Nominal oil price and US effective exchange rate
Five-year rolling correlation between nominal oil price and US effective exchange rate
Source of the shock: exchange rate (ER), oil price (OP)
Source of the shock: exchange rate (ER), oil price (OP)
The differences in the results in the literature:
What is the real relationship between OP and ER?
Timing and duration of shocks
p-values for the linear Granger-causality test
p-values for non-linear causality test (Diks and Panchenko, 2006)
\(y_t=a+\displaystyle\sum_{j=1}^pA_jy_{t-j}+u_t\)
\(y_t = a(t) + \displaystyle\sum_{j=1}^2 A_j(t)\ y_{t-j} + u_t\)
\(B(t)\) \(\Omega(t)\) \(B^{\prime}(t) = \Sigma(t)\) \(\Sigma^{\prime}(t)\)
\(y_t =\) \(a(t)\) + \(A_j(t)\) \(y_{t-j}\) + \(B(t)^{-1} \Sigma(t)\) \(\varepsilon_t\)
\(y_t = (I_2 \otimes X_t)\) \(\alpha_t\) + \(B(t)^{-1} \Sigma(t)\) \(\varepsilon_t\)
\(y_t = (I_2 \otimes X_t)\) \(\alpha_t\) + \(B(t)^{-1} \Sigma(t)\) \(\varepsilon_t\)
Dynamics of the TV parameters
The priors follow the same principles as in Primiceri (2005) and are summarized in the following Table:
Response of one variable to one unit shock of the other variable in the (time invariant) VAR model for the whole period
Standard deviations
Impulses \(O_t \rightarrow\) Responses \(ER_t\) TV responses to one standard deviation shock
Impulses \(O_t \rightarrow\) Responses \(ER_t\) TV responses to one standard deviation shock
Impulses \(ER_t \rightarrow\) Responses \(O_t\) TV responses to one standard deviation shock
Impulses \(ER_t \rightarrow\) Responses \(O_t\) TV responses to one standard deviation shock
Responses after 3, 6, 12, and 24 months
\(B_t \Omega_t B_t^{-1} = \Sigma_t \Sigma_t^{\prime}\)
Demonstration:
\(\Omega_t \ = V(u_t) = E[(u_t-0)(u_t-0)^{\prime}] = E[u_t u_t^{\prime}]\)
If \(\ u_t = B_t^{-1} \Sigma_t \varepsilon_t\)
\(\Omega_t \ = E[B_t^{-1} \Sigma_t \varepsilon_t \ (B_t^{-1} \Sigma_t \varepsilon_t)^{\prime}] = E[B_t^{-1} \Sigma_t \ \varepsilon_t \varepsilon_t^{\prime} \ \Sigma_t^\prime B_t^{-1 \prime}]\)
If \(\ V(\varepsilon_t) = E[\varepsilon_t \varepsilon_t^\prime] = I_2\)
\(\Omega_t = B_t^{-1} \Sigma_t \Sigma_t^{\prime} {B_t^{\prime}}^{-1}\)
\(X \sim \mathcal{IW}(\bar{X}, \nu)\)
\(V(X)=\bar{X}/\nu\)