library(imgw) # https://github.com/bczernecki/imgw
## Warning: replacing previous import 'XML::xml' by 'rvest::xml' when loading
## 'imgw'
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)

miesieczne <- pobierz_miesieczne() # pobieranie danych
## Warning in readLines(file, n = thisblock): incomplete final line
## found on 'https://dane.imgw.pl/data/dane_pomiarowo_obserwacyjne/
## dane_meteorologiczne/miesieczne/synop/s_m_d_format.txt'
## Warning in clean_metadata_miesieczne("https://dane.imgw.pl/data/
## dane_pomiarowo_obserwacyjne/dane_meteorologiczne/miesieczne/synop/
## s_m_d_format.txt"): NAs introduced by coercion
## [1] 1
## [1] 2
## [1] 3
## [1] 4
## [1] 5
## [1] 6
## [1] 7
## [1] 8
## [1] 9
## [1] 10
## [1] 11
## [1] 12
## [1] 13
## [1] 14
## [1] 15
## [1] 16
## [1] 17
## [1] 18
## [1] 19
## [1] 20
## [1] 21
## [1] 22
## [1] 23
## [1] 24
## [1] 25
## [1] 26
grudzien <- filter(miesieczne, Miesiąc == 12)

grudzien <- grudzien %>% select(`Kod stacji`:`Miesiąc`, matches("Miesięczna suma usłonecznienia")) 
colnames(grudzien) <- c("kod","nazwa", "rok", "mm","uslonecznienie")


szeroka <- grudzien %>% select(-kod, -mm) %>%  spread(data = ., key = nazwa, value = uslonecznienie)
szeroka <- szeroka[,colSums(is.na(szeroka))<10]
tail(szeroka)
##     rok BIAŁYSTOK BIELSKO-BIAŁA CHOJNICE ELBLĄG-MILEJEWO
## 53 2012      41.7           0.0     28.9            38.0
## 54 2013      49.4           0.0     35.5            30.9
## 55 2014      21.5           0.0     26.3            26.1
## 56 2015      56.9          96.2     49.9            57.2
## 57 2016      32.0          76.0     41.6            44.6
## 58 2017      18.7          51.4     26.4            25.9
##    GORZÓW WIELKOPOLSKI  HEL JELENIA GÓRA KALISZ KASPROWY WIERCH KATOWICE
## 53                21.3 35.4         73.9   37.7            60.1     49.9
## 54                46.4 23.1         95.9   78.1           123.8     84.4
## 55                27.1 46.6          0.0   24.8            61.3     43.6
## 56                52.1 57.4        105.9   71.0           136.0     83.2
## 57                56.8 41.9         94.3   73.0           106.0     55.1
## 58                41.0 62.5         60.2   41.6            61.7     34.9
##    KĘTRZYN KIELCE-SUKÓW KŁODZKO KOŁO KOŁOBRZEG KOSZALIN KRAKÓW-BALICE ŁEBA
## 53    43.9         37.6    36.3 39.8      29.1     31.6             0 23.7
## 54    24.7         79.3    57.6 58.5      23.3     25.6             0 23.2
## 55     0.0         37.5    20.5  0.0      18.9     20.3             0 32.7
## 56    66.0         79.3    74.6 53.7      45.3     35.1             0 54.1
## 57    35.7         51.3    76.3 58.3      38.4      0.0             0  0.0
## 58    30.3         33.2    31.7  0.0      35.5     39.2             0 43.8
##    LĘBORK LEGNICA LESKO LESZNO ŁÓDŹ LUBLIN-RADAWIEC MIKOŁAJKI MŁAWA
## 53    0.0    56.5  44.1   35.7 46.2            23.6      36.4  36.1
## 54    0.0    80.2  97.8   66.2  0.0            53.4      22.6  28.9
## 55    0.0     0.0  65.1    0.0 24.8            22.5      20.1  18.0
## 56    0.0   100.5 101.5   70.6 68.7            65.5      63.3  45.0
## 57   21.4    93.3  63.6    0.0 66.5            33.1      39.4  42.3
## 58    0.0    50.1  35.7   45.3 35.6            21.2      26.2  23.7
##    NOWY SĄCZ OLSZTYN OPOLE PŁOCK POZNAŃ RACIBÓRZ RESKO-SMÓLSKO
## 53      44.7       0  48.0  45.9   22.9     52.5          17.2
## 54     112.5       0  99.4  49.9   50.5    100.5          25.9
## 55      47.7       0  32.6   0.0   25.9      0.0           0.0
## 56     124.7       0  95.8  56.5   49.4     99.9            NA
## 57      80.8       0  80.7  52.1   48.1      0.0            NA
## 58      54.5       0  43.1  29.8   38.9     43.9            NA
##    RZESZÓW-JASIONKA SANDOMIERZ SIEDLCE SŁUBICE ŚNIEŻKA SULEJÓW SUWAŁKI
## 53             39.6       44.8    37.5     0.0    60.1    41.2    41.8
## 54             83.1       82.3    62.5     0.0    83.2    73.8    29.6
## 55             23.4        0.0    15.7     0.0    29.0     0.0    28.6
## 56             82.7       95.6    69.3     0.0    85.4    82.6    35.4
## 57              0.0        0.0    39.9    68.9   110.6    67.0    28.1
## 58              0.0       41.1    23.8    41.2    48.9    42.4    12.2
##    ŚWINOUJŚCIE SZCZECIN TARNÓW TERESPOL TORUŃ USTKA WARSZAWA WIELUŃ
## 53         0.0     18.4   37.7     44.1  33.1   0.0     51.1   40.4
## 54         0.0     28.1   86.7     68.7  33.4   0.0     58.1   85.0
## 55         0.0     29.6    0.0     21.1  28.4  25.8     19.5    0.0
## 56        16.4     50.6   91.9     68.4  61.1  40.4     67.6    0.0
## 57        16.0     48.7   57.0     30.9  63.2  20.1     41.5    0.0
## 58         8.3     33.7   39.5     19.7  32.9  37.5     21.6   40.4
##    WŁODAWA WROCŁAW ZAKOPANE ZIELONA GÓRA
## 53    43.0    67.1     47.6         38.6
## 54    75.3    85.4     93.8         65.8
## 55    17.4    42.4     53.9         34.3
## 56    76.4    99.8     97.6         73.5
## 57    29.7    83.4     82.0         83.6
## 58    22.2    44.1     49.3         36.1
staty <- grudzien %>% group_by(`nazwa`) %>% summarise(min=min(uslonecznienie, na.rm=T),
                                                    mean=round(mean(uslonecznienie, na.rm=T),1),
                                                    max=max(uslonecznienie, na.rm=T))

tail(staty)
## # A tibble: 6 x 4
##   nazwa          min  mean   max
##   <chr>        <dbl> <dbl> <dbl>
## 1 WROCŁAW        0    37    99.8
## 2 ZAKOPANE      19.7  52.4 131. 
## 3 ZAMOŚĆ         0    23.1  56.2
## 4 ŻARNOWIEC      0     0     0  
## 5 ZGORZELEC      0    19    38  
## 6 ZIELONA GÓRA  15.3  37.8  83.6