The objectives of this problem set is to orient you to a number of activities in R
. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html
file as: YourName_ANLY512-Section-Year-Semester.html
and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe
data that is part of the library(datasets)
in R
. And assign that data to a new object called data
.str(anscombe)
## 'data.frame': 11 obs. of 8 variables:
## $ x1: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x2: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x3: num 10 8 13 9 11 14 6 4 12 7 ...
## $ x4: num 8 8 8 8 8 8 8 19 8 8 ...
## $ y1: num 8.04 6.95 7.58 8.81 8.33 ...
## $ y2: num 9.14 8.14 8.74 8.77 9.26 8.1 6.13 3.1 9.13 7.26 ...
## $ y3: num 7.46 6.77 12.74 7.11 7.81 ...
## $ y4: num 6.58 5.76 7.71 8.84 8.47 7.04 5.25 12.5 5.56 7.91 ...
data <- data("anscombe")
x1 <- anscombe[,1]
x2 <- anscombe[,2]
x3 <- anscombe[,3]
x4 <- anscombe[,4]
y1 <- anscombe[,5]
y2 <- anscombe[,6]
y3 <- anscombe[,7]
y4 <- anscombe[,8]
fBasics()
package!)mean(x1)
## [1] 9
var(x1)
## [1] 11
mean(x2)
## [1] 9
var(x2)
## [1] 11
mean(x3)
## [1] 9
var(x3)
## [1] 11
mean(x4)
## [1] 9
var(x4)
## [1] 11
mean(y1)
## [1] 7.500909
var(y1)
## [1] 4.127269
mean(y2)
## [1] 7.500909
var(y2)
## [1] 4.127629
mean(y3)
## [1] 7.5
var(y3)
## [1] 4.12262
mean(y4)
## [1] 7.500909
var(y4)
## [1] 4.123249
install.packages("fBasics", repos="http://cran.rstudio.com/")
## Installing package into 'C:/Users/sunny.duggal/Documents/R/win-library/3.5'
## (as 'lib' is unspecified)
## package 'fBasics' successfully unpacked and MD5 sums checked
##
## The downloaded binary packages are in
## C:\Users\sunny.duggal\AppData\Local\Temp\Rtmpwjix1U\downloaded_packages
library(fBasics)
## Warning: package 'fBasics' was built under R version 3.5.2
## Loading required package: timeDate
## Warning: package 'timeDate' was built under R version 3.5.2
## Loading required package: timeSeries
## Warning: package 'timeSeries' was built under R version 3.5.2
correlationTest(x1,y1)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Mon Dec 31 05:34:46 2018
correlationTest(x2,y2)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Mon Dec 31 05:34:46 2018
library(ggplot2)
plot(x1,y1, main = "Scatter plot between x1 & y1")
plot(x2,y2,main = "Scatter plot between x2 & y2")
plot(x3,y3, main = "Scatter plot between x3 & y3")
plot(x4,y4, main = "Scatter plot between x4 & y4")
par(mfrow = c(2,2))
plot(x1,y1, main = "Scatter plot between x1 & y1", pch = 19)
plot(x2,y2,main = "Scatter plot between x2 & y2", pch = 19)
plot(x3,y3, main = "Scatter plot between x3 & y3", pch = 19)
plot(x4,y4, main = "Scatter plot between x4 & y4", pch = 19)
lm()
function.Lm1 <- lm( x1~y1)
summary(Lm1)
##
## Call:
## lm(formula = x1 ~ y1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.6522 -1.5117 -0.2657 1.2341 3.8946
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9975 2.4344 -0.410 0.69156
## y1 1.3328 0.3142 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.019 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
Lm2 <- lm(x2~y2)
summary(Lm2)
##
## Call:
## lm(formula = x2 ~ y2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8516 -1.4315 -0.3440 0.8467 4.2017
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.9948 2.4354 -0.408 0.69246
## y2 1.3325 0.3144 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.02 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
Lm3 <- lm(x3~y3)
summary(Lm3)
##
## Call:
## lm(formula = x3 ~ y3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9869 -1.3733 -0.0266 1.3200 3.2133
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0003 2.4362 -0.411 0.69097
## y3 1.3334 0.3145 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.019 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
Lm4 <- lm(x4~y4)
summary(Lm4)
##
## Call:
## lm(formula = x4 ~ y4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.7859 -1.4122 -0.1853 1.4551 3.3329
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.0036 2.4349 -0.412 0.68985
## y4 1.3337 0.3143 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.018 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
par(mfrow = c(2,2))
plot(Lm1)
plot(Lm2)
plot(Lm3)
plot(Lm4)
anova(Lm1, test ="Chisq")
Analysis of Variance Table
Response: x1 Df Sum Sq Mean Sq F value Pr(>F)
y1 1 73.32 73.320 17.99 0.00217 ** Residuals 9 36.68 4.076
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(Lm2, test ="Chisq")
Analysis of Variance Table
Response: x2 Df Sum Sq Mean Sq F value Pr(>F)
y2 1 73.287 73.287 17.966 0.002179 ** Residuals 9 36.713 4.079
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(Lm3, test ="Chisq")
Analysis of Variance Table
Response: x3 Df Sum Sq Mean Sq F value Pr(>F)
y3 1 73.296 73.296 17.972 0.002176 ** Residuals 9 36.704 4.078
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(Lm4, test ="Chisq")
Analysis of Variance Table
Response: x4 Df Sum Sq Mean Sq F value Pr(>F)
y4 1 73.338 73.338 18.003 0.002165 ** Residuals 9 36.662 4.074
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1