Datasets

haq_files %>%
  map(., skim)
[[1]]
Skim summary statistics
 n obs: 41 
 n variables: 2 

-- Variable type:character -----------------------------------------------------
 variable missing complete  n min max empty n_unique
    cause       0       41 41   6  67     0       41
   cause1       2       39 41   0   4     7        6

[[2]]
Skim summary statistics
 n obs: 150 
 n variables: 7 

-- Variable type:character -----------------------------------------------------
  variable missing complete   n min max empty n_unique
   GeoName       0      150 150   4  28     0      150
 i.GeoName       0      150 150   4  28     0      150
  UTLA13CD       0      150 150   9   9     0      150

-- Variable type:integer -------------------------------------------------------
 variable missing complete   n      mean        sd    p0   p25    p50       p75    p100     hist
   Period       0      150 150   2016         0     2016  2016   2016   2016       2016 ▁▁▁▇▁▁▁▁
      sum       0      150 150 368389.93 274974.04 38949 2e+05 276704 413393.25 1540438 ▇▇▂▂▁▁▁▁

-- Variable type:numeric -------------------------------------------------------
        variable missing complete   n   mean     sd    p0    p25    p50    p75    p100     hist
 per_capita_beds       0      150 150 175.92  36.16 10.89 153.22 172.59 194.7   271.23 ▁▁▁▃▇▇▂▂
      total_beds       0      150 150 643.4  481.5  48.09 354.5  492.16 757.14 2360.04 ▃▇▂▁▁▁▁▁

[[3]]
Skim summary statistics
 n obs: 152 
 n variables: 3 

-- Variable type:character -----------------------------------------------------
     variable missing complete   n min max empty n_unique
 OfficialCode       0      152 152   9   9     0      152
     RESLADST       0      152 152   2   4     0      152

-- Variable type:integer -------------------------------------------------------
 variable missing complete   n mean sd  p0 p25 p50 p75 p100     hist
        N       0      152 152  323  0 323 323 323 323  323 ▁▁▁▇▁▁▁▁

[[4]]
Skim summary statistics
 n obs: 148 
 n variables: 6 

-- Variable type:numeric -------------------------------------------------------
          variable missing complete   n   mean    sd     p0    p25    p50    p75   p100     hist
          estimate       0      148 148  89.77  3.12  79.71  87.6   90.15  92.1   96.6  ▁▁▃▅▆▇▃▂
          IMDscore       4      144 148  23.11  7.96   5.65  17.22  23.23  28.57  42    ▂▅▇▆▇▅▃▂
   per_capita_beds       1      147 148 176.82 33.78 114.45 153.26 172.59 194.46 271.23 ▂▆▇▇▅▁▂▁
     per_capita_gp       4      144 148  47.96  6.45  31.34  43.29  47.84  51.8   65.55 ▁▂▇▇▇▅▂▁
 per_capita_nurses       4      144 148  24.58  7.29  10.95  18.73  24.71  29.27  48.23 ▃▇▆▇▅▂▁▁
             value       4      144 148  39.59  8.88  20.37  33.52  37.75  44.87  67.23 ▁▃▇▆▃▂▂▁

[[5]]
Skim summary statistics
 n obs: 1208 
 n variables: 5 

-- Variable type:character -----------------------------------------------------
 variable missing complete    n min max empty n_unique
 AreaName       0     1208 1208   4  28     0      151

-- Variable type:integer -------------------------------------------------------
 variable missing complete    n   mean     sd   p0     p25    p50     p75 p100     hist
    FYEAR       0     1208 1208 1364.5 231.52 1011 1187.75 1364.5 1541.25 1718 ▇▇▇▇▇▇▇▇

-- Variable type:numeric -------------------------------------------------------
 variable missing complete    n    mean      sd      p0     p25     p50     p75     p100     hist
  lowercl       0     1208 1208 4431.47 1498.52 1990.38 3389.27 3950.35 5007.75 11122.24 ▂▇▃▂▁▁▁▁
  uppercl       0     1208 1208 4604.02 1522.37 2433.46 3539.21 4104.58 5197.69 11473.72 ▅▇▃▂▁▁▁▁
    value       0     1208 1208 4516.96 1510.01 2351.24 3464    4034.18 5105.26 11296.97 ▅▇▃▂▁▁▁▁

[[6]]
Skim summary statistics
 n obs: 1359 
 n variables: 5 

-- Variable type:character -----------------------------------------------------
 variable missing complete    n min max empty n_unique
 RESLADST       0     1359 1359   2   4     0      151

-- Variable type:integer -------------------------------------------------------
 variable missing complete    n mean   sd   p0  p25  p50  p75 p100     hist
     Year       0     1359 1359 2012 2.58 2008 2010 2012 2014 2016 ▇▃▃▃▃▃▃▃

-- Variable type:numeric -------------------------------------------------------
 variable missing complete    n     mean      sd     p0      p25      p50      p75     p100     hist
  lowercl       0     1359 1359 22592.39 6377.37 546.39 19287.52 22611.2  26071.47 61491.27 ▁▁▇▆▁▁▁▁
  uppercl       0     1359 1359 22978.42 6463.28 605.72 19634.69 23001.21 26508.11 62438    ▁▁▇▆▁▁▁▁
    value       0     1359 1359 22784.63 6419.32 575.5  19456.64 22794.51 26290.44 61963.28 ▁▁▇▆▁▁▁▁

[[7]]
Skim summary statistics
 n obs: 1359 
 n variables: 6 

-- Variable type:character -----------------------------------------------------
     variable missing complete    n min max empty n_unique
 OfficialCode       0     1359 1359   9   9     0      151
     RESLADST       0     1359 1359   2   4     0      151

-- Variable type:integer -------------------------------------------------------
 variable missing complete    n mean   sd   p0  p25  p50  p75 p100     hist
     Year       0     1359 1359 2012 2.58 2008 2010 2012 2014 2016 ▇▃▃▃▃▃▃▃

-- Variable type:numeric -------------------------------------------------------
 variable missing complete    n     mean      sd     p0      p25      p50      p75     p100     hist
  lowercl       0     1359 1359 22592.39 6377.37 546.39 19287.52 22611.2  26071.47 61491.27 ▁▁▇▆▁▁▁▁
  uppercl       0     1359 1359 22978.42 6463.28 605.72 19634.69 23001.21 26508.11 62438    ▁▁▇▆▁▁▁▁
    value       0     1359 1359 22784.63 6419.32 575.5  19456.64 22794.51 26290.44 61963.28 ▁▁▇▆▁▁▁▁

[[8]]
Skim summary statistics
 n obs: 2416 
 n variables: 5 

-- Variable type:character -----------------------------------------------------
 variable missing complete    n min max empty n_unique
 RESLADST       0     2416 2416   2   4     0      151

-- Variable type:integer -------------------------------------------------------
 variable missing complete    n   mean   sd   p0     p25    p50     p75 p100     hist
     Year       0     2416 2416 2008.5 4.61 2001 2004.75 2008.5 2012.25 2016 ▇▇▇▇▇▇▇▇

-- Variable type:numeric -------------------------------------------------------
 variable missing complete    n    mean      sd      p0     p25     p50     p75     p100     hist
  lowercl       0     2416 2416 8087.71 1584.93 2855.04 6889.26 7923.32 9187.08 14018.74 ▁▁▆▇▆▃▁▁
  uppercl       0     2416 2416 8331.79 1606.49 3045.9  7105.99 8152.68 9447.93 14426.77 ▁▁▇▇▆▃▁▁
    value       0     2416 2416 8208.91 1594.89 2949.37 6990.91 8041.27 9311.03 14221.68 ▁▁▆▇▆▃▁▁

[[9]]
Skim summary statistics
 n obs: 45904 
 n variables: 9 

-- Variable type:character -----------------------------------------------------
     variable missing complete     n min max empty n_unique
      GeoName       0    45904 45904   4  28     0      151
 OfficialCode       0    45904 45904   9   9     0      151
     RESLADST       0    45904 45904   2   4     0      151

-- Variable type:integer -------------------------------------------------------
 variable missing complete     n     mean       sd   p0     p25     p50      p75   p100     hist
      pop       0    45904 45904 18160.9  16336.18   28 8165    13575   21809.75 112802 ▇▅▂▁▁▁▁▁
      sum       0    45904 45904  1379.06  1228.02    1  639      995    1647     15549 ▇▂▁▁▁▁▁▁
     Year       0    45904 45904  2008.5      4.61 2001 2004.75  2008.5  2012.25   2016 ▇▇▇▇▇▇▇▇

-- Variable type:numeric -------------------------------------------------------
 variable missing complete     n    mean      sd      p0     p25     p50     p75     p100     hist
  lowercl       0    45904 45904 8087.71 1584.62 2855.04 6889.26 7923.32 9187.08 14018.74 ▁▁▆▇▆▃▁▁
  uppercl       0    45904 45904 8331.79 1606.17 3045.9  7105.99 8152.68 9447.93 14426.77 ▁▁▇▇▆▃▁▁
    value       0    45904 45904 8208.91 1594.57 2949.37 6990.91 8041.27 9311.03 14221.68 ▁▁▆▇▆▃▁▁

[[10]]
Skim summary statistics
 n obs: 5920 
 n variables: 12 

-- Variable type:character -----------------------------------------------------
             variable missing complete    n min max empty n_unique
       age_group_name       0     5920 5920   8   8     0        1
 covariate_name_short       0     5920 5920   4   4     0        1
        location_name       0     5920 5920   4  28     0      160

-- Variable type:integer -------------------------------------------------------
         variable missing complete    n     mean      sd    p0      p25     p50      p75  p100     hist
     age_group_id       0     5920 5920    22       0       22    22       22      22       22 ▁▁▁▇▁▁▁▁
     covariate_id       0     5920 5920  1099       0     1099  1099     1099    1099     1099 ▁▁▁▇▁▁▁▁
      location_id       0     5920 5920 42212.32 9703.42  4618 44672.75 44712.5 44752.25 44792 ▁▁▁▁▁▁▁▇
 model_version_id       0     5920 5920 11180       0    11180 11180    11180   11180    11180 ▁▁▁▇▁▁▁▁
           sex_id       0     5920 5920     3       0        3     3        3       3        3 ▁▁▁▇▁▁▁▁
          year_id       0     5920 5920  1998      10.68  1980  1989     1998    2007     2016 ▇▇▆▇▆▇▆▇

-- Variable type:numeric -------------------------------------------------------
    variable missing complete    n  mean   sd    p0   p25   p50   p75  p100     hist
 lower_value       0     5920 5920 76.75 4.95 65.83 72.84 76.81 80.69 88.28 ▂▆▇▇▇▇▅▁
  mean_value       0     5920 5920 77.68 5    66.64 73.76 77.72 81.66 89.35 ▂▆▇▇▇▇▅▁
 upper_value       0     5920 5920 78.62 5.06 67.46 74.64 78.67 82.64 90.48 ▂▆▇▇▇▇▅▁

[[11]]
Skim summary statistics
 n obs: 4650 
 n variables: 42 

-- Variable type:character -----------------------------------------------------
          variable missing complete    n min max empty n_unique
       ihme_loc_id       0     4650 4650   1   9     0      775
     location_name       0     4650 4650   3  48     0      771
     national_iso3       0     4650 4650   1   3     0      224
       region_name       0     4650 4650   0  28    48       22
      sdi_quintile     174     4476 4650   7  15     0        5
 super_region_name       0     4650 4650   0  48     6        8

-- Variable type:integer -------------------------------------------------------
    variable missing complete    n     mean       sd   p0  p25    p50   p75  p100     hist
       level       0     4650 4650     4.14     1.14    0    3    4       5     6 ▁▁▁▅▁▇▂▃
 location_id       0     4650 4650 18216.26 20068.08    1  197 4735   43910 44792 ▇▁▁▁▁▁▂▃
     year_id       0     4650 4650  2002.67     8.79 1990 1995 2002.5  2010  2016 ▇▇▁▇▇▁▇▇

-- Variable type:numeric -------------------------------------------------------
         variable missing complete    n  mean    sd       p0    p25    p50    p75   p100     hist
     i_adversemed       0     4650 4650 57.08 26.53  0        37.21  57.27  79.84 100    ▂▅▅▇▆▆▇▇
   i_appendicitis       0     4650 4650 68.4  31.4   0.46     40.64  73.69  99.92 100    ▁▂▂▂▂▁▁▇
   i_breastcancer       0     4650 4650 56.73 24.68  0        36.24  56.22  77.68 100    ▁▃▇▇▇▇▇▆
 i_cervicalcancer       0     4650 4650 56.94 19.51  0        43.74  54.6   68.89  99.99 ▁▁▂▇▇▅▂▃
    i_chronicresp       0     4650 4650 61.54 21.58  0.03     46.56  65.32  76.76 100    ▁▁▃▃▅▇▆▃
            i_ckd       0     4650 4650 56.27 28.43  0.14     32.2   53.58  80.99 100    ▂▃▇▆▅▅▃▇
    i_coloncancer       0     4650 4650 55.26 25.11  0.04     33.93  53.44  77.98 100    ▁▂▇▅▅▅▆▅
      i_congheart       0     4650 4650 51.87 22.08  0.016    35.04  51.38  66.58  99.99 ▁▃▆▇▇▆▃▃
       i_diabetes       0     4650 4650 66.27 21.38  0        52.07  66     84.82 100    ▁▁▂▅▇▇▆▇
       i_diarrhea       0     4650 4650 59.01 31.79  0        27.62  62.02  89.98 100    ▂▃▃▂▂▂▃▇
      i_diptheria       0     4650 4650 97.68 10.86  0.098   100    100    100    100    ▁▁▁▁▁▁▁▇
       i_epilepsy       0     4650 4650 62.97 22.83  0        48.83  63.8   77.21 100    ▁▁▂▅▇▇▃▆
    i_gallbladder       0     4650 4650 63.14 23.77  0        43.69  65.92  83.63 100    ▁▂▃▇▅▅▇▇
            i_haq       0     4650 4650 60.96 23.25 10.59     39.28  61.51  83.71  97.13 ▁▅▆▅▅▃▇▇
         i_hernia       0     4650 4650 66.45 28.05  0.37     44.97  72.07  93    100    ▁▂▂▃▃▃▅▇
   i_hodgkinlymph       0     4650 4650 42.31 31.21  0.27     15.98  25.3   73.04 100    ▂▇▂▁▂▂▂▃
        i_hyperhd       0     4650 4650 55.36 24.06  0        36.71  52.78  77.84  99.99 ▁▃▆▇▆▅▇▃
            i_ihd       0     4650 4650 57.17 23.12  0        40.06  56.51  75.51 100    ▁▃▅▇▇▇▆▅
       i_leukemia       0     4650 4650 41.97 26.35  2.04     22.96  30.89  59.02 100    ▁▇▆▂▂▂▂▂
           i_lris       0     4650 4650 47.08 20.41  0.00015  31.59  49.95  61.99 100    ▂▃▅▅▇▆▁▁
       i_maternal       0     4650 4650 65.68 32.26  0.081    35.59  70.47  99.4  100    ▁▂▂▂▂▂▂▇
        i_measles       0     4650 4650 73.16 32.25  0        41.88  99.19 100    100    ▁▁▂▂▁▁▁▇
       i_neonatal       0     4650 4650 45.8  26.53  0.013    22.6   41.26  67.64 100    ▃▇▇▃▅▆▃▂
            i_pud       0     4650 4650 55.68 24.06  0.00042  39.41  57.23  73.33 100    ▂▃▃▆▇▆▅▃
         i_rheuhd       0     4650 4650 59.6  25.96  0        39.51  64.39  79.49 100    ▂▃▃▃▅▇▆▆
     i_skincancer       0     4650 4650 44.34 32.48  0        13.22  33.42  80.47 100    ▇▆▅▂▁▁▇▅
         i_stroke       0     4650 4650 49.12 24.48  0        29.57  48.45  68.87 100    ▃▆▇▆▆▇▅▂
             i_tb       0     4650 4650 59.79 30.51  0        30.47  61.39  90.12 100    ▁▅▃▂▃▂▃▇
     i_testcancer       0     4650 4650 49.92 32.89  0.37     18.28  41.54  84.46 100    ▃▇▃▂▂▂▅▆
        i_tetanus       0     4650 4650 80.94 28.92  0        64.56 100    100    100    ▁▁▁▁▁▁▁▇
           i_uris       0     4650 4650 97.94  8.11 15.86     99.98 100    100    100    ▁▁▁▁▁▁▁▇
  i_uterinecancer       0     4650 4650 54.78 29.35  0        26.92  54.7   83.09 100    ▂▇▆▅▃▅▇▇
     i_whoopcough       0     4650 4650 75.43 27.39  6.25     49.11  89.85 100    100    ▁▁▂▂▁▁▁▇

[[12]]
Skim summary statistics
 n obs: 984 
 n variables: 12 

-- Variable type:character -----------------------------------------------------
      variable missing complete   n min max empty n_unique
    cause_name       0      984 984   9   9     0        1
   change_type       0      984 984  15  25     0        2
 location_name       0      984 984   4  28     0      164

-- Variable type:integer -------------------------------------------------------
      variable missing complete   n     mean       sd   p0      p25     p50      p75  p100     hist
      cause_id       0      984 984   100        0     100   100      100     100      100 ▁▁▁▇▁▁▁▁
    cause_id.1       0      984 984   100        0     100   100      100     100      100 ▁▁▁▇▁▁▁▁
         level       0      984 984     5.88     0.44    3     6        6       6        6 ▁▁▁▁▁▁▁▇
   location_id       0      984 984 41216.89 11476.03   95 44669.75 44710.5 44751.25 44792 ▁▁▁▁▁▁▁▇
   year_end_id       0      984 984  2010.67     7.55 2000  2000     2016    2016     2016 ▃▁▁▁▁▁▁▇
 year_start_id       0      984 984  1993.33     4.72 1990  1990     1990    2000     2000 ▇▁▁▁▁▁▁▃

-- Variable type:numeric -------------------------------------------------------
 variable missing complete   n mean   sd    p0  p25  p50  p75  p100     hist
 estimate       0      984 984 4.29 4.29  0.19 0.56 1.81 6.7  15.28 ▇▁▂▂▁▁▂▁
    lower       0      984 984 2.84 3.23 -0.71 0.38 0.69 4.34 12.23 ▇▁▂▂▁▁▁▁
   uppper       0      984 984 5.72 5.44  0.39 0.73 3.57 9.41 18.43 ▇▁▁▃▁▁▂▁

[[13]]
Skim summary statistics
 n obs: 895968 
 n variables: 9 

-- Variable type:character -----------------------------------------------------
      variable missing complete      n min max empty n_unique
     age_group       0   895968 895968   6  14     0       23
    cause_name       0   895968 895968   7  50     0       26
 location_name       0   895968 895968   4  28     0      153

-- Variable type:integer -------------------------------------------------------
    variable missing complete      n     mean      sd   p0   p25     p50   p75  p100     hist
    cause_id       0   895968 895968   472.93  131.15  297   340   492     531   849 ▇▂▆▅▁▂▁▁
       level       0   895968 895968     5.96    0.28    4     6     6       6     6 ▁▁▁▁▁▁▁▇
 location_id       0   895968 895968 43876.65 5952.31  433 44678 44716   44754 44792 ▁▁▁▁▁▁▁▇
      sex_id       0   895968 895968     1.5     0.5     1     1     1.5     2     2 ▇▁▁▁▁▁▁▇
     year_id       0   895968 895968  2002.67    8.79 1990  1995  2002.5  2010  2016 ▇▇▁▇▇▁▇▇

-- Variable type:numeric -------------------------------------------------------
  variable missing complete      n mean   sd    p0 p25 p50  p75 p100     hist
 joint_paf       0   895968 895968 0.25 0.36 -0.12   0   0 0.44    1 ▇▁▁▁▁▁▁▂

[[14]]
Skim summary statistics
 n obs: 32472 
 n variables: 9 

-- Variable type:character -----------------------------------------------------
      variable missing complete     n min max empty n_unique
    cause_name       0    32472 32472   6  50     0       33
 location_name       0    32472 32472   4  28     0      164

-- Variable type:integer -------------------------------------------------------
    variable missing complete     n     mean       sd   p0      p25     p50      p75  p100     hist
    cause_id       0    32472 32472   459.27   135.75  100   341      484     529      849 ▁▁▇▃▇▂▁▁
       level       0    32472 32472     5.88     0.44    3     6        6       6        6 ▁▁▁▁▁▁▁▇
 location_id       0    32472 32472 41216.89 11470.38   95 44669.75 44710.5 44751.25 44792 ▁▁▁▁▁▁▁▇
     year_id       0    32472 32472  2002.67     8.79 1990  1995     2002.5  2010     2016 ▇▇▁▇▇▁▇▇

-- Variable type:numeric -------------------------------------------------------
 variable missing complete     n  mean    sd    p0   p25   p50    p75 p100     hist
 estimate       0    32472 32472 82.07 16.08 14.38 70.97 84.16  98.64  100 ▁▁▁▁▂▃▅▇
    lower       0    32472 32472 76.73 19.03  7.17 62.9  77.96  95.02  100 ▁▁▁▂▃▅▅▇
    upper       0    32472 32472 87.13 13.66 20.93 78.71 90.54 100     100 ▁▁▁▁▂▂▃▇

[[15]]
Skim summary statistics
 n obs: 31488 
 n variables: 9 

-- Variable type:character -----------------------------------------------------
      variable missing complete     n min max empty n_unique
    cause_name       0    31488 31488   6  50     0       32
 location_name       0    31488 31488   4  28     0      164

-- Variable type:integer -------------------------------------------------------
    variable missing complete     n     mean       sd   p0      p25     p50      p75  p100     hist
    cause_id       0    31488 31488   470.5    121.84  297   359.75   485.5   529.5    849 ▇▃▇▅▂▂▁▁
       level       0    31488 31488     5.88     0.44    3     6        6       6        6 ▁▁▁▁▁▁▁▇
 location_id       0    31488 31488 41216.89 11470.38   95 44669.75 44710.5 44751.25 44792 ▁▁▁▁▁▁▁▇
     year_id       0    31488 31488  2002.67     8.79 1990  1995     2002.5  2010     2016 ▇▇▁▇▇▁▇▇

-- Variable type:numeric -------------------------------------------------------
 variable missing complete     n  mean   sd      p0     p25         p50    p75 p100     hist
 estimate       0    31488 31488 0.053 0.12 3.8e-09 2.4e-06     1.3e-05 0.004  0.86 ▇▁▁▁▁▁▁▁
    lower       0    31488 31488 0.045 0.11 2.4e-09 1.8e-06 1e-05       0.0021 0.79 ▇▁▁▁▁▁▁▁
    upper       0    31488 31488 0.062 0.14 5.4e-09 3.1e-06     1.7e-05 0.0051 0.95 ▇▁▁▁▁▁▁▁

[[16]]
Skim summary statistics
 n obs: 624 
 n variables: 5 

-- Variable type:character -----------------------------------------------------
      variable missing complete   n min max empty n_unique
        Column       1      623 624   0   2     8      616
      Comments       0      624 624   0 189    36        2
   Description       0      624 624   0 111     8      617
    Field Type       0      624 624   0   9     8        4
 Name of Field       0      624 624   0  32     8      617

[[17]]
Skim summary statistics
 n obs: 7312 
 n variables: 616 

-- Variable type:character -----------------------------------------------------
         variable missing complete    n min max empty n_unique
         CCG_CODE       0     7312 7312   0   3     1      208
         CCG_NAME       0     7312 7312   0  54     1      208
  HEE_REGION_CODE       0     7312 7312   0   5     1       14
  HEE_REGION_NAME       0     7312 7312   0  46     1       14
        PRAC_CODE       0     7312 7312   0   6     1     7312
        PRAC_NAME       0     7312 7312   0  40     1     6887
      REGION_CODE       0     7312 7312   0   3     1        5
 REGION_GEOG_CODE       0     7312 7312   0   3     1       15
 REGION_GEOG_NAME       0     7312 7312   0  48     1       15
      REGION_NAME       0     7312 7312   0  28     1        5

-- Variable type:integer -------------------------------------------------------
                       variable missing complete    n       mean       sd p0    p25  p50     p75  p100     hist
            FEMALE_ADMIN_APP_HC       1     7311 7312    0.1        0.42   0    0      0     0      12 ▇▁▁▁▁▁▁▁
    FEMALE_ADMIN_ESTATES_ANC_HC       1     7311 7312    0.15       0.62   0    0      0     0      11 ▇▁▁▁▁▁▁▁
                FEMALE_ADMIN_HC       1     7311 7312   10.5        7.92   0    5      9    14     114 ▇▂▁▁▁▁▁▁
         FEMALE_ADMIN_HC_25TO29       1     7311 7312    0.6        1      0    0      0     1      13 ▇▁▁▁▁▁▁▁
         FEMALE_ADMIN_HC_30TO34       1     7311 7312    0.62       0.99   0    0      0     1      16 ▇▁▁▁▁▁▁▁
         FEMALE_ADMIN_HC_35TO39       1     7311 7312    0.65       0.96   0    0      0     1      10 ▇▁▁▁▁▁▁▁
         FEMALE_ADMIN_HC_40TO44       1     7311 7312    0.83       1.09   0    0      0     1      11 ▇▁▁▁▁▁▁▁
         FEMALE_ADMIN_HC_45TO49       1     7311 7312    1.38       1.58   0    0      1     2      23 ▇▂▁▁▁▁▁▁
         FEMALE_ADMIN_HC_50TO54       1     7311 7312    1.84       1.97   0    0      1     3      19 ▇▂▁▁▁▁▁▁
         FEMALE_ADMIN_HC_55TO59       1     7311 7312    1.86       1.95   0    0      1     3      20 ▇▃▁▁▁▁▁▁
         FEMALE_ADMIN_HC_60TO64       1     7311 7312    1.3        1.54   0    0      1     2      12 ▇▃▁▁▁▁▁▁
         FEMALE_ADMIN_HC_65TO69       1     7311 7312    0.42       0.75   0    0      0     1      10 ▇▁▁▁▁▁▁▁
         FEMALE_ADMIN_HC_70PLUS       1     7311 7312    0.21       0.53   0    0      0     0       6 ▇▁▁▁▁▁▁▁
        FEMALE_ADMIN_HC_UNDER25       1     7311 7312    0.7        1.16   0    0      0     1      14 ▇▂▁▁▁▁▁▁
    FEMALE_ADMIN_HC_UNKNOWN_AGE       0     7312 7312    0.096      0.89   0    0      0     0      27 ▇▁▁▁▁▁▁▁
    FEMALE_ADMIN_MANAGE_PTNR_HC       1     7311 7312    0.011      0.1    0    0      0     0       1 ▇▁▁▁▁▁▁▁
        FEMALE_ADMIN_MANAGER_HC       1     7311 7312    1.11       0.94   0    1      1     2       8 ▇▂▁▁▁▁▁▁
  FEMALE_ADMIN_MED_SECRETARY_HC       1     7311 7312    0.97       1.27   0    0      1     2      20 ▇▁▁▁▁▁▁▁
            FEMALE_ADMIN_OTH_HC       1     7311 7312    2.23       3.36   0    0      1     3      40 ▇▁▁▁▁▁▁▁
         FEMALE_ADMIN_RECEPT_HC       1     7311 7312    5.9        4.65   0    3      5     8      75 ▇▂▁▁▁▁▁▁
         FEMALE_ADMIN_TELEPH_HC       1     7311 7312    0.033      0.39   0    0      0     0      14 ▇▁▁▁▁▁▁▁
          FEMALE_DPC_APP_HCA_HC       1     7311 7312    0.098      0.45   0    0      0     0       5 ▇▁▁▁▁▁▁▁
          FEMALE_DPC_APP_OTH_HC       1     7311 7312    0.003      0.068  0    0      0     0       3 ▇▁▁▁▁▁▁▁
       FEMALE_DPC_APP_PHARMA_HC       1     7311 7312    0.00041    0.02   0    0      0     0       1 ▇▁▁▁▁▁▁▁
       FEMALE_DPC_APP_PHLEB_FTE       1     7311 7312    0.00014    0.012  0    0      0     0       1 ▇▁▁▁▁▁▁▁
        FEMALE_DPC_APP_PHLEB_HC       1     7311 7312    0.00014    0.012  0    0      0     0       1 ▇▁▁▁▁▁▁▁
      FEMALE_DPC_APP_PHYSIO_FTE       1     7311 7312    0          0      0    0      0     0       0 ▁▁▁▇▁▁▁▁
       FEMALE_DPC_APP_PHYSIO_HC       1     7311 7312    0          0      0    0      0     0       0 ▁▁▁▇▁▁▁▁
        FEMALE_DPC_DISPENSER_HC       1     7311 7312    0.37       1.41   0    0      0     0      18 ▇▁▁▁▁▁▁▁
                  FEMALE_DPC_HC       1     7311 7312    1.87       2.32   0    0      1     2      26 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_25TO29       1     7311 7312    0.11       0.38   0    0      0     0       9 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_30TO34       1     7311 7312    0.14       0.41   0    0      0     0       5 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_35TO39       1     7311 7312    0.17       0.44   0    0      0     0       5 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_40TO44       1     7311 7312    0.18       0.46   0    0      0     0       5 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_45TO49       1     7311 7312    0.28       0.6    0    0      0     0       6 ▇▂▁▁▁▁▁▁
           FEMALE_DPC_HC_50TO54       1     7311 7312    0.35       0.7    0    0      0     1      11 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_55TO59       1     7311 7312    0.31       0.66   0    0      0     0       8 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_60TO64       1     7311 7312    0.17       0.46   0    0      0     0       4 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_65TO69       1     7311 7312    0.05       0.23   0    0      0     0       2 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_HC_70PLUS       1     7311 7312    0.019      0.14   0    0      0     0       2 ▇▁▁▁▁▁▁▁
          FEMALE_DPC_HC_UNDER25       1     7311 7312    0.075      0.33   0    0      0     0       5 ▇▁▁▁▁▁▁▁
      FEMALE_DPC_HC_UNKNOWN_AGE       1     7311 7312    0.014      0.14   0    0      0     0       5 ▇▁▁▁▁▁▁▁
              FEMALE_DPC_HCA_HC       1     7311 7312    1.05       1.2    0    0      1     2      22 ▇▁▁▁▁▁▁▁
      FEMALE_DPC_NURSE_ASSOC_HC       1     7311 7312    0.0015     0.039  0    0      0     0       1 ▇▁▁▁▁▁▁▁
              FEMALE_DPC_OTH_HC       1     7311 7312    0.058      0.33   0    0      0     0       9 ▇▁▁▁▁▁▁▁
          FEMALE_DPC_PARAMED_HC       1     7311 7312    0.014      0.13   0    0      0     0       3 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_PHARMA_HC       1     7311 7312    0.074      0.31   0    0      0     0       4 ▇▁▁▁▁▁▁▁
            FEMALE_DPC_PHLEB_HC       1     7311 7312    0.18       0.49   0    0      0     0       8 ▇▁▁▁▁▁▁▁
  FEMALE_DPC_PHYSICIAN_ASSOC_HC       1     7311 7312    0.0064     0.091  0    0      0     0       2 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_PHYSIO_HC       1     7311 7312    0.004      0.094  0    0      0     0       5 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_PODIA_FTE       1     7311 7312    0          0      0    0      0     0       0 ▁▁▁▇▁▁▁▁
            FEMALE_DPC_PODIA_HC       1     7311 7312    0          0      0    0      0     0       0 ▁▁▁▇▁▁▁▁
        FEMALE_DPC_THERA_COU_HC       1     7311 7312    0.0018     0.051  0    0      0     0       2 ▇▁▁▁▁▁▁▁
        FEMALE_DPC_THERA_OCC_HC       1     7311 7312    0.00014    0.012  0    0      0     0       1 ▇▁▁▁▁▁▁▁
        FEMALE_DPC_THERA_OTH_HC       1     7311 7312    0.0042     0.082  0    0      0     0       3 ▇▁▁▁▁▁▁▁
               FEMALE_GP_EXL_HC       1     7311 7312    2.6        2.51   0    1      2     4      32 ▇▂▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_30TO34       1     7311 7312    0.42       0.81   0    0      0     1      10 ▇▁▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_35TO39       1     7311 7312    0.5        0.84   0    0      0     1       8 ▇▁▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_40TO44       1     7311 7312    0.47       0.77   0    0      0     1       7 ▇▃▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_45TO49       1     7311 7312    0.4        0.68   0    0      0     1       6 ▇▃▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_50TO54       1     7311 7312    0.36       0.65   0    0      0     1       5 ▇▂▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_55TO59       1     7311 7312    0.25       0.54   0    0      0     0       5 ▇▂▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_60TO64       1     7311 7312    0.073      0.27   0    0      0     0       3 ▇▁▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_65TO69       1     7311 7312    0.026      0.16   0    0      0     0       2 ▇▁▁▁▁▁▁▁
        FEMALE_GP_EXL_HC_70PLUS       1     7311 7312    0.014      0.12   0    0      0     0       2 ▇▁▁▁▁▁▁▁
       FEMALE_GP_EXL_HC_UNDER30       1     7311 7312    0.068      0.3    0    0      0     0       4 ▇▁▁▁▁▁▁▁
   FEMALE_GP_EXL_HC_UNKNOWN_AGE       1     7311 7312    0.018      0.19   0    0      0     0       6 ▇▁▁▁▁▁▁▁
              FEMALE_GP_EXRL_HC       1     7311 7312    2.45       2.32   0    1      2     4      29 ▇▂▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_30TO34       1     7311 7312    0.36       0.71   0    0      0     1       7 ▇▂▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_35TO39       1     7311 7312    0.48       0.81   0    0      0     1       8 ▇▁▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_40TO44       1     7311 7312    0.46       0.76   0    0      0     1       7 ▇▃▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_45TO49       1     7311 7312    0.39       0.68   0    0      0     1       6 ▇▃▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_50TO54       1     7311 7312    0.36       0.65   0    0      0     1       5 ▇▂▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_55TO59       1     7311 7312    0.25       0.54   0    0      0     0       5 ▇▂▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_60TO64       1     7311 7312    0.072      0.27   0    0      0     0       3 ▇▁▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_65TO69       1     7311 7312    0.026      0.16   0    0      0     0       2 ▇▁▁▁▁▁▁▁
       FEMALE_GP_EXRL_HC_70PLUS       1     7311 7312    0.014      0.12   0    0      0     0       2 ▇▁▁▁▁▁▁▁
      FEMALE_GP_EXRL_HC_UNDER30       1     7311 7312    0.026      0.17   0    0      0     0       4 ▇▁▁▁▁▁▁▁
  FEMALE_GP_EXRL_HC_UNKNOWN_AGE       1     7311 7312    0.014      0.17   0    0      0     0       5 ▇▁▁▁▁▁▁▁
             FEMALE_GP_EXRRL_HC       1     7311 7312    2.42       2.3    0    1      2     4      29 ▇▂▁▁▁▁▁▁
      FEMALE_GP_EXRRL_HC_30TO34       1     7311 7312    0.35       0.71   0    0      0     1       7 ▇▂▁▁▁▁▁▁
      FEMALE_GP_EXRRL_HC_35TO39       1     7311 7312    0.47       0.8    0    0      0     1       8 ▇▁▁▁▁▁▁▁
      FEMALE_GP_EXRRL_HC_40TO44       1     7311 7312    0.45       0.75   0    0      0     1       7 ▇▃▁▁▁▁▁▁
 [ reached getOption("max.print") -- omitted 378 rows ]

-- Variable type:numeric -------------------------------------------------------
                       variable missing complete    n        mean    sd p0  p25  p50   p75  p100     hist
           FEMALE_ADMIN_APP_FTE       1     7311 7312     0.092   0.36   0 0    0     0     7.51 ▇▁▁▁▁▁▁▁
   FEMALE_ADMIN_ESTATES_ANC_FTE       1     7311 7312     0.06    0.29   0 0    0     0     8.81 ▇▁▁▁▁▁▁▁
               FEMALE_ADMIN_FTE       1     7311 7312     7.23    5.63   0 3.52 6.29 10    80.67 ▇▂▁▁▁▁▁▁
   FEMALE_ADMIN_MANAGE_PTNR_FTE       1     7311 7312     0.01    0.098  0 0    0     0     1.33 ▇▁▁▁▁▁▁▁
       FEMALE_ADMIN_MANAGER_FTE       1     7311 7312     0.96    0.83   0 0.32 0.99  1.08  7.88 ▇▆▂▁▁▁▁▁
 FEMALE_ADMIN_MED_SECRETARY_FTE       1     7311 7312     0.68    0.91   0 0    0.48  1    12.43 ▇▁▁▁▁▁▁▁
           FEMALE_ADMIN_OTH_FTE       1     7311 7312     1.49    2.37   0 0    0.53  2.08 34.82 ▇▁▁▁▁▁▁▁
        FEMALE_ADMIN_RECEPT_FTE       1     7311 7312     3.92    3.24   0 1.8  3.41  5.42 51.53 ▇▂▁▁▁▁▁▁
        FEMALE_ADMIN_TELEPH_FTE       1     7311 7312     0.023   0.28   0 0    0     0     9.63 ▇▁▁▁▁▁▁▁
         FEMALE_DPC_APP_HCA_FTE       1     7311 7312     0.062   0.29   0 0    0     0     4    ▇▁▁▁▁▁▁▁
         FEMALE_DPC_APP_OTH_FTE       1     7311 7312     0.0023  0.053  0 0    0     0     2.03 ▇▁▁▁▁▁▁▁
      FEMALE_DPC_APP_PHARMA_FTE       1     7311 7312     0.00038 0.019  0 0    0     0     1    ▇▁▁▁▁▁▁▁
       FEMALE_DPC_DISPENSER_FTE       1     7311 7312     0.26    0.98   0 0    0     0    12.29 ▇▁▁▁▁▁▁▁
                 FEMALE_DPC_FTE       1     7311 7312     1.21    1.61   0 0    0.8   1.6  22.32 ▇▁▁▁▁▁▁▁
             FEMALE_DPC_HCA_FTE       1     7311 7312     0.7     0.87   0 0    0.53  1    18.77 ▇▁▁▁▁▁▁▁
     FEMALE_DPC_NURSE_ASSOC_FTE       1     7311 7312     0.0013  0.034  0 0    0     0     1    ▇▁▁▁▁▁▁▁
             FEMALE_DPC_OTH_FTE       1     7311 7312     0.039   0.25   0 0    0     0     7.73 ▇▁▁▁▁▁▁▁
         FEMALE_DPC_PARAMED_FTE       1     7311 7312     0.011   0.11   0 0    0     0     3    ▇▁▁▁▁▁▁▁
          FEMALE_DPC_PHARMA_FTE       1     7311 7312     0.046   0.21   0 0    0     0     3.05 ▇▁▁▁▁▁▁▁
           FEMALE_DPC_PHLEB_FTE       1     7311 7312     0.079   0.24   0 0    0     0     3.15 ▇▁▁▁▁▁▁▁
 FEMALE_DPC_PHYSICIAN_ASSOC_FTE       1     7311 7312     0.005   0.076  0 0    0     0     2    ▇▁▁▁▁▁▁▁
          FEMALE_DPC_PHYSIO_FTE       1     7311 7312     0.0015  0.041  0 0    0     0     2.32 ▇▁▁▁▁▁▁▁
       FEMALE_DPC_THERA_COU_FTE       1     7311 7312     0.00068 0.022  0 0    0     0     1.2  ▇▁▁▁▁▁▁▁
       FEMALE_DPC_THERA_OCC_FTE       1     7311 7312     0.00013 0.012  0 0    0     0     0.99 ▇▁▁▁▁▁▁▁
       FEMALE_DPC_THERA_OTH_FTE       1     7311 7312     0.0014  0.029  0 0    0     0     1.12 ▇▁▁▁▁▁▁▁
              FEMALE_GP_EXL_FTE       1     7311 7312     1.84    1.83   0 0.53 1.44  2.67 29.81 ▇▁▁▁▁▁▁▁
             FEMALE_GP_EXRL_FTE       1     7311 7312     1.72    1.66   0 0.49 1.36  2.53 29.81 ▇▁▁▁▁▁▁▁
            FEMALE_GP_EXRRL_FTE       1     7311 7312     1.71    1.65   0 0.49 1.34  2.51 29.81 ▇▁▁▁▁▁▁▁
                  FEMALE_GP_FTE       1     7311 7312     1.89    1.84   0 0.55 1.49  2.72 29.81 ▇▁▁▁▁▁▁▁
        FEMALE_GP_LOCUM_ABS_FTE       1     7311 7312     0.012   0.097  0 0    0     0     2.88 ▇▁▁▁▁▁▁▁
        FEMALE_GP_LOCUM_OTH_FTE       1     7311 7312     0.026   0.13   0 0    0     0     2.72 ▇▁▁▁▁▁▁▁
        FEMALE_GP_LOCUM_VAC_FTE       1     7311 7312     0.011   0.091  0 0    0     0     2.13 ▇▁▁▁▁▁▁▁
        FEMALE_GP_PTNR_PROV_FTE       1     7311 7312     0.83    1.06   0 0    0.53  1.33  9.17 ▇▂▁▁▁▁▁▁
         FEMALE_GP_REG_F1_2_FTE       1     7311 7312     0.034   0.21   0 0    0     0     4.44 ▇▁▁▁▁▁▁▁
      FEMALE_GP_REG_JUN_DOC_FTE       1     7311 7312     0.0022  0.054  0 0    0     0     2.13 ▇▁▁▁▁▁▁▁
        FEMALE_GP_REG_ST3_4_FTE       1     7311 7312     0.091   0.36   0 0    0     0     4.44 ▇▁▁▁▁▁▁▁
              FEMALE_GP_RET_FTE       1     7311 7312     0.012   0.081  0 0    0     0     2    ▇▁▁▁▁▁▁▁
       FEMALE_GP_SAL_BY_OTH_FTE       1     7311 7312     0.0069  0.1    0 0    0     0     4.38 ▇▁▁▁▁▁▁▁
      FEMALE_GP_SAL_BY_PRAC_FTE       1     7311 7312     0.69    1.02   0 0    0.29  1.07 19.31 ▇▁▁▁▁▁▁▁
         FEMALE_GP_SEN_PTNR_FTE       1     7311 7312     0.18    0.44   0 0    0     0     4.9  ▇▁▁▁▁▁▁▁
    FEMALE_N_ADV_NURSE_PRAC_FTE       1     7311 7312     0.36    0.71   0 0    0     0.64 10.96 ▇▁▁▁▁▁▁▁
    FEMALE_N_DISTRICT_NURSE_FTE       1     7311 7312     0.0019  0.047  0 0    0     0     2.2  ▇▁▁▁▁▁▁▁
    FEMALE_N_EXT_ROLE_NURSE_FTE       1     7311 7312     0.075   0.32   0 0    0     0     5.48 ▇▁▁▁▁▁▁▁
        FEMALE_N_NURSE_DISP_FTE       1     7311 7312     0.0025  0.047  0 0    0     0     1.57 ▇▁▁▁▁▁▁▁
        FEMALE_N_NURSE_PTNR_FTE       1     7311 7312     0.0033  0.055  0 0    0     0     1.6  ▇▁▁▁▁▁▁▁
        FEMALE_N_NURSE_SPEC_FTE       1     7311 7312     0.061   0.31   0 0    0     0     7.68 ▇▁▁▁▁▁▁▁
        FEMALE_N_PRAC_NURSE_FTE       1     7311 7312     1.42    1.21   0 0.59 1.15  1.97 15.44 ▇▂▁▁▁▁▁▁
     FEMALE_N_TRAINEE_NURSE_FTE       1     7311 7312     0.021   0.15   0 0    0     0     2.6  ▇▁▁▁▁▁▁▁
              FEMALE_NURSES_FTE       1     7311 7312     1.94    1.75   0 0.79 1.53  2.65 21.37 ▇▂▁▁▁▁▁▁
             MALE_ADMIN_APP_FTE       1     7311 7312     0.013   0.12   0 0    0     0     3    ▇▁▁▁▁▁▁▁
     MALE_ADMIN_ESTATES_ANC_FTE       1     7311 7312     0.013   0.1    0 0    0     0     2.79 ▇▁▁▁▁▁▁▁
                 MALE_ADMIN_FTE       1     7311 7312     0.43    0.77   0 0    0     0.8  12.88 ▇▁▁▁▁▁▁▁
     MALE_ADMIN_MANAGE_PTNR_FTE       1     7311 7312     0.0047  0.068  0 0    0     0     2    ▇▁▁▁▁▁▁▁
         MALE_ADMIN_MANAGER_FTE       1     7311 7312     0.16    0.38   0 0    0     0     3    ▇▁▁▁▁▁▁▁
   MALE_ADMIN_MED_SECRETARY_FTE       1     7311 7312     0.007   0.079  0 0    0     0     1.6  ▇▁▁▁▁▁▁▁
             MALE_ADMIN_OTH_FTE       1     7311 7312     0.11    0.36   0 0    0     0     4.57 ▇▁▁▁▁▁▁▁
          MALE_ADMIN_RECEPT_FTE       1     7311 7312     0.12    0.38   0 0    0     0     4    ▇▁▁▁▁▁▁▁
          MALE_ADMIN_TELEPH_FTE       1     7311 7312     0.0015  0.056  0 0    0     0     3.79 ▇▁▁▁▁▁▁▁
           MALE_DPC_APP_HCA_FTE       1     7311 7312     0.0014  0.033  0 0    0     0     1    ▇▁▁▁▁▁▁▁
           MALE_DPC_APP_OTH_FTE       1     7311 7312     0.00017 0.012  0 0    0     0     1    ▇▁▁▁▁▁▁▁
         MALE_DPC_APP_PHLEB_FTE       1     7311 7312     0.00013 0.012  0 0    0     0     0.99 ▇▁▁▁▁▁▁▁
         MALE_DPC_DISPENSER_FTE       1     7311 7312     0.0087  0.098  0 0    0     0     2.2  ▇▁▁▁▁▁▁▁
                   MALE_DPC_FTE       1     7311 7312     0.093   0.33   0 0    0     0     8    ▇▁▁▁▁▁▁▁
               MALE_DPC_HCA_FTE       1     7311 7312     0.026   0.17   0 0    0     0     7.01 ▇▁▁▁▁▁▁▁
       MALE_DPC_NURSE_ASSOC_FTE       1     7311 7312     0.00022 0.014  0 0    0     0     1    ▇▁▁▁▁▁▁▁
               MALE_DPC_OTH_FTE       1     7311 7312     0.0092  0.098  0 0    0     0     2.77 ▇▁▁▁▁▁▁▁
           MALE_DPC_PARAMED_FTE       1     7311 7312     0.015   0.13   0 0    0     0     2.03 ▇▁▁▁▁▁▁▁
            MALE_DPC_PHARMA_FTE       1     7311 7312     0.026   0.16   0 0    0     0     3.95 ▇▁▁▁▁▁▁▁
             MALE_DPC_PHLEB_FTE       1     7311 7312     0.0025  0.044  0 0    0     0     2    ▇▁▁▁▁▁▁▁
   MALE_DPC_PHYSICIAN_ASSOC_FTE       1     7311 7312     0.0013  0.036  0 0    0     0     1.09 ▇▁▁▁▁▁▁▁
            MALE_DPC_PHYSIO_FTE       1     7311 7312     0.00096 0.032  0 0    0     0     2    ▇▁▁▁▁▁▁▁
         MALE_DPC_THERA_COU_FTE       1     7311 7312     0.00029 0.017  0 0    0     0     1    ▇▁▁▁▁▁▁▁
         MALE_DPC_THERA_OTH_FTE       1     7311 7312 4e-04       0.013  0 0    0     0     0.53 ▇▁▁▁▁▁▁▁
                MALE_GP_EXL_FTE       1     7311 7312     1.96    1.6    0 0.96 1.67  2.77 20.01 ▇▃▁▁▁▁▁▁
               MALE_GP_EXRL_FTE       1     7311 7312     1.89    1.52   0 0.96 1.6   2.67 20.01 ▇▂▁▁▁▁▁▁
              MALE_GP_EXRRL_FTE       1     7311 7312     1.88    1.52   0 0.96 1.6   2.67 20.01 ▇▂▁▁▁▁▁▁
                    MALE_GP_FTE       1     7311 7312     2.01    1.61   0 0.99 1.73  2.8  20.01 ▇▃▁▁▁▁▁▁
          MALE_GP_LOCUM_ABS_FTE       1     7311 7312     0.0067  0.071  0 0    0     0     2    ▇▁▁▁▁▁▁▁
          MALE_GP_LOCUM_OTH_FTE       1     7311 7312     0.037   0.18   0 0    0     0     3.29 ▇▁▁▁▁▁▁▁
          MALE_GP_LOCUM_VAC_FTE       1     7311 7312     0.014   0.13   0 0    0     0     5.68 ▇▁▁▁▁▁▁▁
          MALE_GP_PTNR_PROV_FTE       1     7311 7312     1.14    1.34   0 0    0.93  1.97 17.33 ▇▂▁▁▁▁▁▁
           MALE_GP_REG_F1_2_FTE       1     7311 7312     0.017   0.14   0 0    0     0     2.77 ▇▁▁▁▁▁▁▁
        MALE_GP_REG_JUN_DOC_FTE       1     7311 7312     0.0021  0.052  0 0    0     0     2.13 ▇▁▁▁▁▁▁▁
 [ reached getOption("max.print") -- omitted 62 rows ]

[[18]]
Skim summary statistics
 n obs: 152 
 n variables: 4 

-- Variable type:character -----------------------------------------------------
 variable missing complete   n min max empty n_unique
  la name       0      152 152   4  28     0      152
    ut la       0      152 152   9   9     0      152

-- Variable type:numeric -------------------------------------------------------
          variable missing complete   n  mean    sd    p0   p25   p50   p75   p100     hist
     per_capita_gp       0      152 152 50.24 26.59 31.34 43.37 48.01 53.03 365.73 ▇▁▁▁▁▁▁▁
 per_capita_nurses       0      152 152 24.69  7.15 10.95 19.01 24.88 29.27  48.23 ▃▆▆▇▅▂▁▁

[[19]]
Skim summary statistics
 n obs: 7392 
 n variables: 8 

-- Variable type:character -----------------------------------------------------
     variable missing complete    n min max empty n_unique
 Gp post code       0     7392 7392   6   8     0     6644
       Gpcode       0     7392 7392   6   6     0     7392
       Gpname       0     7392 7392   4  40     0     6955
      la name       0     7392 7392   4  28     0      152
        lt la       0     7392 7392   9   9     0      326
       region       0     7392 7392   9   9     0        9
  region name       0     7392 7392  13  31     0        9
        ut la       0     7392 7392   9   9     0      152

[[20]]
Skim summary statistics
 n obs: 4650 
 n variables: 19 

-- Variable type:character -----------------------------------------------------
          variable missing complete    n min max empty n_unique
       ihme_loc_id       0     4650 4650   1   9     0      775
     location_name       0     4650 4650   3  48     0      771
       region_name       0     4650 4650   0  28    48       22
      sdi_quintile     174     4476 4650   7  15     0        5
 super_region_name       0     4650 4650   0  48     6        8

-- Variable type:integer -------------------------------------------------------
        variable missing complete    n     mean       sd   p0  p25    p50   p75  p100     hist
    age_group_id       0     4650 4650    27        0      27   27   27      27    27 ▁▁▁▇▁▁▁▁
        cause_id       0     4650 4650   100        0     100  100  100     100   100 ▁▁▁▇▁▁▁▁
           level       0     4650 4650     4.14     1.14    0    3    4       5     6 ▁▁▁▅▁▇▂▃
     location_id       0     4650 4650 18216.26 20068.08    1  197 4735   43910 44792 ▇▁▁▁▁▁▂▃
       region_id      48     4602 4650   100.24    54.63    5   73  100     159   199 ▃▁▇▂▂▂▆▁
          sex_id       0     4650 4650     3        0       3    3    3       3     3 ▁▁▁▇▁▁▁▁
 super_region_id       6     4644 4650    89.4     53.66    4   64   64     158   166 ▂▁▇▁▂▁▁▆
         year_id       0     4650 4650  2002.67     8.79 1990 1995 2002.5  2010  2016 ▇▇▁▇▇▁▇▇

-- Variable type:numeric -------------------------------------------------------
        variable missing complete    n  mean    sd    p0   p25   p50   p75  p100     hist
           index       0     4650 4650 60.96 23.25 10.59 39.28 61.51 83.71 97.13 ▁▅▆▅▅▃▇▇
       index_efa       0     4650 4650 60.42 22.52 11.16 39.83 60.04 82.42 96.96 ▁▅▆▅▅▃▇▆
 index_geom_mean       0     4650 4650 56.53 23.34  9.37 35.55 53.65 79.53 97.06 ▁▅▇▅▃▃▇▅
      index_lval       0     4650 4650 57.81 24.59  7.8  34.02 59.04 82.07 95.9  ▁▆▅▃▅▃▇▇
      index_mean       0     4650 4650 60.49 20.76 15.2  42.27 58.61 80.58 96.32 ▁▅▆▆▃▃▇▅
      index_uval       0     4650 4650 64.13 21.89 14.13 44.96 64.06 85.42 98.51 ▁▃▆▆▅▃▇▇

[[21]]
Skim summary statistics
 n obs: 152 
 n variables: 3 

-- Variable type:character -----------------------------------------------------
  variable missing complete   n min max empty n_unique
 area_code       0      152 152   9   9     0      152
 area_name       0      152 152   4  28     0      152

-- Variable type:integer -------------------------------------------------------
 variable missing complete   n  mean    sd p0   p25  p50   p75 p100     hist
    index       0      152 152 50.33 28.96  1 25.75 50.5 75.25  100 ▇▇▇▇▇▇▇▇

[[22]]
Skim summary statistics
 n obs: 152 
 n variables: 4 

-- Variable type:character -----------------------------------------------------
       variable missing complete   n min max empty n_unique
     gp.la.name       0      152 152   4  28     0      152
 nurses.la.name       0      152 152   4  28     0      152

-- Variable type:numeric -------------------------------------------------------
      variable missing complete   n   mean     sd   p0   p25    p50    p75   p100     hist
     gp.sumfte       0      152 152 186.68 142.76 5.74 97.31 133.15 202.41 777.94 ▆▇▂▂▁▁▁▁
 nurses.sumfte       0      152 152  95.33  77.49 0.67 45.28  65.24 123.01 372.05 ▅▇▂▁▁▁▁▁

[[23]]
Skim summary statistics
 n obs: 784 
 n variables: 4 

-- Variable type:character -----------------------------------------------------
      variable missing complete   n min max empty n_unique
   ihme_loc_id       0      784 784   1   9     0      784
 location_name       0      784 784   3  48     0      779

-- Variable type:integer -------------------------------------------------------
    variable missing complete   n     mean       sd p0    p25    p50      p75  p100     hist
 location_id       0      784 784 18521.05 20162.77  1 199.75 4739.5 43919.25 44800 ▇▁▁▁▁▁▂▅
          V1       0      784 784   392.5    226.47  1 196.75  392.5   588.25   784 ▇▇▇▇▇▇▇▇

[[24]]
Skim summary statistics
 n obs: 1288 
 n variables: 5 

-- Variable type:character -----------------------------------------------------
 variable missing complete    n min max empty n_unique
 AreaName       0     1288 1288   4  28     0      161

-- Variable type:integer -------------------------------------------------------
 variable missing complete    n   mean     sd   p0     p25    p50     p75 p100     hist
    FYEAR       0     1288 1288 1364.5 231.51 1011 1187.75 1364.5 1541.25 1718 ▇▇▇▇▇▇▇▇

-- Variable type:numeric -------------------------------------------------------
 variable missing complete    n  mean    sd    p0   p25   p50   p75   p100     hist
  lowercl       9     1279 1288 29.45  8.49  9.04 23.94 28.51 33.6   70.68 ▁▅▇▅▂▁▁▁
  uppercl       9     1279 1288 44.83 11.07 21.56 36.94 42.71 50.62 110.03 ▂▇▅▂▁▁▁▁
    value       9     1279 1288 36.47  9.31 14.33 30.11 34.88 40.99  88.43 ▁▇▇▃▁▁▁▁

Amenable codes

haq_files[1]
[[1]]
NA

Per capita beds

per_capita_beds <- haq_files[[2]] %>% 
  data.frame() 
per_capita_beds %>%
  ggplot(aes(per_capita_beds)) +
  geom_density(fill = "blue") +
  labs(title = "Distribution of per-capita beds by UTLA", 
       caption = "NB check Gloucestershire (low value)")

Hospitalisation rates

AE attendance rates

Trend in association between deprivation and HAQ

dep_lookup %>% 
  left_join(haq) %>%
  group_by(year_id) %>%
  na.omit() %>%
  do(broom::glance(lm(mean_value ~ IMDscore, data = .))) %>%
  arrange(year_id) %>%
  ggplot(aes(year_id, r.squared)) +
  geom_line() +
  geom_point() +
  geom_smooth() +
  labs(title = "Trend in relationship between IMD and HAQ",
       subtitle = "Strength of association has weakened over time", 
       caption = "Strength of association measured by r^2", 
       x = "Year")
Joining, by = c("AreaCode", "IMDscore", "decile")

Deprivation vs HAQ index components

dep_cause <- dep_lookup %>%
  left_join(haq_files[[14]], by = c("AreaName" = "location_name")) %>%
  group_by(year_id, cause_name) %>%
  na.omit() %>%
  do(broom::glance(lm(estimate~IMDscore, data = .))) %>%
  select(cause_name, year_id, adj.r.squared) %>%
  filter(year_id %in% c(2000, 2016))
essentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliable
dep_cause %>%
  ggplot() +
  geom_point(aes(year_id, adj.r.squared), show.legend = FALSE) +
  geom_line(aes(year_id, adj.r.squared, group = cause_name), show.legend = FALSE) +
  geom_text(aes(year_id, adj.r.squared, label = cause_name), data = filter(dep_cause, year_id == 2000), hjust = 1.1, size = 3) +
  geom_text(aes(year_id, adj.r.squared, label = cause_name), data = filter(dep_cause, year_id == 2016), hjust =- 0.1, size = 3) +
  expand_limits(x = c(1990, 2025), c(0,1)) +
  theme(panel.background = element_blank(), 
        axis.line = element_blank()) +
  labs(title = "Change in strength of association between deprivation and cause between 2000 and 2016", 
       subtitle = "Has mostly reduced expect for skin cancer, hypertensive heart disease,\nand cervical cancer")

NA

Change in HAQ index at LA level

 haq_files[[12]] %>%
  data.frame() %>%
  filter(change_type == "Annualized rate of change", year_start_id == 2000, year_end_id == 2016) %>%
  ggplot(aes(estimate, reorder(location_name, estimate))) +
    geom_point(size = 2)

Trend in cause specific indices

haq_files[[14]] %>%
  ggplot(aes(factor(year_id), estimate, fill= cause_name)) +
  geom_violin(show.legend = FALSE) +
  facet_wrap(~cause_name) +
  theme(strip.text.x = element_text(size = 7))

Statistical significance plot

Cause significance

eng1 <- haq_cause %>%
  filter(location_name == "England", year_id == 2016) %>%
  gather(metric, value, estimate:IMDscore ) %>%
  select(-c(decile, year_id))
haq_cause %>%
  filter(location_name != "England", year_id == 2016) %>%
  select(-c(year_id)) %>%
  gather(metric, value, estimate:IMDscore) %>% 
  na.omit() %>%
  #count(cause_name)>%
  #select(-eng_metric) %>%
  spread(metric, value) %>%
  left_join(eng1, by = c("cause_name")) %>% 
  filter(metric == "estimate") %>%
  mutate(sig = ifelse(lower > value, 1,
                      ifelse(upper < value, -1, 0))) %>%
  ggplot(aes(cause_name, reorder(location_name.x, IMDscore), fill = factor(sig, labels = c("high", "NS", "low")))) +
  geom_tile() +
  coord_fixed() +
  scale_fill_manual(values = c("red","white", "darkgreen")) +
  scale_x_discrete(position = "top") +
  theme(axis.text.y = element_text(size = 6), 
        axis.text.x.top = element_text(size = 5, angle = 90, hjust = 0)) +
  labs(x ="", 
       y = "", 
       title = "Significance chart of HAQ by UTLA and cause", 
       caption = "UTLAs ordered by decreasing IMD score", 
       fill = "Statistical significance")

Per capita primary care staff

  • HAQ score inversely correlated with deprivation ie better outcome/access in least deprived areas
  • Other associations are weak - tendency to HAQ to increase with increasing per capita GPs
LS0tDQp0aXRsZTogIkhBUSBmaWd1cmVzIGFuZCBkYXRhIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGUgPSBGQUxTRX0NCg0KbGlicmFyeShwYWNtYW4pDQpwX2xvYWQodGlkeXZlcnNlLCBkYXRhLnRhYmxlLCBmaW5nZXJ0aXBzUiwgcGhlY2hhcnRzLCBza2ltciwgZ2doaWdobGlnaHQpDQp0aGVtZV9zZXQodGhlbWVfcGhlKCkpDQoNCg0KYGBgDQoNCiMgRGF0YXNldHMNCg0KYGBge3J9DQoNCmhhcV9kYXRhIDwtIGxpc3QuZmlsZXMocGF0dGVybiA9ICIuY3N2IilbYyg2OjI2LCAyODozMCApXQ0KDQpoYXFfZmlsZXMgPC0gbWFwKGhhcV9kYXRhLCBmcmVhZCApDQoNCmhhcV9maWxlcyAlPiUNCiAgbWFwKC4sIHNraW0pDQpgYGANCg0KDQpgYGB7ciBkZXByaXZhdGlvbiwgY2FjaGU9VFJVRX0NCmRlcF9zY29yZXMgPC0gZmluZ2VydGlwc1I6OmRlcHJpdmF0aW9uX2RlY2lsZSgpDQpwcm9mX2RhdGEgPC0gZmluZ2VydGlwc19kYXRhKERvbWFpbklEID0gMTkzODEzMjY5NCkNCg0KZGVwX2xvb2t1cCA8LSBwcm9mX2RhdGEgJT4lDQogIGdyb3VwX2J5KEluZGljYXRvcklELCBBZ2UsIFNleCkgJT4lDQogIGZpbHRlcihUaW1lcGVyaW9kU29ydGFibGUgPT0gbWF4KFRpbWVwZXJpb2RTb3J0YWJsZSkpICU+JQ0KICBsZWZ0X2pvaW4oZGVwX3Njb3JlcykgJT4lDQogIHVuZ3JvdXAoKSAlPiUNCiAgc2VsZWN0KEFyZWFOYW1lLCBBcmVhQ29kZSwgSU1Ec2NvcmUsIGRlY2lsZSkgJT4lDQogIGZpbHRlcighaXMubmEoSU1Ec2NvcmUpKSAlPiUNCiAgZGlzdGluY3QoKSANCg0KaGFxIDwtICBzZXREVChoYXFfZmlsZXNbWzEwXV0gJT4lIA0KICBkYXRhLmZyYW1lKCkgKQ0KDQpoYXEgPC0gaGFxICU+JQ0KICBtdXRhdGUobG9jYXRpb25fbmFtZSA9IGNhc2Vfd2hlbihsb2NhdGlvbl9uYW1lID09ICJCcmlzdG9sLCBDaXR5IG9mIiB+ICJCcmlzdG9sIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9jYXRpb25fbmFtZSA9PSAiSGVyZWZvcmRzaGlyZSwgQ291bnR5IG9mIiB+ICJIZXJlZm9yZHNoaXJlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9jYXRpb25fbmFtZSA9PSAiS2luZ3N0b24gdXBvbiBIdWxsLCBDaXR5IG9mIiB+ICJLaW5nc3RvbiB1cG9uIEh1bGwiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9jYXRpb25fbmFtZSA9PSAiU3QgSGVsZW5zIiB+ICJTdC4gSGVsZW5zIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRSVUUgfiBsb2NhdGlvbl9uYW1lKSkgJT4lDQogIGxlZnRfam9pbihkZXBfbG9va3VwLCBieSA9IGMoImxvY2F0aW9uX25hbWUiID0gIkFyZWFOYW1lIikpICU+JQ0KICBzZWxlY3QobG9jYXRpb25fbmFtZSwgQXJlYUNvZGUsIHllYXJfaWQsIG1lYW5fdmFsdWUsIGxvd2VyX3ZhbHVlLCB1cHBlcl92YWx1ZSwgSU1Ec2NvcmUsIGRlY2lsZSkgDQogIA0KY2hlY2sgPC0gaGFxICU+JQ0KICBmaWx0ZXIoeWVhcl9pZCA9PSAyMDE2KSAlPiUNCiAgbGVmdF9qb2luKGRlcF9sb29rdXApICU+JQ0KICBmaWx0ZXIoIWlzLm5hKElNRHNjb3JlKSkNCg0KaGFxX2NhdXNlIDwtIGhhcV9maWxlc1tbMTRdXSAlPiUNCiAgZGF0YS5mcmFtZSgpDQoNCmhhcV9jYXVzZSA8LSBoYXFfY2F1c2UgJT4lDQogIG11dGF0ZShsb2NhdGlvbl9uYW1lID0gY2FzZV93aGVuKGxvY2F0aW9uX25hbWUgPT0gIkJyaXN0b2wsIENpdHkgb2YiIH4gIkJyaXN0b2wiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb2NhdGlvbl9uYW1lID09ICJIZXJlZm9yZHNoaXJlLCBDb3VudHkgb2YiIH4gIkhlcmVmb3Jkc2hpcmUiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb2NhdGlvbl9uYW1lID09ICJLaW5nc3RvbiB1cG9uIEh1bGwsIENpdHkgb2YiIH4gIktpbmdzdG9uIHVwb24gSHVsbCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb2NhdGlvbl9uYW1lID09ICJTdCBIZWxlbnMiIH4gIlN0LiBIZWxlbnMiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgVFJVRSB+IGxvY2F0aW9uX25hbWUpKSAlPiUNCiAgbGVmdF9qb2luKGRlcF9sb29rdXAsIGJ5ID0gYygibG9jYXRpb25fbmFtZSIgPSAiQXJlYU5hbWUiKSkgJT4lDQogIHNlbGVjdChsb2NhdGlvbl9uYW1lLCBBcmVhQ29kZSwgeWVhcl9pZCwgY2F1c2VfbmFtZSwgZXN0aW1hdGUsIGxvd2VyLCB1cHBlciwgSU1Ec2NvcmUsIGRlY2lsZSkgDQoNCmBgYA0KDQoNCiMjIEFtZW5hYmxlIGNvZGVzDQoNCmBgYHtyfQ0KDQpoYXFfZmlsZXNbMV0NCg0KDQpgYGANCg0KIyMgUGVyIGNhcGl0YSBiZWRzDQoNCmBgYHtyIHBlci1jYXBpdGEtYmVkc30NCnBlcl9jYXBpdGFfYmVkcyA8LSBoYXFfZmlsZXNbWzJdXSAlPiUgDQogIGRhdGEuZnJhbWUoKSANCg0KcGVyX2NhcGl0YV9iZWRzICU+JQ0KICBnZ3Bsb3QoYWVzKHBlcl9jYXBpdGFfYmVkcykpICsNCiAgZ2VvbV9kZW5zaXR5KGZpbGwgPSAiYmx1ZSIpICsNCiAgbGFicyh0aXRsZSA9ICJEaXN0cmlidXRpb24gb2YgcGVyLWNhcGl0YSBiZWRzIGJ5IFVUTEEiLCANCiAgICAgICBjYXB0aW9uID0gIk5CIGNoZWNrIEdsb3VjZXN0ZXJzaGlyZSAobG93IHZhbHVlKSIpDQpgYGANCg0KDQojIyBIb3NwaXRhbGlzYXRpb24gcmF0ZXMNCg0KYGBge3IgZHNyc30NCmRzciA8LSBoYXFfZmlsZXNbWzVdXSAlPiUgDQogIGRhdGEuZnJhbWUoKSANCg0KZHNyICU+JQ0KICBnZ3Bsb3QoYWVzKGFzLmZhY3RvcihGWUVBUiksIHZhbHVlLCBncm91cCA9IEZZRUFSKSkgKw0KICBnZW9tX2JveHBsb3QoKSArDQogIGxhYnModGl0bGUgPSAiSG9zcGl0YWxpc2F0aW9uIHJhdGUiLCANCiAgICAgICBzdWJ0aXRsZSA9ICJFYWNoIHBlcnNvbiBjb3VudGVkIG9uY2UgcGVyIHllYXIiLCANCiAgICAgICB4ID0gIkZpbmFuY2lhbCB5ZWFyIiwgDQogICAgICAgeSA9ICJEU1IgcGVyIDEwMCwwMDAiKQ0KDQpgYGANCg0KIyMgQUUgYXR0ZW5kYW5jZSByYXRlcw0KDQpgYGB7ciBhZS1kc3JzfQ0KYWUgPC0gaGFxX2ZpbGVzW1s3XV0gJT4lIA0KICBkYXRhLmZyYW1lKCkgDQoNCmFlICU+JQ0KICBnZ3Bsb3QoYWVzKGZhY3RvcihZZWFyKSwgdmFsdWUpKSArDQogIGdlb21fYm94cGxvdCgpICsNCiAgbGFicyh0aXRsZSA9ICJBRSBhdHRlbmRhbmNlIHJhdGUiLCANCiAgICAgICBzdWJ0aXRsZSA9ICJFYWNoIHBlcnNvbiBjb3VudGVkIG9uY2UgcGVyIHllYXIiLCANCiAgICAgICB4ID0gIkZpbmFuY2lhbCB5ZWFyIiwgDQogICAgICAgeSA9ICJEU1IgcGVyIDEwMCwwMDAiKSANCg0KYGBgDQoNCg0KIyMgSEFRIHRyZW5kcw0KDQpgYGB7ciBoYXEtdHJlbmRzfQ0KaGFxIDwtICBzZXREVChoYXFfZmlsZXNbWzEwXV0gJT4lIA0KICBkYXRhLmZyYW1lKCkgKQ0KDQpoYXEgPC0gaGFxICU+JQ0KICBsZWZ0X2pvaW4oZGVwX2xvb2t1cCwgYnkgPSBjKCJsb2NhdGlvbl9uYW1lIiA9ICJBcmVhTmFtZSIpICkNCg0KaGFxICU+JQ0KICBnZ3Bsb3QoYWVzKHllYXJfaWQsIG1lYW5fdmFsdWUsIGdyb3VwID0gbG9jYXRpb25fbmFtZSkpICsNCiAgZ2VvbV9saW5lKGNvbG91ciA9ICJncmV5IikgKw0KICBnZ2hpZ2hsaWdodChtZWFuX3ZhbHVlID09IG1lZGlhbihtZWFuX3ZhbHVlKSkNCg0KDQpgYGANCg0KIyMgSEFRIGxpbmsgd2l0aCBkZXByaXZhdGlvbg0KDQpgYGB7cn0NCmxpYnJhcnkoYnJvb20pDQoNCg0KbW9kZWwgPC0gbG0obWVhbl92YWx1ZSB+IElNRHNjb3JlLCBkYXRhID0gZmlsdGVyKGhhcSwgeWVhcl9pZCA9PSAyMDE2KSkNCg0KbW9kZWxfdGV4dCA8LSB0aWR5KG1vZGVsKSAlPiUgDQogIG11dGF0ZShtb2RlbCA9IHBhc3RlKCJIQVEgPSAiLCByb3VuZCguWzEsMl0sIDIpLCByb3VuZCguWzIsMl0sMiksICIqIElNRHNjb3JlOyAiLCAicCA8IDAuMDAxOyAiICkpDQoNCm1vZGVsX3RleHRfcjIgPC0gZ2xhbmNlKG1vZGVsKSAlPiUNCiAgbXV0YXRlKHJzcSA9IHBhc3RlKCJyXjIgPSAiLCByb3VuZChyLnNxdWFyZWQsIDMpKSkNCg0KYW5ub3RhdGlvbiA8LSBwYXN0ZShtb2RlbF90ZXh0JG1vZGVsWzFdLCBtb2RlbF90ZXh0X3IyJHJzcSkNCg0KaGFxICU+JQ0KICBmaWx0ZXIoeWVhcl9pZCA9PSAyMDE2KSAlPiUNCiAgZ2dwbG90KGFlcyhtZWFuX3ZhbHVlLCBJTURzY29yZSkpICsgDQogIGdlb21fcG9pbnQoKSArDQogIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIpICsNCiAgbGFicyhzdWJ0aXRsZSA9IHBhc3RlKGFubm90YXRpb24pKQ0KDQoNCmBgYA0KDQojIyBUcmVuZCBpbiBhc3NvY2lhdGlvbiBiZXR3ZWVuIGRlcHJpdmF0aW9uIGFuZCBIQVENCg0KYGBge3IgZGVwLWhhcX0NCg0KDQpkZXBfbG9va3VwICU+JSANCiAgbGVmdF9qb2luKGhhcSkgJT4lDQogIGdyb3VwX2J5KHllYXJfaWQpICU+JQ0KICBuYS5vbWl0KCkgJT4lDQogIGRvKGJyb29tOjpnbGFuY2UobG0obWVhbl92YWx1ZSB+IElNRHNjb3JlLCBkYXRhID0gLikpKSAlPiUNCiAgYXJyYW5nZSh5ZWFyX2lkKSAlPiUNCiAgZ2dwbG90KGFlcyh5ZWFyX2lkLCByLnNxdWFyZWQpKSArDQogIGdlb21fbGluZSgpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgZ2VvbV9zbW9vdGgoKSArDQogIGxhYnModGl0bGUgPSAiVHJlbmQgaW4gcmVsYXRpb25zaGlwIGJldHdlZW4gSU1EIGFuZCBIQVEiLA0KICAgICAgIHN1YnRpdGxlID0gIlN0cmVuZ3RoIG9mIGFzc29jaWF0aW9uIGhhcyB3ZWFrZW5lZCBvdmVyIHRpbWUiLCANCiAgICAgICBjYXB0aW9uID0gIlN0cmVuZ3RoIG9mIGFzc29jaWF0aW9uIG1lYXN1cmVkIGJ5IHJeMiIsIA0KICAgICAgIHggPSAiWWVhciIpDQoNCg0KDQpgYGANCg0KIyMgRGVwcml2YXRpb24gdnMgSEFRIGluZGV4IGNvbXBvbmVudHMNCg0KYGBge3J9DQpkZXBfY2F1c2UgPC0gZGVwX2xvb2t1cCAlPiUNCiAgbGVmdF9qb2luKGhhcV9maWxlc1tbMTRdXSwgYnkgPSBjKCJBcmVhTmFtZSIgPSAibG9jYXRpb25fbmFtZSIpKSAlPiUNCiAgZ3JvdXBfYnkoeWVhcl9pZCwgY2F1c2VfbmFtZSkgJT4lDQogIG5hLm9taXQoKSAlPiUNCiAgZG8oYnJvb206OmdsYW5jZShsbShlc3RpbWF0ZX5JTURzY29yZSwgZGF0YSA9IC4pKSkgJT4lDQogIHNlbGVjdChjYXVzZV9uYW1lLCB5ZWFyX2lkLCBhZGouci5zcXVhcmVkKSAlPiUNCiAgZmlsdGVyKHllYXJfaWQgJWluJSBjKDIwMDAsIDIwMTYpKQ0KDQpkZXBfY2F1c2UgJT4lDQogIGdncGxvdCgpICsNCiAgZ2VvbV9wb2ludChhZXMoeWVhcl9pZCwgYWRqLnIuc3F1YXJlZCksIHNob3cubGVnZW5kID0gRkFMU0UpICsNCiAgZ2VvbV9saW5lKGFlcyh5ZWFyX2lkLCBhZGouci5zcXVhcmVkLCBncm91cCA9IGNhdXNlX25hbWUpLCBzaG93LmxlZ2VuZCA9IEZBTFNFKSArDQogIGdlb21fdGV4dChhZXMoeWVhcl9pZCwgYWRqLnIuc3F1YXJlZCwgbGFiZWwgPSBjYXVzZV9uYW1lKSwgZGF0YSA9IGZpbHRlcihkZXBfY2F1c2UsIHllYXJfaWQgPT0gMjAwMCksIGhqdXN0ID0gMS4xLCBzaXplID0gMykgKw0KICBnZW9tX3RleHQoYWVzKHllYXJfaWQsIGFkai5yLnNxdWFyZWQsIGxhYmVsID0gY2F1c2VfbmFtZSksIGRhdGEgPSBmaWx0ZXIoZGVwX2NhdXNlLCB5ZWFyX2lkID09IDIwMTYpLCBoanVzdCA9LSAwLjEsIHNpemUgPSAzKSArDQogIGV4cGFuZF9saW1pdHMoeCA9IGMoMTk5MCwgMjAyNSksIGMoMCwxKSkgKw0KICB0aGVtZShwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9ibGFuaygpLCANCiAgICAgICAgYXhpcy5saW5lID0gZWxlbWVudF9ibGFuaygpKSArDQogIGxhYnModGl0bGUgPSAiQ2hhbmdlIGluIHN0cmVuZ3RoIG9mIGFzc29jaWF0aW9uIGJldHdlZW4gZGVwcml2YXRpb24gYW5kIGNhdXNlIGJldHdlZW4gMjAwMCBhbmQgMjAxNiIsIA0KICAgICAgIHN1YnRpdGxlID0gIkhhcyBtb3N0bHkgcmVkdWNlZCBleHBlY3QgZm9yIHNraW4gY2FuY2VyLCBoeXBlcnRlbnNpdmUgaGVhcnQgZGlzZWFzZSxcbmFuZCBjZXJ2aWNhbCBjYW5jZXIiKQ0KICANCg0KDQoNCg0KYGBgDQoNCg0KIyMgQ2hhbmdlIGluIEhBUSBpbmRleCBhdCBMQSBsZXZlbA0KDQpgYGB7ciBmaWcuaGVpZ2h0PTE0fQ0KDQoNCiBoYXFfZmlsZXNbWzEyXV0gJT4lDQogIGRhdGEuZnJhbWUoKSAlPiUNCiAgZmlsdGVyKGNoYW5nZV90eXBlID09ICJBbm51YWxpemVkIHJhdGUgb2YgY2hhbmdlIiwgeWVhcl9zdGFydF9pZCA9PSAyMDAwLCB5ZWFyX2VuZF9pZCA9PSAyMDE2KSAlPiUNCiAgZ2dwbG90KGFlcyhlc3RpbWF0ZSwgcmVvcmRlcihsb2NhdGlvbl9uYW1lLCBlc3RpbWF0ZSkpKSArDQogICAgZ2VvbV9wb2ludChzaXplID0gMikNCg0KDQoNCmBgYA0KDQojIyBUcmVuZCBpbiBjYXVzZSBzcGVjaWZpYyBpbmRpY2VzDQoNCmBgYHtyIGZpZy53aWR0aD0xMH0NCg0KaGFxX2ZpbGVzW1sxNF1dICU+JQ0KICBnZ3Bsb3QoYWVzKGZhY3Rvcih5ZWFyX2lkKSwgZXN0aW1hdGUsIGZpbGw9IGNhdXNlX25hbWUpKSArDQogIGdlb21fdmlvbGluKHNob3cubGVnZW5kID0gRkFMU0UpICsNCiAgZmFjZXRfd3JhcCh+Y2F1c2VfbmFtZSkgKw0KICB0aGVtZShzdHJpcC50ZXh0LnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDcpKQ0KDQoNCg0KYGBgDQoNCiMjIFN0YXRpc3RpY2FsIHNpZ25pZmljYW5jZSBwbG90DQoNCmBgYHtyIHN0YXQtc2lnLCBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9IDEwfQ0KDQplbmcgPC0gaGFxICU+JQ0KICBmaWx0ZXIobG9jYXRpb25fbmFtZSA9PSAiRW5nbGFuZCIpICU+JQ0KICBzZWxlY3QobG9jYXRpb25fbmFtZSwgeWVhcl9pZCwgY29udGFpbnMoInZhbHVlIikpICU+JQ0KICBnYXRoZXIobWV0cmljLCB2YWx1ZSwgbWVhbl92YWx1ZSkNCg0KDQpoYXEgJT4lDQogIGZpbHRlcihsb2NhdGlvbl9uYW1lICE9ICJFbmdsYW5kIikgJT4lDQogIHNlbGVjdChsb2NhdGlvbl9uYW1lLCB5ZWFyX2lkLCBjb250YWlucygidmFsdWUiKSwgSU1Ec2NvcmUpICU+JQ0KICBuYS5vbWl0KCkgJT4lDQogIGdhdGhlcihtZXRyaWMsIHZhbHVlLCBtZWFuX3ZhbHVlOklNRHNjb3JlKSAlPiUNCiAgI2Z1bGxfam9pbihlbmcsIGJ5ID0gYygibWV0cmljIiwgInllYXJfaWQiKSkgJT4lDQogICNjb3VudCh5ZWFyX2lkKQ0KICBtdXRhdGUoZW5nX3llYXIgPSByZXAoZW5nJHllYXJfaWQsIDYwMCksIA0KICAgICAgICAgIGVuZ19tZXRyaWMgPSByZXAoZW5nJG1ldHJpYywgZWFjaCA9IDYwMCksDQogICAgICAgICAgZW5nX3ZhbHVlID0gcmVwKGVuZyR2YWx1ZSwgNjAwKSkgJT4lDQogICNzZWxlY3QoLWVuZ19tZXRyaWMpICU+JQ0KICBzcHJlYWQobWV0cmljLCB2YWx1ZSkgJT4lDQogIG11dGF0ZShzaWcgPSBpZmVsc2UobG93ZXJfdmFsdWUgPiBlbmdfdmFsdWUsIDEsDQogICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKHVwcGVyX3ZhbHVlIDwgZW5nX3ZhbHVlLCAtMSwgMCkpKSAlPiUNCiAgZ2dwbG90KGFlcyh5ZWFyX2lkLCBmY3RfcmVvcmRlcihsb2NhdGlvbl9uYW1lLCBJTURzY29yZSksIGZpbGwgPSBmYWN0b3Ioc2lnLCBsYWJlbHMgPSBjKCJoaWdoIiwgIk5TIiwgImxvdyIpKSkpICsNCiAgZ2VvbV90aWxlKCkgKw0KICBjb29yZF9maXhlZCgpICsNCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYygicmVkIiwid2hpdGUiLCAiZGFya2dyZWVuIikpICsNCiAgI3NjYWxlX3hfZGlzY3JldGUocG9zaXRpb24gPSAidG9wIikgKw0KICB0aGVtZShheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gNikpICsNCiAgbGFicyh4ID0iIiwgDQogICAgICAgeSA9ICIiLCANCiAgICAgICB0aXRsZSA9ICJTaWduaWZpY2FuY2UgY2hhcnQgb2YgSEFRIGJ5IFVUTEEgYW5kIHllYXIiLCANCiAgICAgICBjYXB0aW9uID0gIlVUTEFzIG9yZGVyZWQgYnkgZGVjcmVhc2luZyBJTUQgc2NvcmUiLCANCiAgICAgICBmaWxsID0gIlN0YXRpc3RpY2FsIHNpZ25pZmljYW5jZSIpDQoNCg0KDQoNCg0KYGBgDQoNCiMjIENhdXNlIHNpZ25pZmljYW5jZQ0KDQpgYGB7ciBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9OH0NCg0KZW5nMSA8LSBoYXFfY2F1c2UgJT4lDQogIGZpbHRlcihsb2NhdGlvbl9uYW1lID09ICJFbmdsYW5kIiwgeWVhcl9pZCA9PSAyMDE2KSAlPiUNCiAgZ2F0aGVyKG1ldHJpYywgdmFsdWUsIGVzdGltYXRlOklNRHNjb3JlICkgJT4lDQogIHNlbGVjdCgtYyhkZWNpbGUsIHllYXJfaWQpKQ0KDQoNCmhhcV9jYXVzZSAlPiUNCiAgZmlsdGVyKGxvY2F0aW9uX25hbWUgIT0gIkVuZ2xhbmQiLCB5ZWFyX2lkID09IDIwMTYpICU+JQ0KICBzZWxlY3QoLWMoeWVhcl9pZCkpICU+JQ0KICBnYXRoZXIobWV0cmljLCB2YWx1ZSwgZXN0aW1hdGU6SU1Ec2NvcmUpICU+JSANCiAgbmEub21pdCgpICU+JQ0KICAjY291bnQoY2F1c2VfbmFtZSk+JQ0KICAjc2VsZWN0KC1lbmdfbWV0cmljKSAlPiUNCiAgc3ByZWFkKG1ldHJpYywgdmFsdWUpICU+JQ0KICBsZWZ0X2pvaW4oZW5nMSwgYnkgPSBjKCJjYXVzZV9uYW1lIikpICU+JSANCiAgZmlsdGVyKG1ldHJpYyA9PSAiZXN0aW1hdGUiKSAlPiUNCiAgbXV0YXRlKHNpZyA9IGlmZWxzZShsb3dlciA+IHZhbHVlLCAxLA0KICAgICAgICAgICAgICAgICAgICAgIGlmZWxzZSh1cHBlciA8IHZhbHVlLCAtMSwgMCkpKSAlPiUNCiAgZ2dwbG90KGFlcyhjYXVzZV9uYW1lLCByZW9yZGVyKGxvY2F0aW9uX25hbWUueCwgSU1Ec2NvcmUpLCBmaWxsID0gZmFjdG9yKHNpZywgbGFiZWxzID0gYygiaGlnaCIsICJOUyIsICJsb3ciKSkpKSArDQogIGdlb21fdGlsZSgpICsNCiAgY29vcmRfZml4ZWQoKSArDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoInJlZCIsIndoaXRlIiwgImRhcmtncmVlbiIpKSArDQogIHNjYWxlX3hfZGlzY3JldGUocG9zaXRpb24gPSAidG9wIikgKw0KICB0aGVtZShheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gNiksIA0KICAgICAgICBheGlzLnRleHQueC50b3AgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDUsIGFuZ2xlID0gOTAsIGhqdXN0ID0gMCkpICsNCiAgbGFicyh4ID0iIiwgDQogICAgICAgeSA9ICIiLCANCiAgICAgICB0aXRsZSA9ICJTaWduaWZpY2FuY2UgY2hhcnQgb2YgSEFRIGJ5IFVUTEEgYW5kIGNhdXNlIiwgDQogICAgICAgY2FwdGlvbiA9ICJVVExBcyBvcmRlcmVkIGJ5IGRlY3JlYXNpbmcgSU1EIHNjb3JlIiwgDQogICAgICAgZmlsbCA9ICJTdGF0aXN0aWNhbCBzaWduaWZpY2FuY2UiKQ0KDQoNCg0KDQpgYGANCg0KIyMgUGVyIGNhcGl0YSBwcmltYXJ5IGNhcmUgc3RhZmYNCg0KYGBge3J9DQoNCmNvcnIgPC0gbGlzdC5maWxlcyhwYXR0ZXJuID0gImNzdiIpWzldICU+JQ0KICBmcmVhZCgpDQoNCg0KY29yciAlPiUgbmEub21pdCgpICU+JQ0KICBnYXRoZXIobWV0cmljLCB2YWx1ZSkgJT4lDQogIGdncGxvdChhZXMobWV0cmljLCB2YWx1ZSwgZmlsbCA9IG1ldHJpYyksIGFscGhhID0gMC42KSArDQogIGdlb21fYm94cGxvdCgpDQogIA0KY29yciAlPiUgbmEub21pdCAlPiUNCiAgY29yKCkgJT4lDQogIGNvcnJwbG90Ojpjb3JycGxvdC5taXhlZCgpDQoNCg0KbW9kIDwtIGNvcnIgJT4lIG5hLm9taXQNCm1vZDEgPC0gbG0oZXN0aW1hdGUgfi4sIGRhdGEgPSBtb2QpDQptb2QyIDwtIGxtKHZhbHVlIH4uLCBkYXRhID0gbW9kKQ0KDQp0aWR5KG1vZDEpDQp0aWR5KG1vZDIpDQoNCmBgYA0KDQoNCiogSEFRIHNjb3JlIGludmVyc2VseSBjb3JyZWxhdGVkIHdpdGggZGVwcml2YXRpb24gaWUgYmV0dGVyIG91dGNvbWUvYWNjZXNzIGluIGxlYXN0IGRlcHJpdmVkIGFyZWFzIA0KKiBPdGhlciBhc3NvY2lhdGlvbnMgYXJlIHdlYWsgLSB0ZW5kZW5jeSB0byBIQVEgdG8gaW5jcmVhc2Ugd2l0aCBpbmNyZWFzaW5nIHBlciBjYXBpdGEgR1BzDQoNCg0KDQo=