Effect of Advance Booking on Airline Ticket Pricing in India

Sameer Mathur

Regression Analysis

---

PART 1: READING AND DESCRIBING DATA

Number of Rows and Columns

[1] 8187   23

Name of the Data Variables

 [1] "FlightNumber"       "Airline"            "DepartureCity"     
 [4] "ArrivalCity"        "DepartureTime"      "ArrivalTime"       
 [7] "Departure"          "Fly"                "FlyingTime"        
[10] "Aircraft"           "PlaneModel"         "Capacity"          
[13] "SeatPitch"          "SeatWidth"          "DataCollectionDate"
[16] "DateDeparture"      "DayDeparture"       "Weekend"           
[19] "Price"              "AdvBookDays"        "Diwali"            
[22] "DayBeforeDiwali"    "DayAfterDiwali"    

Descriptive Statistics

                    vars    n    mean      sd median   min   max
FlightNumber*          1 8187  874.45  513.40    866   1.0  1765
Airline*               2 8187    2.27    0.90      2   1.0     4
DepartureCity*         3 8187   36.11   20.09     42   1.0    79
ArrivalCity*           4 8187   37.25   18.73     41   1.0    76
DepartureTime          5 8187 1129.12  589.76   1020   5.0  2345
ArrivalTime            6 8187 1194.21  610.53   1115   0.0  2359
Departure*             7 8187    1.41    0.49      1   1.0     2
Fly*                   8 8187    2.66    0.98      3   1.0     4
FlyingTime             9 8187  112.46   35.80    110  40.0   195
Aircraft*             10 8187    2.30    0.62      2   1.0     4
PlaneModel*           11 8187   55.47   26.22     61   1.0   122
Capacity              12 8187  165.44   36.79    180  50.0   423
SeatPitch             13 8187   30.22    1.23     30  29.0    40
SeatWidth             14 8187   17.61    0.59     18  16.2    21
DataCollectionDate*   15 8187    3.76    0.98      4   1.0     7
DateDeparture*        16 8187   13.16    9.06     12   1.0    29
DayDeparture*         17 8187    4.75    1.65      5   1.0     7
Weekend*              18 8187    1.17    0.38      1   1.0     2
Price                 19 8187 5555.89 3219.96   4778 637.0 43454
AdvBookDays           20 8187   14.65    9.78     16   1.0    39
Diwali*               21 8187    1.40    0.49      1   1.0     2
DayBeforeDiwali*      22 8187    1.20    0.40      1   1.0     2
DayAfterDiwali*       23 8187    1.20    0.40      1   1.0     2

Correlation Matrix

            Price AdvBookDays FlyingTime SeatPitch SeatWidth Capacity
Price        1.00       -0.24       0.31      0.13     -0.03     0.06
AdvBookDays -0.24        1.00       0.00      0.00      0.01     0.01
FlyingTime   0.31        0.00       1.00      0.03      0.07     0.20
SeatPitch    0.13        0.00       0.03      1.00      0.54     0.06
SeatWidth   -0.03        0.01       0.07      0.54      1.00     0.32
Capacity     0.06        0.01       0.20      0.06      0.32     1.00

Visualizing Correlation

plot of chunk unnamed-chunk-5

PART 2: LINEAR OLS REGRESSION ANALYSIS

Regression Equation

\( Price = \beta_0 \\ + \beta_1 * AdvBookDays + \beta_2 * Departure + \beta_3 * Weekend \\ + \beta_4 * Diwali + \beta_{5i} * Fly + \beta_{6j} * Airline + \beta_7 * FlyingTime \\ + \beta_8 * SeatPitch + \beta_9 * SeatWidth \\ + \beta_{10} * AdvBookdays * Departure \\ + \beta_{11} * AdvBookDays * Weekend \\ + \beta_{12} * AdvBookDays * Diwali + \beta_{13} * AdvBookDays * Fly \\ + \beta_{14} * AdvBookDays * Airline \\ + \beta_{15} * AdvBookDays * FlyingTime \\ + \epsilon \)

where

  • Fly {i = 0,1,2,3}
    • 0: MM
    • 1: MN
    • 2: NM
    • 3: NN


  • Airline {j = 0,1,2,3}
    • 0: Air India
    • 1: IndiGo
    • 2: Jet Airways
    • 3: Spice Jet

Call:
lm(formula = Price ~ AdvBookDays + Departure * AdvBookDays + 
    Weekend * AdvBookDays + Diwali * AdvBookDays + Fly * AdvBookDays + 
    Airline * AdvBookDays + FlyingTime * AdvBookDays + SeatPitch + 
    SeatWidth, data = airlineData.df)

Residuals:
    Min      1Q  Median      3Q     Max 
-5931.4 -1404.3  -487.2   651.4 13604.7 

Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)    
(Intercept)                     1.792e+03  1.098e+03   1.633 0.102586    
AdvBookDays                    -9.322e+01  1.471e+01  -6.338 2.46e-10 ***
DeparturePM                    -2.828e+02  1.060e+02  -2.667 0.007673 ** 
WeekendYes                     -4.176e+02  1.152e+02  -3.625 0.000291 ***
DiwaliYes                      -1.732e+03  4.551e+02  -3.807 0.000142 ***
FlyMN                          -7.168e+02  1.647e+02  -4.353 1.36e-05 ***
FlyNM                          -8.315e+02  1.612e+02  -5.159 2.54e-07 ***
FlyNN                          -1.101e+03  1.778e+02  -6.189 6.33e-10 ***
AirlineIndiGo                  -1.196e+03  1.610e+02  -7.430 1.20e-13 ***
AirlineJet Airways             -3.383e+02  1.579e+02  -2.143 0.032167 *  
AirlineSpice Jet               -1.025e+03  1.845e+02  -5.558 2.81e-08 ***
FlyingTime                      3.197e+01  1.437e+00  22.247  < 2e-16 ***
SeatPitch                      -3.967e+01  3.720e+01  -1.066 0.286317    
SeatWidth                       2.316e+02  9.395e+01   2.465 0.013714 *  
AdvBookDays:DeparturePM         1.573e+01  6.032e+00   2.608 0.009135 ** 
AdvBookDays:WeekendYes          2.261e+01  9.262e+00   2.441 0.014680 *  
AdvBookDays:DiwaliYes           8.927e+01  2.616e+01   3.412 0.000648 ***
AdvBookDays:FlyMN               6.710e+01  9.302e+00   7.214 5.93e-13 ***
AdvBookDays:FlyNM               4.867e+01  9.121e+00   5.336 9.75e-08 ***
AdvBookDays:FlyNN               6.217e+01  1.008e+01   6.171 7.13e-10 ***
AdvBookDays:AirlineIndiGo      -1.921e+01  8.117e+00  -2.366 0.017986 *  
AdvBookDays:AirlineJet Airways  7.090e+00  8.776e+00   0.808 0.419157    
AdvBookDays:AirlineSpice Jet   -2.316e+01  1.013e+01  -2.286 0.022272 *  
AdvBookDays:FlyingTime         -2.802e-01  8.166e-02  -3.431 0.000605 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2338 on 8091 degrees of freedom
Multiple R-squared:  0.268, Adjusted R-squared:  0.2659 
F-statistic: 128.8 on 23 and 8091 DF,  p-value: < 2.2e-16

Beta Coefficients

                               coefficients(fitOLSIntModel)
(Intercept)                                    1791.8415106
AdvBookDays                                     -93.2208420
DeparturePM                                    -282.7564058
WeekendYes                                     -417.5691687
DiwaliYes                                     -1732.3204978
FlyMN                                          -716.7920486
FlyNM                                          -831.4731348
FlyNN                                         -1100.6805409
AirlineIndiGo                                 -1195.9108860
AirlineJet Airways                             -338.2668748
AirlineSpice Jet                              -1025.2912149
FlyingTime                                       31.9717342
SeatPitch                                       -39.6693967
SeatWidth                                       231.6157136
AdvBookDays:DeparturePM                          15.7302382
AdvBookDays:WeekendYes                           22.6057773
AdvBookDays:DiwaliYes                            89.2650908
AdvBookDays:FlyMN                                67.1009701
AdvBookDays:FlyNM                                48.6683588
AdvBookDays:FlyNN                                62.1709674
AdvBookDays:AirlineIndiGo                       -19.2091229
AdvBookDays:AirlineJet Airways                    7.0902634
AdvBookDays:AirlineSpice Jet                    -23.1624717
AdvBookDays:FlyingTime                           -0.2801493

Visualizing Beta Coefficients All Predictors

plot of chunk unnamed-chunk-11

Visualizing Beta Coefficients (selected range)

plot of chunk unnamed-chunk-12

ALTERNATE: Visualizing Beta Coefficients

plot of chunk unnamed-chunk-13

INTERACTION PLOTS

Interaction plot of Advance Booking Days and Departure Time

plot of chunk unnamed-chunk-14

Interaction plot of Advance Booking Days and Weekend

plot of chunk unnamed-chunk-15

Interaction plot of Advance Booking Days and Diwali

plot of chunk unnamed-chunk-16

Interaction plot of Advance Booking Days and Departure-Arrival City

plot of chunk unnamed-chunk-17

Interaction plot of Advance Booking Days and Flying Time

plot of chunk unnamed-chunk-18

Interaction plot of Advance Booking Days and Airline

plot of chunk unnamed-chunk-19