Noha Elprince
Nov 25, 2014
The Prestige dataset used in my application has been taken from the library ‘car’ in R. This dataset has 102 observations and 6 attributes. The observations are the Canadian occupations.
Out of the 6 attributes, 4 attributes have been selected namely :
Predict prestige that represents the score for occupation given the predictors: ‘type’ , ‘education’ and 'income'
Fit a linear regression model for prediction due to the linear nature of predictors with respect to the desired outcome.
Calculate the 95% Confidence Interval for each fitted value.
summary(fit)
Call:
lm(formula = prestige ~ as.numeric(education) + as.numeric(income) +
as.factor(type), data = trainingdata)
Residuals:
Min 1Q Median 3Q Max
-14.0956 -4.6313 0.1798 4.6625 17.9948
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.4040974 6.7085817 0.358 0.721199
as.numeric(education) 3.2518354 0.8173297 3.979 0.000173 ***
as.numeric(income) 0.0010817 0.0002518 4.295 5.77e-05 ***
as.factor(type)prof 7.8350319 4.8904655 1.602 0.113837
as.factor(type)wc -0.0928479 3.3078956 -0.028 0.977691
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.55 on 67 degrees of freedom
Multiple R-squared: 0.8164, Adjusted R-squared: 0.8055
F-statistic: 74.5 on 4 and 67 DF, p-value: < 2.2e-16
plot(fit,1,pch=19,cex=0.5,col="#00000010")