1. Plot selection:
2. Treatments:
3. Replicates per treatment:
4. Layout:
5. Planting and sowing:
6. Watering:
7. Monitoring:
setwd("D:/Dropbox/100_PROJECTS/2016.4_PROJECT_Cyclopia.transplants")
read.csv("Data/SamplingDates.csv")%>%tbl_df()%>%
rename(SamplingEvent=ColumnHeading)->
sampling_dates
read.csv("Data/AB_MSC_RHB_data VER3-2014-2016.csv")%>%tbl_df()%>%
mutate(H5a=as.numeric(H5a))%>% # one numeric column was imported as a factor. Can't see why...
select(-N1,-N2a,-N2b,-N3a,-N3b,-N4a,-N4b,-N5a,-N5b)%>%
tidyr::gather("SamplingEvent","Height",c(H1,H2a,H2b,H3a,H3b,H4a,H4b,H5a,H5b))->
tutu
read.csv("Data/AB_MSC_RHB_data VER3-2014-2016.csv")%>%tbl_df()%>%
mutate(H5a=as.numeric(H5a))%>% # one numeric column was imported as a factor. Can't see why...
select(-H1,-H2a,-H2b,-H3a,-H3b,-H4a,-H4b,-H5a,-H5b)%>%
rename(H1=N1,H2a=N2a,H2b=N2b,H3a=N3a,H3b=N3b,H4a=N4a,H4b=N4b,H5a=N5a,H5b=N5b)%>%
tidyr::gather("SamplingEvent","SamplingNote",c(H1,H2a,H2b,H3a,H3b,H4a,H4b,H5a,H5b))->
toto
## Warning: attributes are not identical across measure variables;
## they will be dropped
full_join(tutu,toto,by=c("Year","CODE","SPECIES","TYPE","LT","TR","GP","SamplingEvent"))%>%
filter(!(TYPE=="SEEDLING"&SamplingEvent=="H2b"))%>% # There are no second replicates for seedlings
filter(!(TYPE=="SEEDLING"&SamplingEvent=="H3b"))%>% # There are no second replicates for seedlings
filter(!(TYPE=="SEEDLING"&SamplingEvent=="H4b"))%>% # There are no second replicates for seedlings
filter(!(TYPE=="SEEDLING"&SamplingEvent=="H5b"))%>% # There are no second replicates for seedlings
left_join(sampling_dates,by=c("Year","SamplingEvent"))%>%
mutate(Replicate=substr(SamplingEvent,3,3),
Index=paste(CODE,TYPE,Year,Replicate,sep="-"))%>%
rename(YEAR=Year)->
dat.long
## Warning: Column `SamplingEvent` joining character vector and factor,
## coercing into character vector
read.csv("Data/AB_MSC_RHB_data VER3-2014-2016.csv")%>%tbl_df()%>%
mutate(H5a=as.numeric(H5a))->
dat.wide
#dat.long%>%group_by(YEAR,SPECIES,TYPE,LT,TR,GP)%>%tally()%>%View
dat.long%>%group_by(YEAR,SPECIES,TYPE,LT,TR,GP)%>%tally()
## # A tibble: 165 x 7
## # Groups: YEAR, SPECIES, TYPE, LT, TR [?]
## YEAR SPECIES TYPE LT TR GP n
## <fct> <fct> <fct> <fct> <fct> <int> <int>
## 1 14/15 INT SEED FY CL 1 72
## 2 14/15 INT SEED FY CL 2 72
## 3 14/15 INT SEED FY CL 3 72
## 4 14/15 INT SEED FY CL 4 72
## 5 14/15 INT SEED FY CL 5 72
## 6 14/15 INT SEED FY CL 6 72
## 7 14/15 INT SEED FY CL 7 72
## 8 14/15 INT SEED FY CL 8 72
## 9 14/15 INT SEED FY CL 9 72
## 10 14/15 INT SEED FY CL 10 72
## # ... with 155 more rows
dat.long%>%group_by(YEAR,SPECIES,TYPE)%>%tally()
## # A tibble: 6 x 4
## # Groups: YEAR, SPECIES [?]
## YEAR SPECIES TYPE n
## <fct> <fct> <fct> <int>
## 1 14/15 INT SEED 3609
## 2 14/15 SUB SEED 3609
## 3 14/15 SUB SEEDLING 2025
## 4 15/16 INT SEEDLING 2010
## 5 15/16 SUB SEED 3609
## 6 15/16 SUB SEEDLING 2005
2014/15: SUB seeds and seedling, INT seeds 2015/16: SUB seeds and seedlings, INT seedlings
dat.long%>%
filter(SamplingEvent%in%c("H5a","H5b"))%>%
filter(!is.na(Height))%>%
filter(Height!=1)%>%
ggplot(aes((Height)))+
geom_histogram(bins=5)+
facet_grid(LT+SPECIES+TYPE~Date+TR)+
coord_flip()
dat.long%>%
filter(SamplingEvent%in%c("H5a","H5b"))%>%
filter(!is.na(Height))%>%
filter(SPECIES=="SUB")%>%
filter(Height!=1)%>%
ggplot(aes((Height)))+
geom_histogram(bins=5,aes(fill=TYPE))+
facet_grid(LT~Date+TR)+
coord_flip()+
theme(legend.position="top",
legend.title = element_blank())+
xlab("Height class (mm)")
dat.long%>%
filter(SamplingEvent%in%c("H5a","H5b"))%>%
filter(!is.na(Height))%>%
filter(SPECIES=="INT")%>%
filter(Height!=1)%>%
ggplot(aes((Height)))+
geom_histogram(bins=5,aes(fill=TYPE))+
facet_grid(LT~Date+TR)+
coord_flip()+
theme(legend.position="top",
legend.title = element_blank())+
xlab("Height class (cm)")