Datasets
haq_files %>%
map(., skim)
[[1]]
Skim summary statistics
n obs: 41
n variables: 2
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
cause 0 41 41 6 67 0 41
cause1 2 39 41 0 4 7 6
[[2]]
Skim summary statistics
n obs: 150
n variables: 7
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
GeoName 0 150 150 4 28 0 150
i.GeoName 0 150 150 4 28 0 150
UTLA13CD 0 150 150 9 9 0 150
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
Period 0 150 150 2016 0 2016 2016 2016 2016 2016 ▁▁▁▇▁▁▁▁
sum 0 150 150 368389.93 274974.04 38949 2e+05 276704 413393.25 1540438 ▇▇▂▂▁▁▁▁
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
per_capita_beds 0 150 150 175.92 36.16 10.89 153.22 172.59 194.7 271.23 ▁▁▁▃▇▇▂▂
total_beds 0 150 150 643.4 481.5 48.09 354.5 492.16 757.14 2360.04 ▃▇▂▁▁▁▁▁
[[3]]
Skim summary statistics
n obs: 152
n variables: 3
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
OfficialCode 0 152 152 9 9 0 152
RESLADST 0 152 152 2 4 0 152
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
N 0 152 152 323 0 323 323 323 323 323 ▁▁▁▇▁▁▁▁
[[4]]
Skim summary statistics
n obs: 148
n variables: 6
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
estimate 0 148 148 89.77 3.12 79.71 87.6 90.15 92.1 96.6 ▁▁▃▅▆▇▃▂
IMDscore 4 144 148 23.11 7.96 5.65 17.22 23.23 28.57 42 ▂▅▇▆▇▅▃▂
per_capita_beds 1 147 148 176.82 33.78 114.45 153.26 172.59 194.46 271.23 ▂▆▇▇▅▁▂▁
per_capita_gp 4 144 148 47.96 6.45 31.34 43.29 47.84 51.8 65.55 ▁▂▇▇▇▅▂▁
per_capita_nurses 4 144 148 24.58 7.29 10.95 18.73 24.71 29.27 48.23 ▃▇▆▇▅▂▁▁
value 4 144 148 39.59 8.88 20.37 33.52 37.75 44.87 67.23 ▁▃▇▆▃▂▂▁
[[5]]
Skim summary statistics
n obs: 1208
n variables: 5
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
AreaName 0 1208 1208 4 28 0 151
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
FYEAR 0 1208 1208 1364.5 231.52 1011 1187.75 1364.5 1541.25 1718 ▇▇▇▇▇▇▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
lowercl 0 1208 1208 4431.47 1498.52 1990.38 3389.27 3950.35 5007.75 11122.24 ▂▇▃▂▁▁▁▁
uppercl 0 1208 1208 4604.02 1522.37 2433.46 3539.21 4104.58 5197.69 11473.72 ▅▇▃▂▁▁▁▁
value 0 1208 1208 4516.96 1510.01 2351.24 3464 4034.18 5105.26 11296.97 ▅▇▃▂▁▁▁▁
[[6]]
Skim summary statistics
n obs: 1359
n variables: 5
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
RESLADST 0 1359 1359 2 4 0 151
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
Year 0 1359 1359 2012 2.58 2008 2010 2012 2014 2016 ▇▃▃▃▃▃▃▃
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
lowercl 0 1359 1359 22592.39 6377.37 546.39 19287.52 22611.2 26071.47 61491.27 ▁▁▇▆▁▁▁▁
uppercl 0 1359 1359 22978.42 6463.28 605.72 19634.69 23001.21 26508.11 62438 ▁▁▇▆▁▁▁▁
value 0 1359 1359 22784.63 6419.32 575.5 19456.64 22794.51 26290.44 61963.28 ▁▁▇▆▁▁▁▁
[[7]]
Skim summary statistics
n obs: 1359
n variables: 6
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
OfficialCode 0 1359 1359 9 9 0 151
RESLADST 0 1359 1359 2 4 0 151
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
Year 0 1359 1359 2012 2.58 2008 2010 2012 2014 2016 ▇▃▃▃▃▃▃▃
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
lowercl 0 1359 1359 22592.39 6377.37 546.39 19287.52 22611.2 26071.47 61491.27 ▁▁▇▆▁▁▁▁
uppercl 0 1359 1359 22978.42 6463.28 605.72 19634.69 23001.21 26508.11 62438 ▁▁▇▆▁▁▁▁
value 0 1359 1359 22784.63 6419.32 575.5 19456.64 22794.51 26290.44 61963.28 ▁▁▇▆▁▁▁▁
[[8]]
Skim summary statistics
n obs: 2416
n variables: 5
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
RESLADST 0 2416 2416 2 4 0 151
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
Year 0 2416 2416 2008.5 4.61 2001 2004.75 2008.5 2012.25 2016 ▇▇▇▇▇▇▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
lowercl 0 2416 2416 8087.71 1584.93 2855.04 6889.26 7923.32 9187.08 14018.74 ▁▁▆▇▆▃▁▁
uppercl 0 2416 2416 8331.79 1606.49 3045.9 7105.99 8152.68 9447.93 14426.77 ▁▁▇▇▆▃▁▁
value 0 2416 2416 8208.91 1594.89 2949.37 6990.91 8041.27 9311.03 14221.68 ▁▁▆▇▆▃▁▁
[[9]]
Skim summary statistics
n obs: 45904
n variables: 9
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
GeoName 0 45904 45904 4 28 0 151
OfficialCode 0 45904 45904 9 9 0 151
RESLADST 0 45904 45904 2 4 0 151
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
pop 0 45904 45904 18160.9 16336.18 28 8165 13575 21809.75 112802 ▇▅▂▁▁▁▁▁
sum 0 45904 45904 1379.06 1228.02 1 639 995 1647 15549 ▇▂▁▁▁▁▁▁
Year 0 45904 45904 2008.5 4.61 2001 2004.75 2008.5 2012.25 2016 ▇▇▇▇▇▇▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
lowercl 0 45904 45904 8087.71 1584.62 2855.04 6889.26 7923.32 9187.08 14018.74 ▁▁▆▇▆▃▁▁
uppercl 0 45904 45904 8331.79 1606.17 3045.9 7105.99 8152.68 9447.93 14426.77 ▁▁▇▇▆▃▁▁
value 0 45904 45904 8208.91 1594.57 2949.37 6990.91 8041.27 9311.03 14221.68 ▁▁▆▇▆▃▁▁
[[10]]
Skim summary statistics
n obs: 5920
n variables: 12
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
age_group_name 0 5920 5920 8 8 0 1
covariate_name_short 0 5920 5920 4 4 0 1
location_name 0 5920 5920 4 28 0 160
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
age_group_id 0 5920 5920 22 0 22 22 22 22 22 ▁▁▁▇▁▁▁▁
covariate_id 0 5920 5920 1099 0 1099 1099 1099 1099 1099 ▁▁▁▇▁▁▁▁
location_id 0 5920 5920 42212.32 9703.42 4618 44672.75 44712.5 44752.25 44792 ▁▁▁▁▁▁▁▇
model_version_id 0 5920 5920 11180 0 11180 11180 11180 11180 11180 ▁▁▁▇▁▁▁▁
sex_id 0 5920 5920 3 0 3 3 3 3 3 ▁▁▁▇▁▁▁▁
year_id 0 5920 5920 1998 10.68 1980 1989 1998 2007 2016 ▇▇▆▇▆▇▆▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
lower_value 0 5920 5920 76.75 4.95 65.83 72.84 76.81 80.69 88.28 ▂▆▇▇▇▇▅▁
mean_value 0 5920 5920 77.68 5 66.64 73.76 77.72 81.66 89.35 ▂▆▇▇▇▇▅▁
upper_value 0 5920 5920 78.62 5.06 67.46 74.64 78.67 82.64 90.48 ▂▆▇▇▇▇▅▁
[[11]]
Skim summary statistics
n obs: 4650
n variables: 42
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
ihme_loc_id 0 4650 4650 1 9 0 775
location_name 0 4650 4650 3 48 0 771
national_iso3 0 4650 4650 1 3 0 224
region_name 0 4650 4650 0 28 48 22
sdi_quintile 174 4476 4650 7 15 0 5
super_region_name 0 4650 4650 0 48 6 8
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
level 0 4650 4650 4.14 1.14 0 3 4 5 6 ▁▁▁▅▁▇▂▃
location_id 0 4650 4650 18216.26 20068.08 1 197 4735 43910 44792 ▇▁▁▁▁▁▂▃
year_id 0 4650 4650 2002.67 8.79 1990 1995 2002.5 2010 2016 ▇▇▁▇▇▁▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
i_adversemed 0 4650 4650 57.08 26.53 0 37.21 57.27 79.84 100 ▂▅▅▇▆▆▇▇
i_appendicitis 0 4650 4650 68.4 31.4 0.46 40.64 73.69 99.92 100 ▁▂▂▂▂▁▁▇
i_breastcancer 0 4650 4650 56.73 24.68 0 36.24 56.22 77.68 100 ▁▃▇▇▇▇▇▆
i_cervicalcancer 0 4650 4650 56.94 19.51 0 43.74 54.6 68.89 99.99 ▁▁▂▇▇▅▂▃
i_chronicresp 0 4650 4650 61.54 21.58 0.03 46.56 65.32 76.76 100 ▁▁▃▃▅▇▆▃
i_ckd 0 4650 4650 56.27 28.43 0.14 32.2 53.58 80.99 100 ▂▃▇▆▅▅▃▇
i_coloncancer 0 4650 4650 55.26 25.11 0.04 33.93 53.44 77.98 100 ▁▂▇▅▅▅▆▅
i_congheart 0 4650 4650 51.87 22.08 0.016 35.04 51.38 66.58 99.99 ▁▃▆▇▇▆▃▃
i_diabetes 0 4650 4650 66.27 21.38 0 52.07 66 84.82 100 ▁▁▂▅▇▇▆▇
i_diarrhea 0 4650 4650 59.01 31.79 0 27.62 62.02 89.98 100 ▂▃▃▂▂▂▃▇
i_diptheria 0 4650 4650 97.68 10.86 0.098 100 100 100 100 ▁▁▁▁▁▁▁▇
i_epilepsy 0 4650 4650 62.97 22.83 0 48.83 63.8 77.21 100 ▁▁▂▅▇▇▃▆
i_gallbladder 0 4650 4650 63.14 23.77 0 43.69 65.92 83.63 100 ▁▂▃▇▅▅▇▇
i_haq 0 4650 4650 60.96 23.25 10.59 39.28 61.51 83.71 97.13 ▁▅▆▅▅▃▇▇
i_hernia 0 4650 4650 66.45 28.05 0.37 44.97 72.07 93 100 ▁▂▂▃▃▃▅▇
i_hodgkinlymph 0 4650 4650 42.31 31.21 0.27 15.98 25.3 73.04 100 ▂▇▂▁▂▂▂▃
i_hyperhd 0 4650 4650 55.36 24.06 0 36.71 52.78 77.84 99.99 ▁▃▆▇▆▅▇▃
i_ihd 0 4650 4650 57.17 23.12 0 40.06 56.51 75.51 100 ▁▃▅▇▇▇▆▅
i_leukemia 0 4650 4650 41.97 26.35 2.04 22.96 30.89 59.02 100 ▁▇▆▂▂▂▂▂
i_lris 0 4650 4650 47.08 20.41 0.00015 31.59 49.95 61.99 100 ▂▃▅▅▇▆▁▁
i_maternal 0 4650 4650 65.68 32.26 0.081 35.59 70.47 99.4 100 ▁▂▂▂▂▂▂▇
i_measles 0 4650 4650 73.16 32.25 0 41.88 99.19 100 100 ▁▁▂▂▁▁▁▇
i_neonatal 0 4650 4650 45.8 26.53 0.013 22.6 41.26 67.64 100 ▃▇▇▃▅▆▃▂
i_pud 0 4650 4650 55.68 24.06 0.00042 39.41 57.23 73.33 100 ▂▃▃▆▇▆▅▃
i_rheuhd 0 4650 4650 59.6 25.96 0 39.51 64.39 79.49 100 ▂▃▃▃▅▇▆▆
i_skincancer 0 4650 4650 44.34 32.48 0 13.22 33.42 80.47 100 ▇▆▅▂▁▁▇▅
i_stroke 0 4650 4650 49.12 24.48 0 29.57 48.45 68.87 100 ▃▆▇▆▆▇▅▂
i_tb 0 4650 4650 59.79 30.51 0 30.47 61.39 90.12 100 ▁▅▃▂▃▂▃▇
i_testcancer 0 4650 4650 49.92 32.89 0.37 18.28 41.54 84.46 100 ▃▇▃▂▂▂▅▆
i_tetanus 0 4650 4650 80.94 28.92 0 64.56 100 100 100 ▁▁▁▁▁▁▁▇
i_uris 0 4650 4650 97.94 8.11 15.86 99.98 100 100 100 ▁▁▁▁▁▁▁▇
i_uterinecancer 0 4650 4650 54.78 29.35 0 26.92 54.7 83.09 100 ▂▇▆▅▃▅▇▇
i_whoopcough 0 4650 4650 75.43 27.39 6.25 49.11 89.85 100 100 ▁▁▂▂▁▁▁▇
[[12]]
Skim summary statistics
n obs: 984
n variables: 12
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
cause_name 0 984 984 9 9 0 1
change_type 0 984 984 15 25 0 2
location_name 0 984 984 4 28 0 164
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
cause_id 0 984 984 100 0 100 100 100 100 100 ▁▁▁▇▁▁▁▁
cause_id.1 0 984 984 100 0 100 100 100 100 100 ▁▁▁▇▁▁▁▁
level 0 984 984 5.88 0.44 3 6 6 6 6 ▁▁▁▁▁▁▁▇
location_id 0 984 984 41216.89 11476.03 95 44669.75 44710.5 44751.25 44792 ▁▁▁▁▁▁▁▇
year_end_id 0 984 984 2010.67 7.55 2000 2000 2016 2016 2016 ▃▁▁▁▁▁▁▇
year_start_id 0 984 984 1993.33 4.72 1990 1990 1990 2000 2000 ▇▁▁▁▁▁▁▃
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
estimate 0 984 984 4.29 4.29 0.19 0.56 1.81 6.7 15.28 ▇▁▂▂▁▁▂▁
lower 0 984 984 2.84 3.23 -0.71 0.38 0.69 4.34 12.23 ▇▁▂▂▁▁▁▁
uppper 0 984 984 5.72 5.44 0.39 0.73 3.57 9.41 18.43 ▇▁▁▃▁▁▂▁
[[13]]
Skim summary statistics
n obs: 895968
n variables: 9
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
age_group 0 895968 895968 6 14 0 23
cause_name 0 895968 895968 7 50 0 26
location_name 0 895968 895968 4 28 0 153
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
cause_id 0 895968 895968 472.93 131.15 297 340 492 531 849 ▇▂▆▅▁▂▁▁
level 0 895968 895968 5.96 0.28 4 6 6 6 6 ▁▁▁▁▁▁▁▇
location_id 0 895968 895968 43876.65 5952.31 433 44678 44716 44754 44792 ▁▁▁▁▁▁▁▇
sex_id 0 895968 895968 1.5 0.5 1 1 1.5 2 2 ▇▁▁▁▁▁▁▇
year_id 0 895968 895968 2002.67 8.79 1990 1995 2002.5 2010 2016 ▇▇▁▇▇▁▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
joint_paf 0 895968 895968 0.25 0.36 -0.12 0 0 0.44 1 ▇▁▁▁▁▁▁▂
[[14]]
Skim summary statistics
n obs: 32472
n variables: 9
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
cause_name 0 32472 32472 6 50 0 33
location_name 0 32472 32472 4 28 0 164
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
cause_id 0 32472 32472 459.27 135.75 100 341 484 529 849 ▁▁▇▃▇▂▁▁
level 0 32472 32472 5.88 0.44 3 6 6 6 6 ▁▁▁▁▁▁▁▇
location_id 0 32472 32472 41216.89 11470.38 95 44669.75 44710.5 44751.25 44792 ▁▁▁▁▁▁▁▇
year_id 0 32472 32472 2002.67 8.79 1990 1995 2002.5 2010 2016 ▇▇▁▇▇▁▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
estimate 0 32472 32472 82.07 16.08 14.38 70.97 84.16 98.64 100 ▁▁▁▁▂▃▅▇
lower 0 32472 32472 76.73 19.03 7.17 62.9 77.96 95.02 100 ▁▁▁▂▃▅▅▇
upper 0 32472 32472 87.13 13.66 20.93 78.71 90.54 100 100 ▁▁▁▁▂▂▃▇
[[15]]
Skim summary statistics
n obs: 31488
n variables: 9
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
cause_name 0 31488 31488 6 50 0 32
location_name 0 31488 31488 4 28 0 164
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
cause_id 0 31488 31488 470.5 121.84 297 359.75 485.5 529.5 849 ▇▃▇▅▂▂▁▁
level 0 31488 31488 5.88 0.44 3 6 6 6 6 ▁▁▁▁▁▁▁▇
location_id 0 31488 31488 41216.89 11470.38 95 44669.75 44710.5 44751.25 44792 ▁▁▁▁▁▁▁▇
year_id 0 31488 31488 2002.67 8.79 1990 1995 2002.5 2010 2016 ▇▇▁▇▇▁▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
estimate 0 31488 31488 0.053 0.12 3.8e-09 2.4e-06 1.3e-05 0.004 0.86 ▇▁▁▁▁▁▁▁
lower 0 31488 31488 0.045 0.11 2.4e-09 1.8e-06 1e-05 0.0021 0.79 ▇▁▁▁▁▁▁▁
upper 0 31488 31488 0.062 0.14 5.4e-09 3.1e-06 1.7e-05 0.0051 0.95 ▇▁▁▁▁▁▁▁
[[16]]
Skim summary statistics
n obs: 624
n variables: 5
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
Column 1 623 624 0 2 8 616
Comments 0 624 624 0 189 36 2
Description 0 624 624 0 111 8 617
Field Type 0 624 624 0 9 8 4
Name of Field 0 624 624 0 32 8 617
[[17]]
Skim summary statistics
n obs: 7312
n variables: 616
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
CCG_CODE 0 7312 7312 0 3 1 208
CCG_NAME 0 7312 7312 0 54 1 208
HEE_REGION_CODE 0 7312 7312 0 5 1 14
HEE_REGION_NAME 0 7312 7312 0 46 1 14
PRAC_CODE 0 7312 7312 0 6 1 7312
PRAC_NAME 0 7312 7312 0 40 1 6887
REGION_CODE 0 7312 7312 0 3 1 5
REGION_GEOG_CODE 0 7312 7312 0 3 1 15
REGION_GEOG_NAME 0 7312 7312 0 48 1 15
REGION_NAME 0 7312 7312 0 28 1 5
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
FEMALE_ADMIN_APP_HC 1 7311 7312 0.1 0.42 0 0 0 0 12 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_ESTATES_ANC_HC 1 7311 7312 0.15 0.62 0 0 0 0 11 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_HC 1 7311 7312 10.5 7.92 0 5 9 14 114 ▇▂▁▁▁▁▁▁
FEMALE_ADMIN_HC_25TO29 1 7311 7312 0.6 1 0 0 0 1 13 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_HC_30TO34 1 7311 7312 0.62 0.99 0 0 0 1 16 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_HC_35TO39 1 7311 7312 0.65 0.96 0 0 0 1 10 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_HC_40TO44 1 7311 7312 0.83 1.09 0 0 0 1 11 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_HC_45TO49 1 7311 7312 1.38 1.58 0 0 1 2 23 ▇▂▁▁▁▁▁▁
FEMALE_ADMIN_HC_50TO54 1 7311 7312 1.84 1.97 0 0 1 3 19 ▇▂▁▁▁▁▁▁
FEMALE_ADMIN_HC_55TO59 1 7311 7312 1.86 1.95 0 0 1 3 20 ▇▃▁▁▁▁▁▁
FEMALE_ADMIN_HC_60TO64 1 7311 7312 1.3 1.54 0 0 1 2 12 ▇▃▁▁▁▁▁▁
FEMALE_ADMIN_HC_65TO69 1 7311 7312 0.42 0.75 0 0 0 1 10 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_HC_70PLUS 1 7311 7312 0.21 0.53 0 0 0 0 6 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_HC_UNDER25 1 7311 7312 0.7 1.16 0 0 0 1 14 ▇▂▁▁▁▁▁▁
FEMALE_ADMIN_HC_UNKNOWN_AGE 0 7312 7312 0.096 0.89 0 0 0 0 27 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_MANAGE_PTNR_HC 1 7311 7312 0.011 0.1 0 0 0 0 1 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_MANAGER_HC 1 7311 7312 1.11 0.94 0 1 1 2 8 ▇▂▁▁▁▁▁▁
FEMALE_ADMIN_MED_SECRETARY_HC 1 7311 7312 0.97 1.27 0 0 1 2 20 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_OTH_HC 1 7311 7312 2.23 3.36 0 0 1 3 40 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_RECEPT_HC 1 7311 7312 5.9 4.65 0 3 5 8 75 ▇▂▁▁▁▁▁▁
FEMALE_ADMIN_TELEPH_HC 1 7311 7312 0.033 0.39 0 0 0 0 14 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_HCA_HC 1 7311 7312 0.098 0.45 0 0 0 0 5 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_OTH_HC 1 7311 7312 0.003 0.068 0 0 0 0 3 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_PHARMA_HC 1 7311 7312 0.00041 0.02 0 0 0 0 1 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_PHLEB_FTE 1 7311 7312 0.00014 0.012 0 0 0 0 1 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_PHLEB_HC 1 7311 7312 0.00014 0.012 0 0 0 0 1 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_PHYSIO_FTE 1 7311 7312 0 0 0 0 0 0 0 ▁▁▁▇▁▁▁▁
FEMALE_DPC_APP_PHYSIO_HC 1 7311 7312 0 0 0 0 0 0 0 ▁▁▁▇▁▁▁▁
FEMALE_DPC_DISPENSER_HC 1 7311 7312 0.37 1.41 0 0 0 0 18 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC 1 7311 7312 1.87 2.32 0 0 1 2 26 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_25TO29 1 7311 7312 0.11 0.38 0 0 0 0 9 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_30TO34 1 7311 7312 0.14 0.41 0 0 0 0 5 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_35TO39 1 7311 7312 0.17 0.44 0 0 0 0 5 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_40TO44 1 7311 7312 0.18 0.46 0 0 0 0 5 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_45TO49 1 7311 7312 0.28 0.6 0 0 0 0 6 ▇▂▁▁▁▁▁▁
FEMALE_DPC_HC_50TO54 1 7311 7312 0.35 0.7 0 0 0 1 11 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_55TO59 1 7311 7312 0.31 0.66 0 0 0 0 8 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_60TO64 1 7311 7312 0.17 0.46 0 0 0 0 4 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_65TO69 1 7311 7312 0.05 0.23 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_70PLUS 1 7311 7312 0.019 0.14 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_UNDER25 1 7311 7312 0.075 0.33 0 0 0 0 5 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HC_UNKNOWN_AGE 1 7311 7312 0.014 0.14 0 0 0 0 5 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HCA_HC 1 7311 7312 1.05 1.2 0 0 1 2 22 ▇▁▁▁▁▁▁▁
FEMALE_DPC_NURSE_ASSOC_HC 1 7311 7312 0.0015 0.039 0 0 0 0 1 ▇▁▁▁▁▁▁▁
FEMALE_DPC_OTH_HC 1 7311 7312 0.058 0.33 0 0 0 0 9 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PARAMED_HC 1 7311 7312 0.014 0.13 0 0 0 0 3 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PHARMA_HC 1 7311 7312 0.074 0.31 0 0 0 0 4 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PHLEB_HC 1 7311 7312 0.18 0.49 0 0 0 0 8 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PHYSICIAN_ASSOC_HC 1 7311 7312 0.0064 0.091 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PHYSIO_HC 1 7311 7312 0.004 0.094 0 0 0 0 5 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PODIA_FTE 1 7311 7312 0 0 0 0 0 0 0 ▁▁▁▇▁▁▁▁
FEMALE_DPC_PODIA_HC 1 7311 7312 0 0 0 0 0 0 0 ▁▁▁▇▁▁▁▁
FEMALE_DPC_THERA_COU_HC 1 7311 7312 0.0018 0.051 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_DPC_THERA_OCC_HC 1 7311 7312 0.00014 0.012 0 0 0 0 1 ▇▁▁▁▁▁▁▁
FEMALE_DPC_THERA_OTH_HC 1 7311 7312 0.0042 0.082 0 0 0 0 3 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXL_HC 1 7311 7312 2.6 2.51 0 1 2 4 32 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXL_HC_30TO34 1 7311 7312 0.42 0.81 0 0 0 1 10 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXL_HC_35TO39 1 7311 7312 0.5 0.84 0 0 0 1 8 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXL_HC_40TO44 1 7311 7312 0.47 0.77 0 0 0 1 7 ▇▃▁▁▁▁▁▁
FEMALE_GP_EXL_HC_45TO49 1 7311 7312 0.4 0.68 0 0 0 1 6 ▇▃▁▁▁▁▁▁
FEMALE_GP_EXL_HC_50TO54 1 7311 7312 0.36 0.65 0 0 0 1 5 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXL_HC_55TO59 1 7311 7312 0.25 0.54 0 0 0 0 5 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXL_HC_60TO64 1 7311 7312 0.073 0.27 0 0 0 0 3 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXL_HC_65TO69 1 7311 7312 0.026 0.16 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXL_HC_70PLUS 1 7311 7312 0.014 0.12 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXL_HC_UNDER30 1 7311 7312 0.068 0.3 0 0 0 0 4 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXL_HC_UNKNOWN_AGE 1 7311 7312 0.018 0.19 0 0 0 0 6 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRL_HC 1 7311 7312 2.45 2.32 0 1 2 4 29 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_30TO34 1 7311 7312 0.36 0.71 0 0 0 1 7 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_35TO39 1 7311 7312 0.48 0.81 0 0 0 1 8 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_40TO44 1 7311 7312 0.46 0.76 0 0 0 1 7 ▇▃▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_45TO49 1 7311 7312 0.39 0.68 0 0 0 1 6 ▇▃▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_50TO54 1 7311 7312 0.36 0.65 0 0 0 1 5 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_55TO59 1 7311 7312 0.25 0.54 0 0 0 0 5 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_60TO64 1 7311 7312 0.072 0.27 0 0 0 0 3 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_65TO69 1 7311 7312 0.026 0.16 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_70PLUS 1 7311 7312 0.014 0.12 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_UNDER30 1 7311 7312 0.026 0.17 0 0 0 0 4 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRL_HC_UNKNOWN_AGE 1 7311 7312 0.014 0.17 0 0 0 0 5 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRRL_HC 1 7311 7312 2.42 2.3 0 1 2 4 29 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXRRL_HC_30TO34 1 7311 7312 0.35 0.71 0 0 0 1 7 ▇▂▁▁▁▁▁▁
FEMALE_GP_EXRRL_HC_35TO39 1 7311 7312 0.47 0.8 0 0 0 1 8 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRRL_HC_40TO44 1 7311 7312 0.45 0.75 0 0 0 1 7 ▇▃▁▁▁▁▁▁
[ reached getOption("max.print") -- omitted 378 rows ]
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
FEMALE_ADMIN_APP_FTE 1 7311 7312 0.092 0.36 0 0 0 0 7.51 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_ESTATES_ANC_FTE 1 7311 7312 0.06 0.29 0 0 0 0 8.81 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_FTE 1 7311 7312 7.23 5.63 0 3.52 6.29 10 80.67 ▇▂▁▁▁▁▁▁
FEMALE_ADMIN_MANAGE_PTNR_FTE 1 7311 7312 0.01 0.098 0 0 0 0 1.33 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_MANAGER_FTE 1 7311 7312 0.96 0.83 0 0.32 0.99 1.08 7.88 ▇▆▂▁▁▁▁▁
FEMALE_ADMIN_MED_SECRETARY_FTE 1 7311 7312 0.68 0.91 0 0 0.48 1 12.43 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_OTH_FTE 1 7311 7312 1.49 2.37 0 0 0.53 2.08 34.82 ▇▁▁▁▁▁▁▁
FEMALE_ADMIN_RECEPT_FTE 1 7311 7312 3.92 3.24 0 1.8 3.41 5.42 51.53 ▇▂▁▁▁▁▁▁
FEMALE_ADMIN_TELEPH_FTE 1 7311 7312 0.023 0.28 0 0 0 0 9.63 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_HCA_FTE 1 7311 7312 0.062 0.29 0 0 0 0 4 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_OTH_FTE 1 7311 7312 0.0023 0.053 0 0 0 0 2.03 ▇▁▁▁▁▁▁▁
FEMALE_DPC_APP_PHARMA_FTE 1 7311 7312 0.00038 0.019 0 0 0 0 1 ▇▁▁▁▁▁▁▁
FEMALE_DPC_DISPENSER_FTE 1 7311 7312 0.26 0.98 0 0 0 0 12.29 ▇▁▁▁▁▁▁▁
FEMALE_DPC_FTE 1 7311 7312 1.21 1.61 0 0 0.8 1.6 22.32 ▇▁▁▁▁▁▁▁
FEMALE_DPC_HCA_FTE 1 7311 7312 0.7 0.87 0 0 0.53 1 18.77 ▇▁▁▁▁▁▁▁
FEMALE_DPC_NURSE_ASSOC_FTE 1 7311 7312 0.0013 0.034 0 0 0 0 1 ▇▁▁▁▁▁▁▁
FEMALE_DPC_OTH_FTE 1 7311 7312 0.039 0.25 0 0 0 0 7.73 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PARAMED_FTE 1 7311 7312 0.011 0.11 0 0 0 0 3 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PHARMA_FTE 1 7311 7312 0.046 0.21 0 0 0 0 3.05 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PHLEB_FTE 1 7311 7312 0.079 0.24 0 0 0 0 3.15 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PHYSICIAN_ASSOC_FTE 1 7311 7312 0.005 0.076 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_DPC_PHYSIO_FTE 1 7311 7312 0.0015 0.041 0 0 0 0 2.32 ▇▁▁▁▁▁▁▁
FEMALE_DPC_THERA_COU_FTE 1 7311 7312 0.00068 0.022 0 0 0 0 1.2 ▇▁▁▁▁▁▁▁
FEMALE_DPC_THERA_OCC_FTE 1 7311 7312 0.00013 0.012 0 0 0 0 0.99 ▇▁▁▁▁▁▁▁
FEMALE_DPC_THERA_OTH_FTE 1 7311 7312 0.0014 0.029 0 0 0 0 1.12 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXL_FTE 1 7311 7312 1.84 1.83 0 0.53 1.44 2.67 29.81 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRL_FTE 1 7311 7312 1.72 1.66 0 0.49 1.36 2.53 29.81 ▇▁▁▁▁▁▁▁
FEMALE_GP_EXRRL_FTE 1 7311 7312 1.71 1.65 0 0.49 1.34 2.51 29.81 ▇▁▁▁▁▁▁▁
FEMALE_GP_FTE 1 7311 7312 1.89 1.84 0 0.55 1.49 2.72 29.81 ▇▁▁▁▁▁▁▁
FEMALE_GP_LOCUM_ABS_FTE 1 7311 7312 0.012 0.097 0 0 0 0 2.88 ▇▁▁▁▁▁▁▁
FEMALE_GP_LOCUM_OTH_FTE 1 7311 7312 0.026 0.13 0 0 0 0 2.72 ▇▁▁▁▁▁▁▁
FEMALE_GP_LOCUM_VAC_FTE 1 7311 7312 0.011 0.091 0 0 0 0 2.13 ▇▁▁▁▁▁▁▁
FEMALE_GP_PTNR_PROV_FTE 1 7311 7312 0.83 1.06 0 0 0.53 1.33 9.17 ▇▂▁▁▁▁▁▁
FEMALE_GP_REG_F1_2_FTE 1 7311 7312 0.034 0.21 0 0 0 0 4.44 ▇▁▁▁▁▁▁▁
FEMALE_GP_REG_JUN_DOC_FTE 1 7311 7312 0.0022 0.054 0 0 0 0 2.13 ▇▁▁▁▁▁▁▁
FEMALE_GP_REG_ST3_4_FTE 1 7311 7312 0.091 0.36 0 0 0 0 4.44 ▇▁▁▁▁▁▁▁
FEMALE_GP_RET_FTE 1 7311 7312 0.012 0.081 0 0 0 0 2 ▇▁▁▁▁▁▁▁
FEMALE_GP_SAL_BY_OTH_FTE 1 7311 7312 0.0069 0.1 0 0 0 0 4.38 ▇▁▁▁▁▁▁▁
FEMALE_GP_SAL_BY_PRAC_FTE 1 7311 7312 0.69 1.02 0 0 0.29 1.07 19.31 ▇▁▁▁▁▁▁▁
FEMALE_GP_SEN_PTNR_FTE 1 7311 7312 0.18 0.44 0 0 0 0 4.9 ▇▁▁▁▁▁▁▁
FEMALE_N_ADV_NURSE_PRAC_FTE 1 7311 7312 0.36 0.71 0 0 0 0.64 10.96 ▇▁▁▁▁▁▁▁
FEMALE_N_DISTRICT_NURSE_FTE 1 7311 7312 0.0019 0.047 0 0 0 0 2.2 ▇▁▁▁▁▁▁▁
FEMALE_N_EXT_ROLE_NURSE_FTE 1 7311 7312 0.075 0.32 0 0 0 0 5.48 ▇▁▁▁▁▁▁▁
FEMALE_N_NURSE_DISP_FTE 1 7311 7312 0.0025 0.047 0 0 0 0 1.57 ▇▁▁▁▁▁▁▁
FEMALE_N_NURSE_PTNR_FTE 1 7311 7312 0.0033 0.055 0 0 0 0 1.6 ▇▁▁▁▁▁▁▁
FEMALE_N_NURSE_SPEC_FTE 1 7311 7312 0.061 0.31 0 0 0 0 7.68 ▇▁▁▁▁▁▁▁
FEMALE_N_PRAC_NURSE_FTE 1 7311 7312 1.42 1.21 0 0.59 1.15 1.97 15.44 ▇▂▁▁▁▁▁▁
FEMALE_N_TRAINEE_NURSE_FTE 1 7311 7312 0.021 0.15 0 0 0 0 2.6 ▇▁▁▁▁▁▁▁
FEMALE_NURSES_FTE 1 7311 7312 1.94 1.75 0 0.79 1.53 2.65 21.37 ▇▂▁▁▁▁▁▁
MALE_ADMIN_APP_FTE 1 7311 7312 0.013 0.12 0 0 0 0 3 ▇▁▁▁▁▁▁▁
MALE_ADMIN_ESTATES_ANC_FTE 1 7311 7312 0.013 0.1 0 0 0 0 2.79 ▇▁▁▁▁▁▁▁
MALE_ADMIN_FTE 1 7311 7312 0.43 0.77 0 0 0 0.8 12.88 ▇▁▁▁▁▁▁▁
MALE_ADMIN_MANAGE_PTNR_FTE 1 7311 7312 0.0047 0.068 0 0 0 0 2 ▇▁▁▁▁▁▁▁
MALE_ADMIN_MANAGER_FTE 1 7311 7312 0.16 0.38 0 0 0 0 3 ▇▁▁▁▁▁▁▁
MALE_ADMIN_MED_SECRETARY_FTE 1 7311 7312 0.007 0.079 0 0 0 0 1.6 ▇▁▁▁▁▁▁▁
MALE_ADMIN_OTH_FTE 1 7311 7312 0.11 0.36 0 0 0 0 4.57 ▇▁▁▁▁▁▁▁
MALE_ADMIN_RECEPT_FTE 1 7311 7312 0.12 0.38 0 0 0 0 4 ▇▁▁▁▁▁▁▁
MALE_ADMIN_TELEPH_FTE 1 7311 7312 0.0015 0.056 0 0 0 0 3.79 ▇▁▁▁▁▁▁▁
MALE_DPC_APP_HCA_FTE 1 7311 7312 0.0014 0.033 0 0 0 0 1 ▇▁▁▁▁▁▁▁
MALE_DPC_APP_OTH_FTE 1 7311 7312 0.00017 0.012 0 0 0 0 1 ▇▁▁▁▁▁▁▁
MALE_DPC_APP_PHLEB_FTE 1 7311 7312 0.00013 0.012 0 0 0 0 0.99 ▇▁▁▁▁▁▁▁
MALE_DPC_DISPENSER_FTE 1 7311 7312 0.0087 0.098 0 0 0 0 2.2 ▇▁▁▁▁▁▁▁
MALE_DPC_FTE 1 7311 7312 0.093 0.33 0 0 0 0 8 ▇▁▁▁▁▁▁▁
MALE_DPC_HCA_FTE 1 7311 7312 0.026 0.17 0 0 0 0 7.01 ▇▁▁▁▁▁▁▁
MALE_DPC_NURSE_ASSOC_FTE 1 7311 7312 0.00022 0.014 0 0 0 0 1 ▇▁▁▁▁▁▁▁
MALE_DPC_OTH_FTE 1 7311 7312 0.0092 0.098 0 0 0 0 2.77 ▇▁▁▁▁▁▁▁
MALE_DPC_PARAMED_FTE 1 7311 7312 0.015 0.13 0 0 0 0 2.03 ▇▁▁▁▁▁▁▁
MALE_DPC_PHARMA_FTE 1 7311 7312 0.026 0.16 0 0 0 0 3.95 ▇▁▁▁▁▁▁▁
MALE_DPC_PHLEB_FTE 1 7311 7312 0.0025 0.044 0 0 0 0 2 ▇▁▁▁▁▁▁▁
MALE_DPC_PHYSICIAN_ASSOC_FTE 1 7311 7312 0.0013 0.036 0 0 0 0 1.09 ▇▁▁▁▁▁▁▁
MALE_DPC_PHYSIO_FTE 1 7311 7312 0.00096 0.032 0 0 0 0 2 ▇▁▁▁▁▁▁▁
MALE_DPC_THERA_COU_FTE 1 7311 7312 0.00029 0.017 0 0 0 0 1 ▇▁▁▁▁▁▁▁
MALE_DPC_THERA_OTH_FTE 1 7311 7312 4e-04 0.013 0 0 0 0 0.53 ▇▁▁▁▁▁▁▁
MALE_GP_EXL_FTE 1 7311 7312 1.96 1.6 0 0.96 1.67 2.77 20.01 ▇▃▁▁▁▁▁▁
MALE_GP_EXRL_FTE 1 7311 7312 1.89 1.52 0 0.96 1.6 2.67 20.01 ▇▂▁▁▁▁▁▁
MALE_GP_EXRRL_FTE 1 7311 7312 1.88 1.52 0 0.96 1.6 2.67 20.01 ▇▂▁▁▁▁▁▁
MALE_GP_FTE 1 7311 7312 2.01 1.61 0 0.99 1.73 2.8 20.01 ▇▃▁▁▁▁▁▁
MALE_GP_LOCUM_ABS_FTE 1 7311 7312 0.0067 0.071 0 0 0 0 2 ▇▁▁▁▁▁▁▁
MALE_GP_LOCUM_OTH_FTE 1 7311 7312 0.037 0.18 0 0 0 0 3.29 ▇▁▁▁▁▁▁▁
MALE_GP_LOCUM_VAC_FTE 1 7311 7312 0.014 0.13 0 0 0 0 5.68 ▇▁▁▁▁▁▁▁
MALE_GP_PTNR_PROV_FTE 1 7311 7312 1.14 1.34 0 0 0.93 1.97 17.33 ▇▂▁▁▁▁▁▁
MALE_GP_REG_F1_2_FTE 1 7311 7312 0.017 0.14 0 0 0 0 2.77 ▇▁▁▁▁▁▁▁
MALE_GP_REG_JUN_DOC_FTE 1 7311 7312 0.0021 0.052 0 0 0 0 2.13 ▇▁▁▁▁▁▁▁
[ reached getOption("max.print") -- omitted 62 rows ]
[[18]]
Skim summary statistics
n obs: 152
n variables: 4
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
la name 0 152 152 4 28 0 152
ut la 0 152 152 9 9 0 152
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
per_capita_gp 0 152 152 50.24 26.59 31.34 43.37 48.01 53.03 365.73 ▇▁▁▁▁▁▁▁
per_capita_nurses 0 152 152 24.69 7.15 10.95 19.01 24.88 29.27 48.23 ▃▆▆▇▅▂▁▁
[[19]]
Skim summary statistics
n obs: 7392
n variables: 8
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
Gp post code 0 7392 7392 6 8 0 6644
Gpcode 0 7392 7392 6 6 0 7392
Gpname 0 7392 7392 4 40 0 6955
la name 0 7392 7392 4 28 0 152
lt la 0 7392 7392 9 9 0 326
region 0 7392 7392 9 9 0 9
region name 0 7392 7392 13 31 0 9
ut la 0 7392 7392 9 9 0 152
[[20]]
Skim summary statistics
n obs: 4650
n variables: 19
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
ihme_loc_id 0 4650 4650 1 9 0 775
location_name 0 4650 4650 3 48 0 771
region_name 0 4650 4650 0 28 48 22
sdi_quintile 174 4476 4650 7 15 0 5
super_region_name 0 4650 4650 0 48 6 8
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
age_group_id 0 4650 4650 27 0 27 27 27 27 27 ▁▁▁▇▁▁▁▁
cause_id 0 4650 4650 100 0 100 100 100 100 100 ▁▁▁▇▁▁▁▁
level 0 4650 4650 4.14 1.14 0 3 4 5 6 ▁▁▁▅▁▇▂▃
location_id 0 4650 4650 18216.26 20068.08 1 197 4735 43910 44792 ▇▁▁▁▁▁▂▃
region_id 48 4602 4650 100.24 54.63 5 73 100 159 199 ▃▁▇▂▂▂▆▁
sex_id 0 4650 4650 3 0 3 3 3 3 3 ▁▁▁▇▁▁▁▁
super_region_id 6 4644 4650 89.4 53.66 4 64 64 158 166 ▂▁▇▁▂▁▁▆
year_id 0 4650 4650 2002.67 8.79 1990 1995 2002.5 2010 2016 ▇▇▁▇▇▁▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
index 0 4650 4650 60.96 23.25 10.59 39.28 61.51 83.71 97.13 ▁▅▆▅▅▃▇▇
index_efa 0 4650 4650 60.42 22.52 11.16 39.83 60.04 82.42 96.96 ▁▅▆▅▅▃▇▆
index_geom_mean 0 4650 4650 56.53 23.34 9.37 35.55 53.65 79.53 97.06 ▁▅▇▅▃▃▇▅
index_lval 0 4650 4650 57.81 24.59 7.8 34.02 59.04 82.07 95.9 ▁▆▅▃▅▃▇▇
index_mean 0 4650 4650 60.49 20.76 15.2 42.27 58.61 80.58 96.32 ▁▅▆▆▃▃▇▅
index_uval 0 4650 4650 64.13 21.89 14.13 44.96 64.06 85.42 98.51 ▁▃▆▆▅▃▇▇
[[21]]
Skim summary statistics
n obs: 152
n variables: 3
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
area_code 0 152 152 9 9 0 152
area_name 0 152 152 4 28 0 152
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
index 0 152 152 50.33 28.96 1 25.75 50.5 75.25 100 ▇▇▇▇▇▇▇▇
[[22]]
Skim summary statistics
n obs: 152
n variables: 4
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
gp.la.name 0 152 152 4 28 0 152
nurses.la.name 0 152 152 4 28 0 152
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
gp.sumfte 0 152 152 186.68 142.76 5.74 97.31 133.15 202.41 777.94 ▆▇▂▂▁▁▁▁
nurses.sumfte 0 152 152 95.33 77.49 0.67 45.28 65.24 123.01 372.05 ▅▇▂▁▁▁▁▁
[[23]]
Skim summary statistics
n obs: 784
n variables: 4
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
ihme_loc_id 0 784 784 1 9 0 784
location_name 0 784 784 3 48 0 779
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
location_id 0 784 784 18521.05 20162.77 1 199.75 4739.5 43919.25 44800 ▇▁▁▁▁▁▂▅
V1 0 784 784 392.5 226.47 1 196.75 392.5 588.25 784 ▇▇▇▇▇▇▇▇
[[24]]
Skim summary statistics
n obs: 1288
n variables: 5
-- Variable type:character -----------------------------------------------------
variable missing complete n min max empty n_unique
AreaName 0 1288 1288 4 28 0 161
-- Variable type:integer -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
FYEAR 0 1288 1288 1364.5 231.51 1011 1187.75 1364.5 1541.25 1718 ▇▇▇▇▇▇▇▇
-- Variable type:numeric -------------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
lowercl 9 1279 1288 29.45 8.49 9.04 23.94 28.51 33.6 70.68 ▁▅▇▅▂▁▁▁
uppercl 9 1279 1288 44.83 11.07 21.56 36.94 42.71 50.62 110.03 ▂▇▅▂▁▁▁▁
value 9 1279 1288 36.47 9.31 14.33 30.11 34.88 40.99 88.43 ▁▇▇▃▁▁▁▁
Amenable codes
haq_files[1]
[[1]]
NA
Per capita beds
per_capita_beds <- haq_files[[2]] %>%
data.frame()
per_capita_beds %>%
ggplot(aes(per_capita_beds)) +
geom_density(fill = "blue") +
labs(title = "Distribution of per-capita beds by UTLA",
caption = "NB check Gloucestershire (low value)")

Hospitalisation rates

AE attendance rates

HAQ trends
haq %>%
ggplot(aes(year_id, mean_value, group = location_name)) +
geom_line(colour = "grey") +
gghighlight(mean_value == median(mean_value))
You set use_group_by = TRUE, but grouped calculation failed.
Falling back to ungrouped filter operation...label_key: location_name

HAQ link with deprivation
library(broom)
model <- lm(mean_value ~ IMDscore, data = filter(haq, year_id == 2016))
model_text <- tidy(model) %>%
mutate(model = paste("HAQ = ", round(.[1,2], 2), round(.[2,2],2), "* IMDscore; ", "p < 0.001; " ))
model_text_r2 <- glance(model) %>%
mutate(rsq = paste("r^2 = ", round(r.squared, 3)))
annotation <- paste(model_text$model[1], model_text_r2$rsq)
haq %>%
filter(year_id == 2016) %>%
ggplot(aes(mean_value, IMDscore)) +
geom_point() +
geom_smooth(method = "lm") +
labs(subtitle = paste(annotation))

Trend in association between deprivation and HAQ
dep_lookup %>%
left_join(haq) %>%
group_by(year_id) %>%
na.omit() %>%
do(broom::glance(lm(mean_value ~ IMDscore, data = .))) %>%
arrange(year_id) %>%
ggplot(aes(year_id, r.squared)) +
geom_line() +
geom_point() +
geom_smooth() +
labs(title = "Trend in relationship between IMD and HAQ",
subtitle = "Strength of association has weakened over time",
caption = "Strength of association measured by r^2",
x = "Year")
Joining, by = c("AreaCode", "IMDscore", "decile")

Deprivation vs HAQ index components
dep_cause <- dep_lookup %>%
left_join(haq_files[[14]], by = c("AreaName" = "location_name")) %>%
group_by(year_id, cause_name) %>%
na.omit() %>%
do(broom::glance(lm(estimate~IMDscore, data = .))) %>%
select(cause_name, year_id, adj.r.squared) %>%
filter(year_id %in% c(2000, 2016))
essentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliableessentially perfect fit: summary may be unreliable
dep_cause %>%
ggplot() +
geom_point(aes(year_id, adj.r.squared), show.legend = FALSE) +
geom_line(aes(year_id, adj.r.squared, group = cause_name), show.legend = FALSE) +
geom_text(aes(year_id, adj.r.squared, label = cause_name), data = filter(dep_cause, year_id == 2000), hjust = 1.1, size = 3) +
geom_text(aes(year_id, adj.r.squared, label = cause_name), data = filter(dep_cause, year_id == 2016), hjust =- 0.1, size = 3) +
expand_limits(x = c(1990, 2025), c(0,1)) +
theme(panel.background = element_blank(),
axis.line = element_blank()) +
labs(title = "Change in strength of association between deprivation and cause between 2000 and 2016",
subtitle = "Has mostly reduced expect for skin cancer, hypertensive heart disease,\nand cervical cancer")

NA
Change in HAQ index at LA level
haq_files[[12]] %>%
data.frame() %>%
filter(change_type == "Annualized rate of change", year_start_id == 2000, year_end_id == 2016) %>%
ggplot(aes(estimate, reorder(location_name, estimate))) +
geom_point(size = 2)

Trend in cause specific indices
haq_files[[14]] %>%
ggplot(aes(factor(year_id), estimate, fill= cause_name)) +
geom_violin(show.legend = FALSE) +
facet_wrap(~cause_name) +
theme(strip.text.x = element_text(size = 7))

Statistical significance plot

Cause significance
eng1 <- haq_cause %>%
filter(location_name == "England", year_id == 2016) %>%
gather(metric, value, estimate:IMDscore ) %>%
select(-c(decile, year_id))
haq_cause %>%
filter(location_name != "England", year_id == 2016) %>%
select(-c(year_id)) %>%
gather(metric, value, estimate:IMDscore) %>%
na.omit() %>%
#count(cause_name)>%
#select(-eng_metric) %>%
spread(metric, value) %>%
left_join(eng1, by = c("cause_name")) %>%
filter(metric == "estimate") %>%
mutate(sig = ifelse(lower > value, 1,
ifelse(upper < value, -1, 0))) %>%
ggplot(aes(cause_name, reorder(location_name.x, IMDscore), fill = factor(sig, labels = c("high", "NS", "low")))) +
geom_tile() +
coord_fixed() +
scale_fill_manual(values = c("red","white", "darkgreen")) +
scale_x_discrete(position = "top") +
theme(axis.text.y = element_text(size = 6),
axis.text.x.top = element_text(size = 5, angle = 90, hjust = 0)) +
labs(x ="",
y = "",
title = "Significance chart of HAQ by UTLA and cause",
caption = "UTLAs ordered by decreasing IMD score",
fill = "Statistical significance")

Per capita primary care staff
- HAQ score inversely correlated with deprivation ie better outcome/access in least deprived areas
- Other associations are weak - tendency to HAQ to increase with increasing per capita GPs
LS0tDQp0aXRsZTogIkhBUSBmaWd1cmVzIGFuZCBkYXRhIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KYGBge3Igc2V0dXAsIGluY2x1ZGUgPSBGQUxTRX0NCg0KbGlicmFyeShwYWNtYW4pDQpwX2xvYWQodGlkeXZlcnNlLCBkYXRhLnRhYmxlLCBmaW5nZXJ0aXBzUiwgcGhlY2hhcnRzLCBza2ltciwgZ2doaWdobGlnaHQpDQp0aGVtZV9zZXQodGhlbWVfcGhlKCkpDQoNCg0KYGBgDQoNCiMgRGF0YXNldHMNCg0KYGBge3J9DQoNCmhhcV9kYXRhIDwtIGxpc3QuZmlsZXMocGF0dGVybiA9ICIuY3N2IilbYyg2OjI2LCAyODozMCApXQ0KDQpoYXFfZmlsZXMgPC0gbWFwKGhhcV9kYXRhLCBmcmVhZCApDQoNCmhhcV9maWxlcyAlPiUNCiAgbWFwKC4sIHNraW0pDQpgYGANCg0KDQpgYGB7ciBkZXByaXZhdGlvbiwgY2FjaGU9VFJVRX0NCmRlcF9zY29yZXMgPC0gZmluZ2VydGlwc1I6OmRlcHJpdmF0aW9uX2RlY2lsZSgpDQpwcm9mX2RhdGEgPC0gZmluZ2VydGlwc19kYXRhKERvbWFpbklEID0gMTkzODEzMjY5NCkNCg0KZGVwX2xvb2t1cCA8LSBwcm9mX2RhdGEgJT4lDQogIGdyb3VwX2J5KEluZGljYXRvcklELCBBZ2UsIFNleCkgJT4lDQogIGZpbHRlcihUaW1lcGVyaW9kU29ydGFibGUgPT0gbWF4KFRpbWVwZXJpb2RTb3J0YWJsZSkpICU+JQ0KICBsZWZ0X2pvaW4oZGVwX3Njb3JlcykgJT4lDQogIHVuZ3JvdXAoKSAlPiUNCiAgc2VsZWN0KEFyZWFOYW1lLCBBcmVhQ29kZSwgSU1Ec2NvcmUsIGRlY2lsZSkgJT4lDQogIGZpbHRlcighaXMubmEoSU1Ec2NvcmUpKSAlPiUNCiAgZGlzdGluY3QoKSANCg0KaGFxIDwtICBzZXREVChoYXFfZmlsZXNbWzEwXV0gJT4lIA0KICBkYXRhLmZyYW1lKCkgKQ0KDQpoYXEgPC0gaGFxICU+JQ0KICBtdXRhdGUobG9jYXRpb25fbmFtZSA9IGNhc2Vfd2hlbihsb2NhdGlvbl9uYW1lID09ICJCcmlzdG9sLCBDaXR5IG9mIiB+ICJCcmlzdG9sIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9jYXRpb25fbmFtZSA9PSAiSGVyZWZvcmRzaGlyZSwgQ291bnR5IG9mIiB+ICJIZXJlZm9yZHNoaXJlIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9jYXRpb25fbmFtZSA9PSAiS2luZ3N0b24gdXBvbiBIdWxsLCBDaXR5IG9mIiB+ICJLaW5nc3RvbiB1cG9uIEh1bGwiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbG9jYXRpb25fbmFtZSA9PSAiU3QgSGVsZW5zIiB+ICJTdC4gSGVsZW5zIiwgDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIFRSVUUgfiBsb2NhdGlvbl9uYW1lKSkgJT4lDQogIGxlZnRfam9pbihkZXBfbG9va3VwLCBieSA9IGMoImxvY2F0aW9uX25hbWUiID0gIkFyZWFOYW1lIikpICU+JQ0KICBzZWxlY3QobG9jYXRpb25fbmFtZSwgQXJlYUNvZGUsIHllYXJfaWQsIG1lYW5fdmFsdWUsIGxvd2VyX3ZhbHVlLCB1cHBlcl92YWx1ZSwgSU1Ec2NvcmUsIGRlY2lsZSkgDQogIA0KY2hlY2sgPC0gaGFxICU+JQ0KICBmaWx0ZXIoeWVhcl9pZCA9PSAyMDE2KSAlPiUNCiAgbGVmdF9qb2luKGRlcF9sb29rdXApICU+JQ0KICBmaWx0ZXIoIWlzLm5hKElNRHNjb3JlKSkNCg0KaGFxX2NhdXNlIDwtIGhhcV9maWxlc1tbMTRdXSAlPiUNCiAgZGF0YS5mcmFtZSgpDQoNCmhhcV9jYXVzZSA8LSBoYXFfY2F1c2UgJT4lDQogIG11dGF0ZShsb2NhdGlvbl9uYW1lID0gY2FzZV93aGVuKGxvY2F0aW9uX25hbWUgPT0gIkJyaXN0b2wsIENpdHkgb2YiIH4gIkJyaXN0b2wiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb2NhdGlvbl9uYW1lID09ICJIZXJlZm9yZHNoaXJlLCBDb3VudHkgb2YiIH4gIkhlcmVmb3Jkc2hpcmUiLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb2NhdGlvbl9uYW1lID09ICJLaW5nc3RvbiB1cG9uIEh1bGwsIENpdHkgb2YiIH4gIktpbmdzdG9uIHVwb24gSHVsbCIsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsb2NhdGlvbl9uYW1lID09ICJTdCBIZWxlbnMiIH4gIlN0LiBIZWxlbnMiLCANCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgVFJVRSB+IGxvY2F0aW9uX25hbWUpKSAlPiUNCiAgbGVmdF9qb2luKGRlcF9sb29rdXAsIGJ5ID0gYygibG9jYXRpb25fbmFtZSIgPSAiQXJlYU5hbWUiKSkgJT4lDQogIHNlbGVjdChsb2NhdGlvbl9uYW1lLCBBcmVhQ29kZSwgeWVhcl9pZCwgY2F1c2VfbmFtZSwgZXN0aW1hdGUsIGxvd2VyLCB1cHBlciwgSU1Ec2NvcmUsIGRlY2lsZSkgDQoNCmBgYA0KDQoNCiMjIEFtZW5hYmxlIGNvZGVzDQoNCmBgYHtyfQ0KDQpoYXFfZmlsZXNbMV0NCg0KDQpgYGANCg0KIyMgUGVyIGNhcGl0YSBiZWRzDQoNCmBgYHtyIHBlci1jYXBpdGEtYmVkc30NCnBlcl9jYXBpdGFfYmVkcyA8LSBoYXFfZmlsZXNbWzJdXSAlPiUgDQogIGRhdGEuZnJhbWUoKSANCg0KcGVyX2NhcGl0YV9iZWRzICU+JQ0KICBnZ3Bsb3QoYWVzKHBlcl9jYXBpdGFfYmVkcykpICsNCiAgZ2VvbV9kZW5zaXR5KGZpbGwgPSAiYmx1ZSIpICsNCiAgbGFicyh0aXRsZSA9ICJEaXN0cmlidXRpb24gb2YgcGVyLWNhcGl0YSBiZWRzIGJ5IFVUTEEiLCANCiAgICAgICBjYXB0aW9uID0gIk5CIGNoZWNrIEdsb3VjZXN0ZXJzaGlyZSAobG93IHZhbHVlKSIpDQpgYGANCg0KDQojIyBIb3NwaXRhbGlzYXRpb24gcmF0ZXMNCg0KYGBge3IgZHNyc30NCmRzciA8LSBoYXFfZmlsZXNbWzVdXSAlPiUgDQogIGRhdGEuZnJhbWUoKSANCg0KZHNyICU+JQ0KICBnZ3Bsb3QoYWVzKGFzLmZhY3RvcihGWUVBUiksIHZhbHVlLCBncm91cCA9IEZZRUFSKSkgKw0KICBnZW9tX2JveHBsb3QoKSArDQogIGxhYnModGl0bGUgPSAiSG9zcGl0YWxpc2F0aW9uIHJhdGUiLCANCiAgICAgICBzdWJ0aXRsZSA9ICJFYWNoIHBlcnNvbiBjb3VudGVkIG9uY2UgcGVyIHllYXIiLCANCiAgICAgICB4ID0gIkZpbmFuY2lhbCB5ZWFyIiwgDQogICAgICAgeSA9ICJEU1IgcGVyIDEwMCwwMDAiKQ0KDQpgYGANCg0KIyMgQUUgYXR0ZW5kYW5jZSByYXRlcw0KDQpgYGB7ciBhZS1kc3JzfQ0KYWUgPC0gaGFxX2ZpbGVzW1s3XV0gJT4lIA0KICBkYXRhLmZyYW1lKCkgDQoNCmFlICU+JQ0KICBnZ3Bsb3QoYWVzKGZhY3RvcihZZWFyKSwgdmFsdWUpKSArDQogIGdlb21fYm94cGxvdCgpICsNCiAgbGFicyh0aXRsZSA9ICJBRSBhdHRlbmRhbmNlIHJhdGUiLCANCiAgICAgICBzdWJ0aXRsZSA9ICJFYWNoIHBlcnNvbiBjb3VudGVkIG9uY2UgcGVyIHllYXIiLCANCiAgICAgICB4ID0gIkZpbmFuY2lhbCB5ZWFyIiwgDQogICAgICAgeSA9ICJEU1IgcGVyIDEwMCwwMDAiKSANCg0KYGBgDQoNCg0KIyMgSEFRIHRyZW5kcw0KDQpgYGB7ciBoYXEtdHJlbmRzfQ0KaGFxIDwtICBzZXREVChoYXFfZmlsZXNbWzEwXV0gJT4lIA0KICBkYXRhLmZyYW1lKCkgKQ0KDQpoYXEgPC0gaGFxICU+JQ0KICBsZWZ0X2pvaW4oZGVwX2xvb2t1cCwgYnkgPSBjKCJsb2NhdGlvbl9uYW1lIiA9ICJBcmVhTmFtZSIpICkNCg0KaGFxICU+JQ0KICBnZ3Bsb3QoYWVzKHllYXJfaWQsIG1lYW5fdmFsdWUsIGdyb3VwID0gbG9jYXRpb25fbmFtZSkpICsNCiAgZ2VvbV9saW5lKGNvbG91ciA9ICJncmV5IikgKw0KICBnZ2hpZ2hsaWdodChtZWFuX3ZhbHVlID09IG1lZGlhbihtZWFuX3ZhbHVlKSkNCg0KDQpgYGANCg0KIyMgSEFRIGxpbmsgd2l0aCBkZXByaXZhdGlvbg0KDQpgYGB7cn0NCmxpYnJhcnkoYnJvb20pDQoNCg0KbW9kZWwgPC0gbG0obWVhbl92YWx1ZSB+IElNRHNjb3JlLCBkYXRhID0gZmlsdGVyKGhhcSwgeWVhcl9pZCA9PSAyMDE2KSkNCg0KbW9kZWxfdGV4dCA8LSB0aWR5KG1vZGVsKSAlPiUgDQogIG11dGF0ZShtb2RlbCA9IHBhc3RlKCJIQVEgPSAiLCByb3VuZCguWzEsMl0sIDIpLCByb3VuZCguWzIsMl0sMiksICIqIElNRHNjb3JlOyAiLCAicCA8IDAuMDAxOyAiICkpDQoNCm1vZGVsX3RleHRfcjIgPC0gZ2xhbmNlKG1vZGVsKSAlPiUNCiAgbXV0YXRlKHJzcSA9IHBhc3RlKCJyXjIgPSAiLCByb3VuZChyLnNxdWFyZWQsIDMpKSkNCg0KYW5ub3RhdGlvbiA8LSBwYXN0ZShtb2RlbF90ZXh0JG1vZGVsWzFdLCBtb2RlbF90ZXh0X3IyJHJzcSkNCg0KaGFxICU+JQ0KICBmaWx0ZXIoeWVhcl9pZCA9PSAyMDE2KSAlPiUNCiAgZ2dwbG90KGFlcyhtZWFuX3ZhbHVlLCBJTURzY29yZSkpICsgDQogIGdlb21fcG9pbnQoKSArDQogIGdlb21fc21vb3RoKG1ldGhvZCA9ICJsbSIpICsNCiAgbGFicyhzdWJ0aXRsZSA9IHBhc3RlKGFubm90YXRpb24pKQ0KDQoNCmBgYA0KDQojIyBUcmVuZCBpbiBhc3NvY2lhdGlvbiBiZXR3ZWVuIGRlcHJpdmF0aW9uIGFuZCBIQVENCg0KYGBge3IgZGVwLWhhcX0NCg0KDQpkZXBfbG9va3VwICU+JSANCiAgbGVmdF9qb2luKGhhcSkgJT4lDQogIGdyb3VwX2J5KHllYXJfaWQpICU+JQ0KICBuYS5vbWl0KCkgJT4lDQogIGRvKGJyb29tOjpnbGFuY2UobG0obWVhbl92YWx1ZSB+IElNRHNjb3JlLCBkYXRhID0gLikpKSAlPiUNCiAgYXJyYW5nZSh5ZWFyX2lkKSAlPiUNCiAgZ2dwbG90KGFlcyh5ZWFyX2lkLCByLnNxdWFyZWQpKSArDQogIGdlb21fbGluZSgpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgZ2VvbV9zbW9vdGgoKSArDQogIGxhYnModGl0bGUgPSAiVHJlbmQgaW4gcmVsYXRpb25zaGlwIGJldHdlZW4gSU1EIGFuZCBIQVEiLA0KICAgICAgIHN1YnRpdGxlID0gIlN0cmVuZ3RoIG9mIGFzc29jaWF0aW9uIGhhcyB3ZWFrZW5lZCBvdmVyIHRpbWUiLCANCiAgICAgICBjYXB0aW9uID0gIlN0cmVuZ3RoIG9mIGFzc29jaWF0aW9uIG1lYXN1cmVkIGJ5IHJeMiIsIA0KICAgICAgIHggPSAiWWVhciIpDQoNCg0KDQpgYGANCg0KIyMgRGVwcml2YXRpb24gdnMgSEFRIGluZGV4IGNvbXBvbmVudHMNCg0KYGBge3J9DQpkZXBfY2F1c2UgPC0gZGVwX2xvb2t1cCAlPiUNCiAgbGVmdF9qb2luKGhhcV9maWxlc1tbMTRdXSwgYnkgPSBjKCJBcmVhTmFtZSIgPSAibG9jYXRpb25fbmFtZSIpKSAlPiUNCiAgZ3JvdXBfYnkoeWVhcl9pZCwgY2F1c2VfbmFtZSkgJT4lDQogIG5hLm9taXQoKSAlPiUNCiAgZG8oYnJvb206OmdsYW5jZShsbShlc3RpbWF0ZX5JTURzY29yZSwgZGF0YSA9IC4pKSkgJT4lDQogIHNlbGVjdChjYXVzZV9uYW1lLCB5ZWFyX2lkLCBhZGouci5zcXVhcmVkKSAlPiUNCiAgZmlsdGVyKHllYXJfaWQgJWluJSBjKDIwMDAsIDIwMTYpKQ0KDQpkZXBfY2F1c2UgJT4lDQogIGdncGxvdCgpICsNCiAgZ2VvbV9wb2ludChhZXMoeWVhcl9pZCwgYWRqLnIuc3F1YXJlZCksIHNob3cubGVnZW5kID0gRkFMU0UpICsNCiAgZ2VvbV9saW5lKGFlcyh5ZWFyX2lkLCBhZGouci5zcXVhcmVkLCBncm91cCA9IGNhdXNlX25hbWUpLCBzaG93LmxlZ2VuZCA9IEZBTFNFKSArDQogIGdlb21fdGV4dChhZXMoeWVhcl9pZCwgYWRqLnIuc3F1YXJlZCwgbGFiZWwgPSBjYXVzZV9uYW1lKSwgZGF0YSA9IGZpbHRlcihkZXBfY2F1c2UsIHllYXJfaWQgPT0gMjAwMCksIGhqdXN0ID0gMS4xLCBzaXplID0gMykgKw0KICBnZW9tX3RleHQoYWVzKHllYXJfaWQsIGFkai5yLnNxdWFyZWQsIGxhYmVsID0gY2F1c2VfbmFtZSksIGRhdGEgPSBmaWx0ZXIoZGVwX2NhdXNlLCB5ZWFyX2lkID09IDIwMTYpLCBoanVzdCA9LSAwLjEsIHNpemUgPSAzKSArDQogIGV4cGFuZF9saW1pdHMoeCA9IGMoMTk5MCwgMjAyNSksIGMoMCwxKSkgKw0KICB0aGVtZShwYW5lbC5iYWNrZ3JvdW5kID0gZWxlbWVudF9ibGFuaygpLCANCiAgICAgICAgYXhpcy5saW5lID0gZWxlbWVudF9ibGFuaygpKSArDQogIGxhYnModGl0bGUgPSAiQ2hhbmdlIGluIHN0cmVuZ3RoIG9mIGFzc29jaWF0aW9uIGJldHdlZW4gZGVwcml2YXRpb24gYW5kIGNhdXNlIGJldHdlZW4gMjAwMCBhbmQgMjAxNiIsIA0KICAgICAgIHN1YnRpdGxlID0gIkhhcyBtb3N0bHkgcmVkdWNlZCBleHBlY3QgZm9yIHNraW4gY2FuY2VyLCBoeXBlcnRlbnNpdmUgaGVhcnQgZGlzZWFzZSxcbmFuZCBjZXJ2aWNhbCBjYW5jZXIiKQ0KICANCg0KDQoNCg0KYGBgDQoNCg0KIyMgQ2hhbmdlIGluIEhBUSBpbmRleCBhdCBMQSBsZXZlbA0KDQpgYGB7ciBmaWcuaGVpZ2h0PTE0fQ0KDQoNCiBoYXFfZmlsZXNbWzEyXV0gJT4lDQogIGRhdGEuZnJhbWUoKSAlPiUNCiAgZmlsdGVyKGNoYW5nZV90eXBlID09ICJBbm51YWxpemVkIHJhdGUgb2YgY2hhbmdlIiwgeWVhcl9zdGFydF9pZCA9PSAyMDAwLCB5ZWFyX2VuZF9pZCA9PSAyMDE2KSAlPiUNCiAgZ2dwbG90KGFlcyhlc3RpbWF0ZSwgcmVvcmRlcihsb2NhdGlvbl9uYW1lLCBlc3RpbWF0ZSkpKSArDQogICAgZ2VvbV9wb2ludChzaXplID0gMikNCg0KDQoNCmBgYA0KDQojIyBUcmVuZCBpbiBjYXVzZSBzcGVjaWZpYyBpbmRpY2VzDQoNCmBgYHtyIGZpZy53aWR0aD0xMH0NCg0KaGFxX2ZpbGVzW1sxNF1dICU+JQ0KICBnZ3Bsb3QoYWVzKGZhY3Rvcih5ZWFyX2lkKSwgZXN0aW1hdGUsIGZpbGw9IGNhdXNlX25hbWUpKSArDQogIGdlb21fdmlvbGluKHNob3cubGVnZW5kID0gRkFMU0UpICsNCiAgZmFjZXRfd3JhcCh+Y2F1c2VfbmFtZSkgKw0KICB0aGVtZShzdHJpcC50ZXh0LnggPSBlbGVtZW50X3RleHQoc2l6ZSA9IDcpKQ0KDQoNCg0KYGBgDQoNCiMjIFN0YXRpc3RpY2FsIHNpZ25pZmljYW5jZSBwbG90DQoNCmBgYHtyIHN0YXQtc2lnLCBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9IDEwfQ0KDQplbmcgPC0gaGFxICU+JQ0KICBmaWx0ZXIobG9jYXRpb25fbmFtZSA9PSAiRW5nbGFuZCIpICU+JQ0KICBzZWxlY3QobG9jYXRpb25fbmFtZSwgeWVhcl9pZCwgY29udGFpbnMoInZhbHVlIikpICU+JQ0KICBnYXRoZXIobWV0cmljLCB2YWx1ZSwgbWVhbl92YWx1ZSkNCg0KDQpoYXEgJT4lDQogIGZpbHRlcihsb2NhdGlvbl9uYW1lICE9ICJFbmdsYW5kIikgJT4lDQogIHNlbGVjdChsb2NhdGlvbl9uYW1lLCB5ZWFyX2lkLCBjb250YWlucygidmFsdWUiKSwgSU1Ec2NvcmUpICU+JQ0KICBuYS5vbWl0KCkgJT4lDQogIGdhdGhlcihtZXRyaWMsIHZhbHVlLCBtZWFuX3ZhbHVlOklNRHNjb3JlKSAlPiUNCiAgI2Z1bGxfam9pbihlbmcsIGJ5ID0gYygibWV0cmljIiwgInllYXJfaWQiKSkgJT4lDQogICNjb3VudCh5ZWFyX2lkKQ0KICBtdXRhdGUoZW5nX3llYXIgPSByZXAoZW5nJHllYXJfaWQsIDYwMCksIA0KICAgICAgICAgIGVuZ19tZXRyaWMgPSByZXAoZW5nJG1ldHJpYywgZWFjaCA9IDYwMCksDQogICAgICAgICAgZW5nX3ZhbHVlID0gcmVwKGVuZyR2YWx1ZSwgNjAwKSkgJT4lDQogICNzZWxlY3QoLWVuZ19tZXRyaWMpICU+JQ0KICBzcHJlYWQobWV0cmljLCB2YWx1ZSkgJT4lDQogIG11dGF0ZShzaWcgPSBpZmVsc2UobG93ZXJfdmFsdWUgPiBlbmdfdmFsdWUsIDEsDQogICAgICAgICAgICAgICAgICAgICAgaWZlbHNlKHVwcGVyX3ZhbHVlIDwgZW5nX3ZhbHVlLCAtMSwgMCkpKSAlPiUNCiAgZ2dwbG90KGFlcyh5ZWFyX2lkLCBmY3RfcmVvcmRlcihsb2NhdGlvbl9uYW1lLCBJTURzY29yZSksIGZpbGwgPSBmYWN0b3Ioc2lnLCBsYWJlbHMgPSBjKCJoaWdoIiwgIk5TIiwgImxvdyIpKSkpICsNCiAgZ2VvbV90aWxlKCkgKw0KICBjb29yZF9maXhlZCgpICsNCiAgc2NhbGVfZmlsbF9tYW51YWwodmFsdWVzID0gYygicmVkIiwid2hpdGUiLCAiZGFya2dyZWVuIikpICsNCiAgI3NjYWxlX3hfZGlzY3JldGUocG9zaXRpb24gPSAidG9wIikgKw0KICB0aGVtZShheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gNikpICsNCiAgbGFicyh4ID0iIiwgDQogICAgICAgeSA9ICIiLCANCiAgICAgICB0aXRsZSA9ICJTaWduaWZpY2FuY2UgY2hhcnQgb2YgSEFRIGJ5IFVUTEEgYW5kIHllYXIiLCANCiAgICAgICBjYXB0aW9uID0gIlVUTEFzIG9yZGVyZWQgYnkgZGVjcmVhc2luZyBJTUQgc2NvcmUiLCANCiAgICAgICBmaWxsID0gIlN0YXRpc3RpY2FsIHNpZ25pZmljYW5jZSIpDQoNCg0KDQoNCg0KYGBgDQoNCiMjIENhdXNlIHNpZ25pZmljYW5jZQ0KDQpgYGB7ciBmaWcuaGVpZ2h0PTEyLCBmaWcud2lkdGg9OH0NCg0KZW5nMSA8LSBoYXFfY2F1c2UgJT4lDQogIGZpbHRlcihsb2NhdGlvbl9uYW1lID09ICJFbmdsYW5kIiwgeWVhcl9pZCA9PSAyMDE2KSAlPiUNCiAgZ2F0aGVyKG1ldHJpYywgdmFsdWUsIGVzdGltYXRlOklNRHNjb3JlICkgJT4lDQogIHNlbGVjdCgtYyhkZWNpbGUsIHllYXJfaWQpKQ0KDQoNCmhhcV9jYXVzZSAlPiUNCiAgZmlsdGVyKGxvY2F0aW9uX25hbWUgIT0gIkVuZ2xhbmQiLCB5ZWFyX2lkID09IDIwMTYpICU+JQ0KICBzZWxlY3QoLWMoeWVhcl9pZCkpICU+JQ0KICBnYXRoZXIobWV0cmljLCB2YWx1ZSwgZXN0aW1hdGU6SU1Ec2NvcmUpICU+JSANCiAgbmEub21pdCgpICU+JQ0KICAjY291bnQoY2F1c2VfbmFtZSk+JQ0KICAjc2VsZWN0KC1lbmdfbWV0cmljKSAlPiUNCiAgc3ByZWFkKG1ldHJpYywgdmFsdWUpICU+JQ0KICBsZWZ0X2pvaW4oZW5nMSwgYnkgPSBjKCJjYXVzZV9uYW1lIikpICU+JSANCiAgZmlsdGVyKG1ldHJpYyA9PSAiZXN0aW1hdGUiKSAlPiUNCiAgbXV0YXRlKHNpZyA9IGlmZWxzZShsb3dlciA+IHZhbHVlLCAxLA0KICAgICAgICAgICAgICAgICAgICAgIGlmZWxzZSh1cHBlciA8IHZhbHVlLCAtMSwgMCkpKSAlPiUNCiAgZ2dwbG90KGFlcyhjYXVzZV9uYW1lLCByZW9yZGVyKGxvY2F0aW9uX25hbWUueCwgSU1Ec2NvcmUpLCBmaWxsID0gZmFjdG9yKHNpZywgbGFiZWxzID0gYygiaGlnaCIsICJOUyIsICJsb3ciKSkpKSArDQogIGdlb21fdGlsZSgpICsNCiAgY29vcmRfZml4ZWQoKSArDQogIHNjYWxlX2ZpbGxfbWFudWFsKHZhbHVlcyA9IGMoInJlZCIsIndoaXRlIiwgImRhcmtncmVlbiIpKSArDQogIHNjYWxlX3hfZGlzY3JldGUocG9zaXRpb24gPSAidG9wIikgKw0KICB0aGVtZShheGlzLnRleHQueSA9IGVsZW1lbnRfdGV4dChzaXplID0gNiksIA0KICAgICAgICBheGlzLnRleHQueC50b3AgPSBlbGVtZW50X3RleHQoc2l6ZSA9IDUsIGFuZ2xlID0gOTAsIGhqdXN0ID0gMCkpICsNCiAgbGFicyh4ID0iIiwgDQogICAgICAgeSA9ICIiLCANCiAgICAgICB0aXRsZSA9ICJTaWduaWZpY2FuY2UgY2hhcnQgb2YgSEFRIGJ5IFVUTEEgYW5kIGNhdXNlIiwgDQogICAgICAgY2FwdGlvbiA9ICJVVExBcyBvcmRlcmVkIGJ5IGRlY3JlYXNpbmcgSU1EIHNjb3JlIiwgDQogICAgICAgZmlsbCA9ICJTdGF0aXN0aWNhbCBzaWduaWZpY2FuY2UiKQ0KDQoNCg0KDQpgYGANCg0KIyMgUGVyIGNhcGl0YSBwcmltYXJ5IGNhcmUgc3RhZmYNCg0KYGBge3J9DQoNCmNvcnIgPC0gbGlzdC5maWxlcyhwYXR0ZXJuID0gImNzdiIpWzldICU+JQ0KICBmcmVhZCgpDQoNCg0KY29yciAlPiUgbmEub21pdCgpICU+JQ0KICBnYXRoZXIobWV0cmljLCB2YWx1ZSkgJT4lDQogIGdncGxvdChhZXMobWV0cmljLCB2YWx1ZSwgZmlsbCA9IG1ldHJpYyksIGFscGhhID0gMC42KSArDQogIGdlb21fYm94cGxvdCgpDQogIA0KY29yciAlPiUgbmEub21pdCAlPiUNCiAgY29yKCkgJT4lDQogIGNvcnJwbG90Ojpjb3JycGxvdC5taXhlZCgpDQoNCg0KbW9kIDwtIGNvcnIgJT4lIG5hLm9taXQNCm1vZDEgPC0gbG0oZXN0aW1hdGUgfi4sIGRhdGEgPSBtb2QpDQptb2QyIDwtIGxtKHZhbHVlIH4uLCBkYXRhID0gbW9kKQ0KDQp0aWR5KG1vZDEpDQp0aWR5KG1vZDIpDQoNCmBgYA0KDQoNCiogSEFRIHNjb3JlIGludmVyc2VseSBjb3JyZWxhdGVkIHdpdGggZGVwcml2YXRpb24gaWUgYmV0dGVyIG91dGNvbWUvYWNjZXNzIGluIGxlYXN0IGRlcHJpdmVkIGFyZWFzIA0KKiBPdGhlciBhc3NvY2lhdGlvbnMgYXJlIHdlYWsgLSB0ZW5kZW5jeSB0byBIQVEgdG8gaW5jcmVhc2Ugd2l0aCBpbmNyZWFzaW5nIHBlciBjYXBpdGEgR1BzDQoNCg0KDQo=