum_total_words
## [1] 0.7498393
All of the hearing testimony amounted to 376426. 246096 of those words, or 65%, of those words were coded.
The least time was spent discussing demand-side causes of the problem (wc = 23921). Supply side causes were discussed at 2x the rate of demand side causes (47620 v. 23921). However, the amount of time spend discussing demand-side and supply-side problems was far out-shadowed by the time spent discussing the proposed solutions to the problem. Despite the preference for discussing supply side soluions, the time spent discussing supply side solutions was close to that spent supporting demand-side solutions (87640 v. 86915).
sum_PD + sum_PS
## [1] 81689
sum_SD + sum_SS
## [1] 200570
Overeall, more time was spent discussing the solution than the problem. Nearly double the time was spent discussing solutions vs. problems (174555 v. 71541).
If we are interested in changing these to percentages or proportions…
sum_PD/total_words_coded
## [1] 0.09070393
sum_PS/total_words_coded
## [1] 0.1987076
sum_SD/total_words_coded
## [1] 0.3712548
sum_SS/total_words_coded
## [1] 0.3393337
(sum_PD + sum_PS)/total_words_coded
## [1] 0.2894115
(sum_SD + sum_SS)/total_words_coded
## [1] 0.7105885
(sum_PS + sum_SS)/total_words_coded
## [1] 0.5380413
Creating a Loop to give me the total for each variable in the dataset.
library(tidyverse)
Count_Data <- Dissertation_Dataset[10:50] #create dataset of counts only
output <- vector("double", ncol(Count_Data))
for (i in seq_along(Count_Data)) {
output[[i]] <- (sum(Count_Data[[i]]))}
output
## [1] 6527 9755 2399 3580 736 2548 2039 912 1127 11283
## [11] 15181 5665 1539 2850 6002 3365 6181 4535 24567 2555
## [21] 20040 21109 5361 14959 852 4783 6029 4267 22551 1485
## [31] 3456 4727 4143 15671 38870 610 25602 56087 104790 95780
## [41] 376426
cd <- ((output/total_words_coded)*100)
var <-names(Count_Data)
kable(cbind(var, cd), caption = "% of coded discourse", booktabs = T) %>%
kable_styling(font_size=12,latex_options = c("striped","scale_down")) %>%
row_spec(0, bold=T, color = "white", background = "black") %>%
column_spec(1, bold=T)
var | cd |
---|---|
ps_OPR | 2.31241519313822 |
ps_OPRS_H | 3.45604568853429 |
ps_prescrip | 0.849928611665173 |
ps_Prescribers | 1.26833865350618 |
ps_Prescrib_Ed | 0.260753421502946 |
ps_vital | 0.902717008137916 |
ps_Manuf | 0.722386177234384 |
ps_FDA | 0.323107500557998 |
ps_Left | 0.399278676676386 |
ps_BadApp | 3.99739246578497 |
ps_Foreign | 5.37839360303834 |
pd_Disease | 2.0070219195845 |
pd_Quality | 0.545243907191622 |
pd_PSE | 1.00971093924374 |
pd_CJ | 2.12641580959332 |
pd_MAT | 1.19216747738779 |
pd_Access | 2.18983274226863 |
ds_PSE | 1.60668038928785 |
ds_Prevent | 8.70370829628108 |
ds_Stigma | 0.905196999918515 |
ds_MAT | 7.09986218331391 |
ds_Access | 7.47859235666533 |
ds_Quality | 1.8993194193985 |
ds_ODR | 5.29974243513936 |
ds_Samari | 0.301850428152867 |
ds_Coordinate | 1.69454295522906 |
ds_Divert2PH | 2.13598149217563 |
ss_Take | 1.51173213254493 |
ss_PDMP | 7.98947066346866 |
ss_Reg | 0.526112542027004 |
ss_New | 1.22440737053557 |
ss_Guide | 1.67470302098427 |
ss_Cautious | 1.46780084957433 |
ss_Prescrib_Ed | 5.55199302768025 |
ss_Crim_Enforce | 13.7710400731243 |
ss_Penalt | 0.21611356945217 |
Problem_Demand | 9.07039279526959 |
Problem_Supply | 19.8707569997768 |
Solutions_Demand | 37.1254769555621 |
Solutions_Supply | 33.9333732493915 |
TOTAL WORDS | 133.361912286234 |
levels(Dissertation_Dataset$GROUP_TYPE)
## [1] "Child Welfare" "Coalition"
## [3] "Distributors" "Drug Court"
## [5] "Expert" "Family"
## [7] "Federal Health Agency" "Federal LE Agency"
## [9] "Governor" "Hospital System"
## [11] "Housing Provider" "Local Coalition"
## [13] "Local Government" "Local Health Agency"
## [15] "Local Law Enforcement" "Military"
## [17] "Millenial Marketing" "Prescribers"
## [19] "Public Interest" "Regional Law Enforcement"
## [21] "State Civil Enforcement" "State Health Agency"
## [23] "State Law Enforcement" "State Legislator"
## [25] "SUD Providers" "Tribal Government"
## [27] "Tribal Law Enforcement"
table(Dissertation_Dataset$GROUP_TYPE)
##
## Child Welfare Coalition Distributors
## 1 1 1
## Drug Court Expert Family
## 1 10 6
## Federal Health Agency Federal LE Agency Governor
## 30 18 2
## Hospital System Housing Provider Local Coalition
## 5 1 1
## Local Government Local Health Agency Local Law Enforcement
## 2 3 10
## Military Millenial Marketing Prescribers
## 2 1 4
## Public Interest Regional Law Enforcement State Civil Enforcement
## 8 3 1
## State Health Agency State Law Enforcement State Legislator
## 8 11 4
## SUD Providers Tribal Government Tribal Law Enforcement
## 13 2 1
table(Dissertation_Dataset$GROUP_TYPE, Dissertation_Dataset$HEALTH_CJ)
##
## Health Law Enforcement Other
## Child Welfare 0 0 1
## Coalition 1 0 0
## Distributors 1 0 0
## Drug Court 0 1 0
## Expert 10 0 0
## Family 0 0 6
## Federal Health Agency 30 0 0
## Federal LE Agency 0 18 0
## Governor 0 0 2
## Hospital System 5 0 0
## Housing Provider 0 0 1
## Local Coalition 1 0 0
## Local Government 0 0 2
## Local Health Agency 3 0 0
## Local Law Enforcement 0 10 0
## Military 0 2 0
## Millenial Marketing 0 0 1
## Prescribers 4 0 0
## Public Interest 3 0 5
## Regional Law Enforcement 0 3 0
## State Civil Enforcement 1 0 0
## State Health Agency 8 0 0
## State Law Enforcement 0 11 0
## State Legislator 0 0 4
## SUD Providers 13 0 0
## Tribal Government 0 0 2
## Tribal Law Enforcement 0 1 0
library(tidyverse)
Count_Data <- Dissertation_Dataset[10:50] #create dataset of counts only
##cd_grp <- tapply(Dissertation_Dataset$'Total Words', Dissertation_Dataset$GROUP_TYPE,FUN=mean) ##doesnt work
###tapply(total_words_coded, Dissertation_Dataset$GROUP_TYPE,FUN=sum) ###DIDNT WORK
sum_pd_gp <- aggregate(Dissertation_Dataset$Problem_Demand, by = list(Dissertation_Dataset$GROUP_TYPE),
FUN = sum) ##YAY this works~
sum_ps_gp <- aggregate(Dissertation_Dataset$Problem_Supply, by = list(Dissertation_Dataset$GROUP_TYPE),
FUN = sum)
sum_ds_gp<- aggregate(Dissertation_Dataset$Solutions_Demand, by = list(Dissertation_Dataset$GROUP_TYPE),
FUN = sum)
sum_ss_gp <- aggregate(Dissertation_Dataset$Solutions_Supply, by = list(Dissertation_Dataset$GROUP_TYPE), FUN = sum)
cd_group <- (sum_pd_gp$x+sum_ps_gp$x+sum_ds_gp$x+sum_ss_gp$x) #total coded words per group, had to select the 2nd column titled x because the first column was the group names and it couldnt add up the group names.
grp_names <- levels(Dissertation_Dataset$GROUP_TYPE) #extracting group names for table
library(kableExtra)
kable(cbind(grp_names, sum_pd_gp$x, sum_ps_gp$x, sum_ds_gp$x, sum_ss_gp$x, cd_group), caption = "% of coded discourse", booktabs = T) %>%
kable_styling(font_size=12,latex_options = c("striped","scale_down"))
grp_names | cd_group | ||||
---|---|---|---|---|---|
Child Welfare | 86 | 0 | 513 | 0 | 599 |
Coalition | 207 | 35 | 940 | 724 | 1906 |
Distributors | 0 | 119 | 0 | 0 | 119 |
Drug Court | 1384 | 171 | 393 | 36 | 1984 |
Expert | 2216 | 1008 | 3736 | 3279 | 10239 |
Family | 563 | 609 | 4177 | 476 | 5825 |
Federal Health Agency | 3027 | 11610 | 34187 | 25332 | 74156 |
Federal LE Agency | 225 | 18532 | 7631 | 31188 | 57576 |
Governor | 22 | 124 | 1122 | 444 | 1712 |
Hospital System | 689 | 329 | 1844 | 1073 | 3935 |
Housing Provider | 310 | 0 | 374 | 0 | 684 |
Local Coalition | 57 | 0 | 640 | 936 | 1633 |
Local Government | 95 | 220 | 263 | 289 | 867 |
Local Health Agency | 2129 | 178 | 8937 | 1445 | 12689 |
Local Law Enforcement | 334 | 5691 | 4035 | 5045 | 15105 |
Military | 0 | 951 | 0 | 3157 | 4108 |
Millenial Marketing | 0 | 0 | 2718 | 0 | 2718 |
Prescribers | 719 | 3761 | 2719 | 3913 | 11112 |
Public Interest | 4355 | 614 | 6728 | 1775 | 13472 |
Regional Law Enforcement | 0 | 3118 | 1043 | 1886 | 6047 |
State Civil Enforcement | 0 | 900 | 114 | 16 | 1030 |
State Health Agency | 1042 | 1325 | 8376 | 3390 | 14133 |
State Law Enforcement | 1736 | 2642 | 4460 | 7776 | 16614 |
State Legislator | 720 | 382 | 998 | 922 | 3022 |
SUD Providers | 5129 | 3281 | 7548 | 1756 | 17714 |
Tribal Government | 473 | 464 | 1204 | 545 | 2686 |
Tribal Law Enforcement | 84 | 23 | 90 | 377 | 574 |
I spot checked and it seems that all the columns add up, becuase before they were not adding up. Now, I need to calculate the percentage of the groups coded word count that was represented by each category.
percA <- ((sum_pd_gp$x/cd_group)*100)
percB <- ((sum_ps_gp$x/cd_group)*100)
percC <- ((sum_ds_gp$x/cd_group)*100)
percD <- ((sum_ss_gp$x/cd_group)*100)
library(kableExtra)
kable(cbind(grp_names, percA,percB,percC, percD), caption = "% of coded discourse", booktabs = T) %>%
kable_styling(font_size=12,latex_options = c("striped","scale_down"))
grp_names | percA | percB | percC | percD |
---|---|---|---|---|
Child Welfare | 14.3572621035058 | 0 | 85.6427378964942 | 0 |
Coalition | 10.8604407135362 | 1.83630640083945 | 49.3179433368311 | 37.9853095487933 |
Distributors | 0 | 100 | 0 | 0 |
Drug Court | 69.758064516129 | 8.61895161290323 | 19.8084677419355 | 1.81451612903226 |
Expert | 21.6427385486864 | 9.84471139759742 | 36.4879382752222 | 32.024611778494 |
Family | 9.66523605150215 | 10.4549356223176 | 71.7081545064378 | 8.17167381974249 |
Federal Health Agency | 4.08193537947031 | 15.6561842602082 | 46.1014617832677 | 34.1604185770538 |
Federal LE Agency | 0.390787828261776 | 32.1870223704321 | 13.2537862998472 | 54.1684035014589 |
Governor | 1.28504672897196 | 7.24299065420561 | 65.5373831775701 | 25.9345794392523 |
Hospital System | 17.5095298602287 | 8.36086404066074 | 46.861499364676 | 27.2681067344346 |
Housing Provider | 45.3216374269006 | 0 | 54.6783625730994 | 0 |
Local Coalition | 3.49050826699326 | 0 | 39.1916717697489 | 57.3178199632578 |
Local Government | 10.957324106113 | 25.3748558246828 | 30.3344867358708 | 33.3333333333333 |
Local Health Agency | 16.7783119237135 | 1.40278981795256 | 70.4310820395618 | 11.3878162187722 |
Local Law Enforcement | 2.21118834822906 | 37.6762661370407 | 26.7130089374379 | 33.3995365772923 |
Military | 0 | 23.1499513145083 | 0 | 76.8500486854917 |
Millenial Marketing | 0 | 0 | 100 | 0 |
Prescribers | 6.47048236141109 | 33.8462922966163 | 24.4690424766019 | 35.2141828653708 |
Public Interest | 32.3263064133017 | 4.55760095011876 | 49.9406175771972 | 13.1754750593824 |
Regional Law Enforcement | 0 | 51.5627583925914 | 17.2482222589714 | 31.1890193484372 |
State Civil Enforcement | 0 | 87.378640776699 | 11.0679611650485 | 1.55339805825243 |
State Health Agency | 7.37281539658954 | 9.37522111370551 | 59.2655487157716 | 23.9864147739333 |
State Law Enforcement | 10.4490188997231 | 15.9022511135187 | 26.8448296617311 | 46.8039003250271 |
State Legislator | 23.8252812706817 | 12.6406353408339 | 33.0244870946393 | 30.5095962938451 |
SUD Providers | 28.9544992661172 | 18.5220729366603 | 42.6103646833013 | 9.91306311392119 |
Tribal Government | 17.6098287416232 | 17.2747580044676 | 44.825018615041 | 20.2903946388682 |
Tribal Law Enforcement | 14.6341463414634 | 4.00696864111498 | 15.6794425087108 | 65.6794425087108 |
Now that we are done looking at the breakdown of group type for the themes, we can look at the individual narratives by group type.
wc_cat <-(aggregate(Count_Data, by = list(Dissertation_Dataset$GROUP_TYPE),
FUN = sum)) #total number of words for each category by group type
wc_cat2 <-wc_cat %>% select(2:42) #select numeric columns
perc_grp <-((wc_cat2/cd_group)*100) #calc proportion then change to perc
kable(cbind(grp_names, perc_grp), caption = "% of coded discourse", booktabs = T) %>%
kable_styling(font_size=12,latex_options = c("striped","scale_down"))
grp_names | ps_OPR | ps_OPRS_H | ps_prescrip | ps_Prescribers | ps_Prescrib_Ed | ps_vital | ps_Manuf | ps_FDA | ps_Left | ps_BadApp | ps_Foreign | pd_Disease | pd_Quality | pd_PSE | pd_CJ | pd_MAT | pd_Access | ds_PSE | ds_Prevent | ds_Stigma | ds_MAT | ds_Access | ds_Quality | ds_ODR | ds_Samari | ds_Coordinate | ds_Divert2PH | ss_Take | ss_PDMP | ss_Reg | ss_New | ss_Guide | ss_Cautious | ss_Prescrib_Ed | ss_Crim_Enforce | ss_Penalt | Problem_Demand | Problem_Supply | Solutions_Demand | Solutions_Supply | TOTAL WORDS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Child Welfare | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 4.507512 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 9.8497496 | 3.5058431 | 0.0000000 | 0.0000000 | 0.0000000 | 44.240401 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 37.8964942 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 14.3572621 | 0.000000 | 85.64274 | 0.000000 | 180.30050 |
Coalition | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.8363064 | 0.000000 | 6.925498 | 0.7345226 | 0.0000000 | 0.0000000 | 0.0000000 | 3.2004197 | 3.3578174 | 0.0000000 | 0.0000000 | 6.4533054 | 11.122770 | 7.8174187 | 10.5456453 | 10.0209864 | 0.0000000 | 0.0000000 | 7.1353620 | 14.690451 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 16.1594963 | 0.0000000 | 0.0000000 | 10.8604407 | 1.836306 | 49.31794 | 37.985309 | 120.77650 |
Distributors | 0.0000000 | 100.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 100.000000 | 0.00000 | 0.000000 | 2894.95798 |
Drug Court | 4.6875000 | 3.931452 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.000000 | 0.0000000 | 69.7580645 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.4616935 | 11.9959677 | 1.9657258 | 4.385081 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.8145161 | 0.0000000 | 0.0000000 | 0.0000000 | 69.7580645 | 8.618952 | 19.80847 | 1.814516 | 112.65121 |
Expert | 2.1388808 | 1.054790 | 0.3320637 | 1.5821858 | 1.9142494 | 0.0000000 | 0.1367321 | 0.8594589 | 0.4492626 | 1.3770876 | 0.000000 | 9.444282 | 2.7248755 | 0.2246313 | 4.1019631 | 4.1605626 | 0.9864245 | 0.0000000 | 11.5440961 | 0.1953316 | 15.8218576 | 4.453560 | 1.2501221 | 3.2229710 | 0.0000000 | 0.0000000 | 0.0000000 | 1.5528860 | 19.601524 | 0.0000000 | 0.0683661 | 3.4769020 | 4.9125891 | 2.3830452 | 0.0292997 | 0.0000000 | 21.6427385 | 9.844711 | 36.48794 | 32.024612 | 204.96142 |
Family | 2.2317597 | 2.008584 | 0.0000000 | 2.6437768 | 0.0000000 | 3.1244635 | 0.0000000 | 0.0000000 | 0.1201717 | 0.3261803 | 0.000000 | 5.493562 | 0.0000000 | 0.0000000 | 1.5107296 | 0.0000000 | 2.6609442 | 7.8798283 | 49.1845494 | 1.8712446 | 0.0000000 | 5.785408 | 2.8154506 | 3.5193133 | 0.0000000 | 0.6523605 | 0.0000000 | 0.0000000 | 2.472103 | 0.0000000 | 0.0000000 | 3.7081545 | 0.0000000 | 1.1845494 | 0.8068670 | 0.0000000 | 9.6652361 | 10.454936 | 71.70815 | 8.171674 | 215.75966 |
Federal Health Agency | 5.1539997 | 2.520363 | 1.7571066 | 1.9593829 | 0.2966719 | 0.0000000 | 0.6850423 | 0.0000000 | 0.0000000 | 3.2836183 | 0.000000 | 1.011381 | 0.1065322 | 0.0000000 | 0.0000000 | 0.8657425 | 2.0982793 | 0.1860942 | 7.8914720 | 0.0647284 | 16.0135390 | 9.430120 | 2.1630077 | 8.0195803 | 0.0000000 | 0.5825557 | 1.7503641 | 0.5124332 | 13.181671 | 0.9277739 | 4.6186418 | 2.7509574 | 3.6962619 | 6.8409839 | 1.6316953 | 0.0000000 | 4.0819354 | 15.656184 | 46.10146 | 34.160419 | 133.49965 |
Federal LE Agency | 2.1015701 | 10.007642 | 0.0885786 | 0.3056829 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.7086286 | 5.7385022 | 13.236418 | 0.041684 | 0.0000000 | 0.0000000 | 0.2674726 | 0.0000000 | 0.0816312 | 0.3577880 | 6.8778658 | 0.0000000 | 0.0000000 | 3.022092 | 0.2379464 | 0.3925247 | 0.0000000 | 2.2127275 | 0.1528415 | 3.9443518 | 4.779769 | 0.4394192 | 0.0000000 | 0.0000000 | 0.0000000 | 10.7423232 | 34.0176462 | 0.2448937 | 0.3907878 | 32.187022 | 13.25379 | 54.168403 | 100.21884 |
Governor | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 7.242991 | 1.285047 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 17.9906542 | 1.2850467 | 10.2219626 | 24.591121 | 0.0000000 | 3.9719626 | 0.0000000 | 0.0000000 | 7.4766355 | 3.9719626 | 3.971963 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 17.9906542 | 0.0000000 | 1.2850467 | 7.242991 | 65.53738 | 25.934579 | 105.43224 |
Hospital System | 0.0000000 | 1.143583 | 2.0584498 | 0.0000000 | 0.0000000 | 3.1003812 | 0.0000000 | 0.0000000 | 0.0000000 | 2.0584498 | 0.000000 | 4.320203 | 0.0000000 | 0.0000000 | 1.8805591 | 4.2439644 | 7.0648030 | 0.0000000 | 0.8132147 | 8.0559085 | 4.5743329 | 27.598475 | 5.8195680 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 13.036849 | 0.0000000 | 0.0000000 | 9.5806861 | 3.1766201 | 1.4739517 | 0.0000000 | 0.0000000 | 17.5095299 | 8.360864 | 46.86150 | 27.268107 | 184.75222 |
Housing Provider | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.000000 | 0.0000000 | 13.5964912 | 0.0000000 | 6.7251462 | 25.0000000 | 35.9649123 | 0.0000000 | 6.7251462 | 3.3625731 | 4.970760 | 3.6549708 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 45.3216374 | 0.000000 | 54.67836 | 0.000000 | 157.01754 |
Local Coalition | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 3.4905083 | 0.0000000 | 11.8799755 | 0.0000000 | 4.5927740 | 4.715248 | 0.5511329 | 12.4311084 | 0.0000000 | 5.0214329 | 0.0000000 | 18.8609920 | 23.270055 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 15.1867728 | 0.0000000 | 0.0000000 | 3.4905083 | 0.000000 | 39.19167 | 57.317820 | 203.79669 |
Local Government | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 16.4936563 | 8.881199 | 8.765859 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 2.1914648 | 0.0000000 | 12.9181084 | 0.0000000 | 0.0000000 | 5.420992 | 0.0000000 | 5.8823529 | 0.0000000 | 6.1130334 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 33.3333333 | 0.0000000 | 10.9573241 | 25.374856 | 30.33449 | 33.333333 | 169.66551 |
Local Health Agency | 0.0000000 | 0.000000 | 0.2679486 | 0.9614627 | 0.1733785 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 5.469304 | 0.0000000 | 0.7802033 | 4.6496966 | 1.6707384 | 4.2083695 | 7.3055402 | 6.8878556 | 3.6882339 | 7.7389865 | 19.221373 | 1.8362361 | 18.2283868 | 0.4570888 | 0.4728505 | 4.5945307 | 1.5604067 | 1.694381 | 1.1900071 | 0.1891402 | 3.9246592 | 0.2994720 | 2.5297502 | 0.0000000 | 0.0000000 | 16.7783119 | 1.402790 | 70.43108 | 11.387816 | 94.67255 |
Local Law Enforcement | 1.2446210 | 2.118504 | 0.0000000 | 0.9069844 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 13.5518040 | 19.854353 | 0.000000 | 0.0000000 | 0.0000000 | 2.0721615 | 0.0000000 | 0.1390268 | 0.9467064 | 3.6809004 | 0.0000000 | 0.1986097 | 4.614366 | 0.0000000 | 5.0910295 | 0.0000000 | 6.4614366 | 5.7199603 | 0.8407812 | 2.846739 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.3902681 | 26.9182390 | 1.4035088 | 2.2111883 | 37.676266 | 26.71301 | 33.399537 | 120.51639 |
Military | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 23.149951 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 76.8500487 | 0.0000000 | 0.0000000 | 23.149951 | 0.00000 | 76.850049 | 279.99026 |
Millenial Marketing | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 100.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 100.00000 | 0.000000 | 103.67918 |
Prescribers | 0.0000000 | 1.619870 | 3.4557235 | 3.0507559 | 0.5669546 | 13.5439165 | 1.4758819 | 0.0000000 | 4.5536357 | 5.2915767 | 0.287977 | 2.690785 | 0.0000000 | 0.0000000 | 1.0709143 | 2.1868251 | 0.5219582 | 0.0000000 | 2.1598272 | 2.0788337 | 5.7865371 | 6.803456 | 0.1529878 | 5.2915767 | 2.1958243 | 0.0000000 | 0.0000000 | 0.0000000 | 14.713823 | 2.2858171 | 0.0000000 | 4.0586753 | 0.8999280 | 13.0849532 | 0.0000000 | 0.1709863 | 6.4704824 | 33.846292 | 24.46904 | 35.214183 | 115.40677 |
Public Interest | 1.4697150 | 0.601247 | 0.1633017 | 0.2078385 | 0.8461995 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 1.2692993 | 0.000000 | 1.573634 | 4.6763658 | 0.2597981 | 21.5261283 | 2.9765439 | 1.3138361 | 4.3349169 | 15.9516033 | 0.7274347 | 1.3954869 | 3.830166 | 11.2455463 | 11.0302850 | 0.3117577 | 0.0000000 | 1.1134204 | 1.2173397 | 5.433492 | 0.0000000 | 0.0000000 | 2.3307601 | 0.0296912 | 2.7835511 | 1.3806413 | 0.0000000 | 32.3263064 | 4.557601 | 49.94062 | 13.175475 | 123.37441 |
Regional Law Enforcement | 0.0000000 | 2.017529 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.9260790 | 4.6303952 | 43.988755 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 5.3249545 | 0.0000000 | 0.0000000 | 1.868695 | 0.0000000 | 1.2568216 | 0.0000000 | 8.7977510 | 0.0000000 | 0.0000000 | 1.984455 | 0.0000000 | 0.0000000 | 0.0000000 | 0.5787994 | 0.7110964 | 26.1617331 | 1.7529353 | 0.0000000 | 51.562758 | 17.24822 | 31.189019 | 122.57318 |
State Civil Enforcement | 0.0000000 | 0.000000 | 2.1359223 | 0.0000000 | 0.0000000 | 0.0000000 | 85.2427184 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 3.4951456 | 0.0000000 | 3.3009709 | 2.427185 | 0.0000000 | 1.8446602 | 0.0000000 | 0.0000000 | 0.0000000 | 1.5533981 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 87.378641 | 11.06796 | 1.553398 | 151.45631 |
State Health Agency | 0.4669921 | 0.077832 | 0.9552112 | 0.4033114 | 0.0000000 | 4.1746268 | 0.2759499 | 0.0000000 | 0.5377485 | 2.4835491 | 0.000000 | 2.299583 | 0.0000000 | 1.4222034 | 0.1273615 | 1.1816316 | 2.3420364 | 5.1227623 | 14.3140168 | 2.4623222 | 7.2525295 | 10.542701 | 4.2029293 | 10.8894078 | 0.0000000 | 1.8184391 | 2.6604401 | 2.8939362 | 10.875257 | 0.7075639 | 0.0000000 | 2.6745914 | 1.6344725 | 4.1038704 | 1.0967240 | 0.0000000 | 7.3728154 | 9.375221 | 59.26555 | 23.986415 | 131.44414 |
State Law Enforcement | 0.6921873 | 2.455760 | 0.4574455 | 2.9794150 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 5.3388708 | 3.978572 | 1.203804 | 1.3422415 | 1.2579752 | 5.7662213 | 0.4815216 | 0.3972553 | 0.3551222 | 3.1298905 | 0.9028530 | 1.6793066 | 2.377513 | 0.4092934 | 3.9484772 | 1.1195377 | 4.3577706 | 8.5650656 | 0.1865896 | 1.011195 | 0.0000000 | 0.0000000 | 0.3972553 | 0.0000000 | 0.0421331 | 44.6310341 | 0.5356928 | 10.4490189 | 15.902251 | 26.84483 | 46.803900 | 148.36885 |
State Legislator | 5.2945069 | 1.257445 | 1.4890801 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 4.5996029 | 0.000000 | 2.779616 | 0.0000000 | 0.0000000 | 2.2170748 | 9.3977498 | 9.4308405 | 2.8457975 | 0.0000000 | 0.4301787 | 12.0119126 | 3.706155 | 0.0000000 | 2.7134348 | 0.7941760 | 5.0959629 | 5.4268696 | 0.0000000 | 30.509596 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 23.8252813 | 12.640635 | 33.02449 | 30.509596 | 185.27465 |
SUD Providers | 1.6822852 | 2.602461 | 1.1967935 | 1.6822852 | 0.6830755 | 0.8411426 | 2.3314892 | 4.6516879 | 0.0000000 | 2.8282714 | 0.022581 | 7.694479 | 0.8750141 | 2.5968161 | 1.5637349 | 3.9347409 | 12.2897144 | 4.5218471 | 2.6193971 | 2.5234278 | 13.4695721 | 13.452636 | 2.7605284 | 1.1290505 | 0.6040420 | 0.8637236 | 0.6661398 | 0.0000000 | 4.668624 | 0.2201648 | 0.0000000 | 0.0000000 | 1.8629333 | 2.5968161 | 0.3217794 | 0.2427459 | 28.9544993 | 18.522073 | 42.61036 | 9.913063 | 121.42373 |
Tribal Government | 1.0424423 | 1.340283 | 0.0000000 | 5.9195830 | 0.0000000 | 0.0000000 | 0.8562919 | 0.0000000 | 1.0424423 | 5.1377513 | 1.935964 | 0.000000 | 5.9195830 | 10.7967238 | 0.8935220 | 0.0000000 | 0.0000000 | 2.8667163 | 1.5264334 | 0.0000000 | 0.0000000 | 15.934475 | 0.0000000 | 0.0000000 | 0.0000000 | 1.7870439 | 22.7103500 | 0.0000000 | 1.712584 | 0.0000000 | 0.0000000 | 1.1541325 | 0.0000000 | 1.3402829 | 16.0833954 | 0.0000000 | 17.6098287 | 17.274758 | 44.82502 | 20.290395 | 169.06180 |
Tribal Law Enforcement | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 4.0069686 | 0.000000 | 0.000000 | 0.0000000 | 9.7560976 | 0.0000000 | 0.0000000 | 4.8780488 | 0.0000000 | 15.6794425 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 0.0000000 | 65.6794425 | 0.0000000 | 14.6341463 | 4.006969 | 15.67944 | 65.679442 | 754.70383 |
sum_pd_hc <- aggregate(Dissertation_Dataset$Problem_Demand, by = list(Dissertation_Dataset$HEALTH_CJ),
FUN = sum)
sum_ps_hc <- aggregate(Dissertation_Dataset$Problem_Supply, by = list(Dissertation_Dataset$HEALTH_CJ),
FUN = sum)
sum_ds_hc<- aggregate(Dissertation_Dataset$Solutions_Demand, by = list(Dissertation_Dataset$HEALTH_CJ),
FUN = sum)
sum_ss_hc <- aggregate(Dissertation_Dataset$Solutions_Supply, by = list(Dissertation_Dataset$HEALTH_CJ), FUN = sum)
cd_hc <- (sum_pd_hc$x+sum_ps_hc$x+sum_ds_hc$x+sum_ss_hc$x) #total coded words per group, had to select the 2nd column titled x because the first column was the group names and it couldnt add up the group names.
perc1 <- ((sum_pd_hc$x/cd_hc)*100)
perc2 <- ((sum_ps_hc$x/cd_hc)*100)
perc3 <- ((sum_ds_hc$x/cd_hc)*100)
perc4 <- ((sum_ss_hc$x/cd_hc)*100)
grp_names_hc <- levels(Dissertation_Dataset$HEALTH_CJ) #extracting group names for table
library(kableExtra)
kable(cbind(grp_names_hc, perc1, perc2, perc3, perc4), caption = "% of coded discourse", booktabs = T) %>%
kable_styling(font_size=12,latex_options = c("striped","scale_down"))
grp_names_hc | perc1 | perc2 | perc3 | perc4 |
---|---|---|---|---|
Health | 10.5886264513563 | 14.9115658676194 | 46.5261977560613 | 27.973609924963 |
Law Enforcement | 3.68892635871696 | 30.5152537055917 | 17.3045251352835 | 48.4912948004078 |
Other | 20.8376768428891 | 7.76619508562919 | 58.7155621742368 | 12.680565897245 |
wc_cat_hc <-(aggregate(Count_Data, by = list(Dissertation_Dataset$HEALTH_CJ),
FUN = sum)) #total number of words for each category by Health_CJ
wc_cat2 <-wc_cat_hc %>% select(2:42) #select numeric columns
perc_hc <-((wc_cat2/cd_hc)*100) #calc proportion then change to perc
kable(cbind(grp_names_hc, perc_hc), caption = "% of coded discourse", booktabs = T) %>%
kable_styling(font_size=12,latex_options = c("striped","scale_down"))
grp_names_hc | ps_OPR | ps_OPRS_H | ps_prescrip | ps_Prescribers | ps_Prescrib_Ed | ps_vital | ps_Manuf | ps_FDA | ps_Left | ps_BadApp | ps_Foreign | pd_Disease | pd_Quality | pd_PSE | pd_CJ | pd_MAT | pd_Access | ds_PSE | ds_Prevent | ds_Stigma | ds_MAT | ds_Access | ds_Quality | ds_ODR | ds_Samari | ds_Coordinate | ds_Divert2PH | ss_Take | ss_PDMP | ss_Reg | ss_New | ss_Guide | ss_Cautious | ss_Prescrib_Ed | ss_Crim_Enforce | ss_Penalt | Problem_Demand | Problem_Supply | Solutions_Demand | Solutions_Supply | TOTAL WORDS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Health | 2.978010 | 1.820837 | 1.4518453 | 1.6030927 | 0.4798195 | 1.5424634 | 1.3142883 | 0.594559 | 0.4094112 | 2.693770 | 0.0234694 | 3.1846719 | 0.7542815 | 0.5332777 | 0.9765892 | 1.6650260 | 3.4747801 | 1.7732461 | 7.169912 | 1.2888631 | 12.3677400 | 10.438031 | 3.2146606 | 7.692759 | 0.3911572 | 0.6414979 | 1.548331 | 1.1056711 | 11.460255 | 0.8031762 | 2.253066 | 2.8215475 | 2.6520461 | 5.9084301 | 0.9289984 | 0.0404196 | 10.588627 | 14.911566 | 46.52620 | 27.97361 | 135.8795 |
Law Enforcement | 1.574386 | 6.558309 | 0.1245000 | 0.7920947 | 0.0000000 | 0.0000000 | 0.0000000 | 0.000000 | 0.4548663 | 6.412242 | 14.5988550 | 0.2195906 | 0.2186103 | 1.6165399 | 1.3969493 | 0.0784252 | 0.1588111 | 0.3999686 | 5.369187 | 0.3803623 | 0.3411497 | 2.972316 | 0.2009646 | 1.693005 | 0.1823386 | 3.4369853 | 2.328249 | 2.3811858 | 3.401694 | 0.2480198 | 0.000000 | 0.0647008 | 0.0696024 | 6.3181319 | 35.4707474 | 0.5372128 | 3.688926 | 30.515254 | 17.30453 | 48.49129 | 123.5560 |
Other | 1.314222 | 1.012658 | 0.1675354 | 1.1653016 | 0.0000000 | 0.6775875 | 0.0856292 | 0.000000 | 0.1303053 | 2.271035 | 0.9419211 | 2.0699926 | 0.5919583 | 1.4259121 | 11.4631422 | 2.7215190 | 2.5651526 | 5.2382725 | 30.126582 | 0.7073716 | 2.6842889 | 7.691735 | 0.8376768 | 5.331348 | 0.2457185 | 1.0908414 | 4.761728 | 0.5286672 | 5.591958 | 0.0000000 | 0.000000 | 1.2397617 | 0.0148920 | 0.6068503 | 4.6984363 | 0.0000000 | 20.837677 | 7.766195 | 58.71556 | 12.68057 | 156.2249 |
library(sandwich)
library(msm)
attach(Dissertation_Dataset)
mpd <- glm(Problem_Demand~HEALTH_CJ+offset(log(`TOTAL WORDS`)), family=poisson)
summary(mpd)
##
## Call:
## glm(formula = Problem_Demand ~ HEALTH_CJ + offset(log(`TOTAL WORDS`)),
## family = poisson)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -31.337 -15.547 -10.138 0.826 75.883
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.551988 0.007847 -325.24 <2e-16 ***
## HEALTH_CJLaw Enforcement -0.959371 0.018091 -53.03 <2e-16 ***
## HEALTH_CJOther 0.537455 0.015500 34.68 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 61154 on 149 degrees of freedom
## Residual deviance: 55391 on 147 degrees of freedom
## AIC: 55986
##
## Number of Fisher Scoring iterations: 7
#robust standard errors
cov.mpd <- vcovHC(mpd, type="HC0")
std.err <- sqrt(diag(cov.mpd))
r.est <- cbind(Estimate= coef(mpd), "Robust SE" = std.err,
"Pr(>|z|)" = 2 * pnorm(abs(coef(mpd)/std.err), lower.tail=FALSE),
LL = coef(mpd) - 1.96 * std.err,
UL = coef(mpd) + 1.96 * std.err)
#chisquare
with(mpd, cbind(res.deviance = deviance, df = df.residual,
p = pchisq(deviance, df.residual, lower.tail=FALSE)))
## res.deviance df p
## [1,] 55391.49 147 0
#IRR
spd <- deltamethod(list(~ exp(x1), ~ exp(x2), ~ exp(x3)),
coef(mpd), cov.mpd)
## exponentiate old estimates dropping the p values
rexp.est <- exp(r.est[, -3])
## replace SEs with estimates for exponentiated coefficients
rexp.est[, "Robust SE"] <- spd
rexp.est
## Estimate Robust SE LL UL
## (Intercept) 0.07792656 0.01356128 0.0554053 0.1096023
## HEALTH_CJLaw Enforcement 0.38313395 0.19599836 0.1405713 1.0442501
## HEALTH_CJOther 1.71164462 0.75342510 0.7223175 4.0560106
library(sandwich)
library(msm)
mpd <- glm(Problem_Demand~HEALTH_CJ+offset(log(`TOTAL WORDS`)), family=poisson)
summary(mpd)
##
## Call:
## glm(formula = Problem_Demand ~ HEALTH_CJ + offset(log(`TOTAL WORDS`)),
## family = poisson)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -31.337 -15.547 -10.138 0.826 75.883
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.551988 0.007847 -325.24 <2e-16 ***
## HEALTH_CJLaw Enforcement -0.959371 0.018091 -53.03 <2e-16 ***
## HEALTH_CJOther 0.537455 0.015500 34.68 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 61154 on 149 degrees of freedom
## Residual deviance: 55391 on 147 degrees of freedom
## AIC: 55986
##
## Number of Fisher Scoring iterations: 7
#robust standard errors
cov.mpd <- vcovHC(mpd, type="HC0")
std.err <- sqrt(diag(cov.mpd))
r.est <- cbind(Estimate= coef(mpd), "Robust SE" = std.err,
"Pr(>|z|)" = 2 * pnorm(abs(coef(mpd)/std.err), lower.tail=FALSE),
LL = coef(mpd) - 1.96 * std.err,
UL = coef(mpd) + 1.96 * std.err)
#chisquare
with(mpd, cbind(res.deviance = deviance, df = df.residual,
p = pchisq(deviance, df.residual, lower.tail=FALSE)))
## res.deviance df p
## [1,] 55391.49 147 0
#IRR
spd <- deltamethod(list(~ exp(x1), ~ exp(x2), ~ exp(x3)),
coef(mpd), cov.mpd)
## exponentiate old estimates dropping the p values
rexp.est <- exp(r.est[, -3])
## replace SEs with estimates for exponentiated coefficients
rexp.est[, "Robust SE"] <- spd
rexp.est
## Estimate Robust SE LL UL
## (Intercept) 0.07792656 0.01356128 0.0554053 0.1096023
## HEALTH_CJLaw Enforcement 0.38313395 0.19599836 0.1405713 1.0442501
## HEALTH_CJOther 1.71164462 0.75342510 0.7223175 4.0560106
with(Dissertation_Dataset, tapply(Problem_Demand, HEALTH_CJ, function(x) {
sprintf("M (SD) = %1.2f (%1.2f)", mean(x), sd(x))
}))
## Health Law Enforcement
## "M (SD) = 203.03 (316.87)" "M (SD) = 81.80 (260.19)"
## Other
## "M (SD) = 233.21 (503.91)"
Since the variance at each level of Health_CJ are higher than the mean it suggests overdispersion. Therefore, a negative binomial analysis may better suit the data.
??Not sure if I should use the log of the offset for the negative binomial model as well…
library(MASS)
summary(m1 <- glm.nb(Dissertation_Dataset$Problem_Demand ~ Dissertation_Dataset$HEALTH_CJ + offset(log(Dissertation_Dataset$`TOTAL WORDS`))))
##
## Call:
## glm.nb(formula = Dissertation_Dataset$Problem_Demand ~ Dissertation_Dataset$HEALTH_CJ +
## offset(log(Dissertation_Dataset$`TOTAL WORDS`)), init.theta = 0.1482280511,
## link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.55893 -1.41633 -0.45537 -0.00702 1.84518
##
## Coefficients:
## Estimate Std. Error z value
## (Intercept) -2.4600 0.2905 -8.468
## Dissertation_Dataset$HEALTH_CJLaw Enforcement -0.7417 0.4810 -1.542
## Dissertation_Dataset$HEALTH_CJOther 0.2567 0.6048 0.424
## Pr(>|z|)
## (Intercept) <2e-16 ***
## Dissertation_Dataset$HEALTH_CJLaw Enforcement 0.123
## Dissertation_Dataset$HEALTH_CJOther 0.671
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.1482) family taken to be 1)
##
## Null deviance: 154.15 on 149 degrees of freedom
## Residual deviance: 151.24 on 147 degrees of freedom
## AIC: 1411.2
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 0.1482
## Std. Err.: 0.0182
##
## 2 x log-likelihood: -1403.1660
The dispesion parameter is less than 1 indicating that dispersion is not an issue and the poisson model is the better fit.
Dissertation_Dataset$HEALTH_CJ <- relevel(Dissertation_Dataset$HEALTH_CJ, ref="Health") #set others as reference level
msdothers <- glm(Problem_Demand~HEALTH_CJ+offset(log(`TOTAL WORDS`)), data=Dissertation_Dataset, family=poisson)
(coefmsdo <-cbind(Estimate = coef(msdothers)))
## Estimate
## (Intercept) -2.5519884
## HEALTH_CJLaw Enforcement -0.9593706
## HEALTH_CJOther 0.5374547
exp(coefmsdo)
## Estimate
## (Intercept) 0.07792656
## HEALTH_CJLaw Enforcement 0.38313395
## HEALTH_CJOther 1.71164462
library(sandwich)
library(msm)
mpd3 <- glm(Problem_Supply~HEALTH_CJ+offset(log(`TOTAL WORDS`)), family=poisson)
summary(mpd3)
##
## Call:
## glm(formula = Problem_Supply ~ HEALTH_CJ + offset(log(`TOTAL WORDS`)),
## family = poisson)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -43.785 -21.290 -10.348 8.053 66.663
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.209632 0.006612 -334.18 <2e-16 ***
## HEALTH_CJLaw Enforcement 0.811164 0.008709 93.14 <2e-16 ***
## HEALTH_CJOther -0.791884 0.022872 -34.62 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 88724 on 149 degrees of freedom
## Residual deviance: 75832 on 147 degrees of freedom
## AIC: 76581
##
## Number of Fisher Scoring iterations: 6
#robust standard errors
cov.mpd3 <- vcovHC(mpd3, type="HC0")
std.err3 <- sqrt(diag(cov.mpd3))
r.est3 <- cbind(Estimate= coef(mpd3), "Robust SE" = std.err,
"Pr(>|z|)" = 2 * pnorm(abs(coef(mpd3)/std.err), lower.tail=FALSE),
LL = coef(mpd3) - 1.96 * std.err,
UL = coef(mpd3) + 1.96 * std.err)
#chisquare
with(mpd3, cbind(res.deviance = deviance, df = df.residual,
p = pchisq(deviance, df.residual, lower.tail=FALSE)))
## res.deviance df p
## [1,] 75832.09 147 0
#IRR
spd3 <- deltamethod(list(~ exp(x1), ~ exp(x2), ~ exp(x3)),
coef(mpd3), cov.mpd3)
## exponentiate old estimates dropping the p values
rexp.est3 <- exp(r.est3[, -3])
## replace SEs with estimates for exponentiated coefficients
rexp.est3[, "Robust SE"] <- spd3
rexp.est3
## Estimate Robust SE LL UL
## (Intercept) 0.1097411 0.02091593 0.07802521 0.1543488
## HEALTH_CJLaw Enforcement 2.2505259 0.53974332 0.82571486 6.1339173
## HEALTH_CJOther 0.4529904 0.13103653 0.19116285 1.0734318
msd2 <- glm(Solutions_Demand~HEALTH_CJ +offset(log(`TOTAL WORDS`)), family=poisson, data=Dissertation_Dataset)
summary(msd2)
##
## Call:
## glm(formula = Solutions_Demand ~ HEALTH_CJ + offset(log(`TOTAL WORDS`)),
## family = poisson, data = Dissertation_Dataset)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -67.903 -20.371 -5.575 13.398 54.310
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.071753 0.003743 -286.31 <2e-16 ***
## HEALTH_CJLaw Enforcement -0.893973 0.008406 -106.35 <2e-16 ***
## HEALTH_CJOther 0.093162 0.008799 10.59 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 99574 on 149 degrees of freedom
## Residual deviance: 84811 on 147 degrees of freedom
## AIC: 85876
##
## Number of Fisher Scoring iterations: 5
(coefmsd2 <-cbind(Estimate = coef(msd2)))
## Estimate
## (Intercept) -1.07175328
## HEALTH_CJLaw Enforcement -0.89397314
## HEALTH_CJOther 0.09316165
exp(coefmsd2)
## Estimate
## (Intercept) 0.3424077
## HEALTH_CJLaw Enforcement 0.4090274
## HEALTH_CJOther 1.0976391
summary(msd6 <- glm.nb(Solutions_Demand~HEALTH_CJ +offset(log(`TOTAL WORDS`))))
##
## Call:
## glm.nb(formula = Solutions_Demand ~ HEALTH_CJ + offset(log(`TOTAL WORDS`)),
## init.theta = 0.542540841, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0014 -0.8093 -0.2305 0.3149 1.5528
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.1242 0.1519 -7.403 1.33e-13 ***
## HEALTH_CJLaw Enforcement -0.5659 0.2514 -2.251 0.0244 *
## HEALTH_CJOther 0.0218 0.3162 0.069 0.9450
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(0.5425) family taken to be 1)
##
## Null deviance: 190.42 on 149 degrees of freedom
## Residual deviance: 185.22 on 147 degrees of freedom
## AIC: 2184.7
##
## Number of Fisher Scoring iterations: 1
##
##
## Theta: 0.5425
## Std. Err.: 0.0578
##
## 2 x log-likelihood: -2176.6570
Dispersion parameter is less than 1 so we don’t need to use a negative binomial model because overdispersion is not an issue.
msd3 <- glm(Solutions_Supply~HEALTH_CJ +offset(log(`TOTAL WORDS`)), family=poisson, data=Dissertation_Dataset)
summary(msd3)
##
## Call:
## glm(formula = Solutions_Supply ~ HEALTH_CJ + offset(log(`TOTAL WORDS`)),
## family = poisson, data = Dissertation_Dataset)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -52.652 -18.997 -4.503 8.681 46.606
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.580507 0.004828 -327.39 <2e-16 ***
## HEALTH_CJLaw Enforcement 0.645197 0.006597 97.80 <2e-16 ***
## HEALTH_CJOther -0.930719 0.017802 -52.28 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 82877 on 149 degrees of freedom
## Residual deviance: 65967 on 147 degrees of freedom
## AIC: 66949
##
## Number of Fisher Scoring iterations: 6
(coefmsd3 <-cbind(Estimate = coef(msd3)))
## Estimate
## (Intercept) -1.5805073
## HEALTH_CJLaw Enforcement 0.6451971
## HEALTH_CJOther -0.9307186
exp(coefmsd3)
## Estimate
## (Intercept) 0.2058706
## HEALTH_CJLaw Enforcement 1.9063627
## HEALTH_CJOther 0.3942703