The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
data <- anscombe
data
## x1 x2 x3 x4 y1 y2 y3 y4
## 1 10 10 10 8 8.04 9.14 7.46 6.58
## 2 8 8 8 8 6.95 8.14 6.77 5.76
## 3 13 13 13 8 7.58 8.74 12.74 7.71
## 4 9 9 9 8 8.81 8.77 7.11 8.84
## 5 11 11 11 8 8.33 9.26 7.81 8.47
## 6 14 14 14 8 9.96 8.10 8.84 7.04
## 7 6 6 6 8 7.24 6.13 6.08 5.25
## 8 4 4 4 19 4.26 3.10 5.39 12.50
## 9 12 12 12 8 10.84 9.13 8.15 5.56
## 10 7 7 7 8 4.82 7.26 6.42 7.91
## 11 5 5 5 8 5.68 4.74 5.73 6.89
fBasics() package!)library('fBasics')
## Warning: package 'fBasics' was built under R version 3.5.2
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.5.2
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.5.2
means <- colMeans(data)
variances <- colVars(data)
correlation1 <- correlationTest(data$x1, data$y1)
correlation2 <- correlationTest(data$x2, data$y2)
correlation3 <- correlationTest(data$x3, data$y3)
correlation4 <- correlationTest(data$x4, data$y4)
par(mfrow=c(1,1))
plot(data$x1, data$y1)
plot(data$x2, data$y2)
plot(data$x3, data$y3)
plot(data$x4, data$y4)
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch = 19)
plot(data$x2, data$y2, pch = 19)
plot(data$x3, data$y3, pch = 19)
plot(data$x4, data$y4, pch = 19)
lm() function.lm1 <- lm(data$y1~data$x1)
lm2 <- lm(data$y2~data$x2)
lm3 <- lm(data$y3~data$x3)
lm4 <- lm(data$y4~data$x4)
par(mfrow=c(2,2))
plot(data$x1, data$y1, pch = 19)
abline(lm1)
plot(data$x2, data$y2, pch = 19)
abline(lm2)
plot(data$x3, data$y3, pch = 19)
abline(lm3)
plot(data$x4, data$y4, pch = 19)
abline(lm4)
library(fit.models)
## Warning: package 'fit.models' was built under R version 3.5.2
fit <- fit.models(lm(data$y1~data$x1), lm(data$y2~data$x2), lm(data$y3~data$x3), lm(data$y4~data$x4))
summary(fit)
Calls: lm(data\(y1 ~ data\)x1): lm(formula = data\(y1 ~ data\)x1) lm(data\(y2 ~ data\)x2): lm(formula = data\(y2 ~ data\)x2) lm(data\(y3 ~ data\)x3): lm(formula = data\(y3 ~ data\)x3) lm(data\(y4 ~ data\)x4): lm(formula = data\(y4 ~ data\)x4)
Residual Statistics: Min 1Q Median 3Q Max lm(data\(y1 ~ data\)x1): -1.921 -0.4558 -4.136e-02 0.7094 1.839 lm(data\(y2 ~ data\)x2): -1.901 -0.7609 1.291e-01 0.9491 1.269 lm(data\(y3 ~ data\)x3): -1.159 -0.6146 -2.303e-01 0.1540 3.241 lm(data\(y4 ~ data\)x4): -1.751 -0.8310 1.110e-16 0.8090 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept): lm(data\(y1 ~ data\)x1): 3.0001 1.1247 2.667 0.02573 lm(data\(y2 ~ data\)x2): 3.0009 1.1253 2.667 0.02576 lm(data\(y3 ~ data\)x3): 3.0025 1.1245 2.670 0.02562 lm(data\(y4 ~ data\)x4): 3.0017 1.1239 2.671 0.02559
data$x1: lm(data$y1 ~ data$x1): 0.5001 0.1179 4.241 0.00217
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x2: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2): 0.5000 0.1180 4.239 0.00218
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x3: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3): 0.4997 0.1179 4.239 0.00218
lm(data$y4 ~ data$x4):
data$x4: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4): 0.4999 0.1178 4.243 0.00216
(Intercept): lm(data\(y1 ~ data\)x1): * lm(data\(y2 ~ data\)x2): * lm(data\(y3 ~ data\)x3): * lm(data\(y4 ~ data\)x4): *
data$x1: lm(data$y1 ~ data$x1): **
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x2: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2): **
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4):
data$x3: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3): **
lm(data$y4 ~ data$x4):
data$x4: lm(data$y1 ~ data$x1):
lm(data$y2 ~ data$x2):
lm(data$y3 ~ data$x3):
lm(data$y4 ~ data$x4): **
Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
Residual Scale Estimates: lm(data\(y1 ~ data\)x1): 1.237 on 9 degrees of freedom lm(data\(y2 ~ data\)x2): 1.237 on 9 degrees of freedom lm(data\(y3 ~ data\)x3): 1.236 on 9 degrees of freedom lm(data\(y4 ~ data\)x4): 1.236 on 9 degrees of freedom
Multiple R-squared: lm(data\(y1 ~ data\)x1): 0.6665 lm(data\(y2 ~ data\)x2): 0.6662 lm(data\(y3 ~ data\)x3): 0.6663 lm(data\(y4 ~ data\)x4): 0.6667
Data visualizaiton provides us a more direct and solict visual when we need to observie the relationship between independent variables and dependent variables. For instance, in question 6, we could figure out which pair of data has stronger linear relationship than the other one. A clear visualization is more applicable and understandable than piles of data in business field.