Introduction

A large genotyped sample of the population of Wisconsin, USA (The Wisconsin Longitudinal Study, N=8,509) are examined for evidence of the Scarr-Rowe effect, an adverse gene x environment (GxE) interaction that reduces the heritability of IQ among those with low childhood socioeconomic status (SES), using the Continuous Parameter Estimation Method (CPEM):

\[\begin{equation} SES \sim PGS \cdot IQ \end{equation}\]

A large correlation indicates increasing genetic expressivity with increasing SES

 

Imports and settings

 

Read data

A data set with PGS is prepared here. See link for details about data preparation.

Sample size
6256

 

Find CPEM, the inner product og pgs and iq

With standardized versions of all variables

 

Regression of pgs_iq with ses

Fitting linear model: pgs_iq ~ 0 + ses57_std
  Estimate Std. Error t value Pr(>|t|)
ses57_std 0.0786 0.0126 6.24 4.71e-10

 

Scatter plot of ses vs pgs_iq

   

Check normality of ses variable

Since the R square is low, these are essentially also the results for the residuals

   

Analysis with log(ses)

Fitting linear model: pgs_iq ~ logses57_std
  Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.63e-17 0.0126 -5.25e-15 1
logses57_std 0.0504 0.0126 3.99 6.7e-05

 

Check normality of log ses variable

   

Regressions for all combinations of sex, intercept, log transformation and outlier removal

ses outlier_rm sex intercept estimate t.value std.error fstat adjr2 skewness p.value
ses57_std none both 0 0.0786 6.24 0.0126 38.9 0.00602 1.45 4.71e-10
ses57_std none both normal 0.0786 6.24 0.0126 38.9 0.00602 1.45 4.73e-10
ses57_std none female 0 0.0812 4.77 0.017 22.7 0.00667 1.42 1.93e-06
ses57_std none female normal 0.0812 4.76 0.017 22.7 0.00666 1.42 1.97e-06
ses57_std none male 0 0.0757 4.05 0.0187 16.4 0.00507 1.48 5.27e-05
ses57_std none male normal 0.0756 4.04 0.0187 16.4 0.00506 1.48 5.38e-05
ses57_std SD < 3 both 0 0.0574 5 0.0115 25 0.00394 0.703 5.91e-07
ses57_std SD < 3 both normal 0.0538 4.69 0.0115 22 0.00346 0.703 2.76e-06
ses57_std SD < 3 female 0 0.069 4.37 0.0158 19.1 0.00573 0.683 1.29e-05
ses57_std SD < 3 female normal 0.0665 4.22 0.0158 17.8 0.00533 0.683 2.52e-05
ses57_std SD < 3 male 0 0.045 2.69 0.0167 7.25 0.00213 0.723 0.00713
ses57_std SD < 3 male normal 0.04 2.4 0.0167 5.74 0.00162 0.723 0.0166
ses57_std SD < 4 both 0 0.0659 5.47 0.0121 29.9 0.00464 0.965 4.8e-08
ses57_std SD < 4 both normal 0.0654 5.42 0.0121 29.4 0.00456 0.965 6.15e-08
ses57_std SD < 4 female 0 0.0647 3.95 0.0164 15.6 0.00455 1 7.83e-05
ses57_std SD < 4 female normal 0.0645 3.94 0.0164 15.6 0.00453 1 8.16e-05
ses57_std SD < 4 male 0 0.0672 3.78 0.0178 14.3 0.00441 0.927 0.000163
ses57_std SD < 4 male normal 0.0661 3.71 0.0178 13.8 0.00426 0.928 0.000207
logses57_std none both 0 0.0504 3.99 0.0126 15.9 0.00238 1.46 6.69e-05
logses57_std none both normal 0.0504 3.99 0.0126 15.9 0.00238 1.46 6.7e-05
logses57_std none female 0 0.049 2.84 0.0172 8.08 0.00218 1.43 0.0045
logses57_std none female normal 0.0489 2.84 0.0172 8.06 0.00218 1.43 0.00456
logses57_std none male 0 0.0519 2.8 0.0185 7.84 0.00226 1.49 0.00515
logses57_std none male normal 0.0518 2.8 0.0185 7.81 0.00225 1.49 0.00522
logses57_std SD < 3 both 0 0.0323 3.02 0.0107 9.15 0.00134 0.706 0.0025
logses57_std SD < 3 both normal 0.0305 2.86 0.0107 8.21 0.00119 0.706 0.00419
logses57_std SD < 3 female 0 0.0394 2.68 0.0147 7.17 0.00196 0.688 0.00747
logses57_std SD < 3 female normal 0.0386 2.63 0.0147 6.91 0.00188 0.688 0.0086
logses57_std SD < 3 male 0 0.0248 1.59 0.0156 2.54 0.000527 0.725 0.111
logses57_std SD < 3 male normal 0.0218 1.41 0.0155 1.98 0.000333 0.725 0.16
logses57_std SD < 4 both 0 0.0382 3.27 0.0117 10.7 0.00156 0.972 0.00109
logses57_std SD < 4 both normal 0.0379 3.25 0.0117 10.5 0.00154 0.972 0.00117
logses57_std SD < 4 female 0 0.0359 2.26 0.0159 5.11 0.00128 1.01 0.0239
logses57_std SD < 4 female normal 0.036 2.26 0.0159 5.12 0.00129 1.01 0.0237
logses57_std SD < 4 male 0 0.0406 2.36 0.0172 5.58 0.00153 0.936 0.0183
logses57_std SD < 4 male normal 0.0398 2.32 0.0172 5.38 0.00146 0.936 0.0205

 

Decile means (>4SD outliers removed)

decile decile_sd_iq decile_sd_pgs decile_mean_pgs_iq cor
1 0.959 0.91 -0.0472 0.265
2 0.93 0.998 -0.0304 0.263
3 0.936 0.974 -0.0807 0.217
4 0.93 0.949 -0.0226 0.301
5 0.928 0.937 -0.131 0.196
6 0.974 0.962 -0.0492 0.28
7 0.959 0.969 -0.0644 0.262
8 0.941 0.987 -0.0639 0.27
9 0.942 0.994 0.0214 0.317
10 0.919 0.995 0.175 0.277

 

Correlation between variables

Full sample
rowname iq_std ses57_std pgs_std
iq_std - 0.3 0.314
ses57_std 0.3 - 0.156
pgs_std 0.314 0.156 -
Males
rowname iq_std ses57_std pgs_std
iq_std - 0.305 0.305
ses57_std 0.305 - 0.145
pgs_std 0.305 0.145 -
Females
rowname iq_std ses57_std pgs_std
iq_std - 0.296 0.323
ses57_std 0.296 - 0.167
pgs_std 0.323 0.167 -

 

Descriptions of variables

variable code_name WLS_name
IQ iq_std gwiiq_bm for graduates and swiiq_t for siblings
Polygenic score pgs_std pgs_ea3_mtag
Socio-economic status of family ses57 ses57
  vars n mean sd median trimmed mad min max range skew kurtosis se
iq_std 1 6256 -7.11e-17 1 -0.016 -0.00493 1.01 -2.81 2.91 5.72 0.0653 -0.151 0.0126
pgs_std 2 6256 0.00261 0.999 -0.0103 -0.00772 0.99 -3.27 4.16 7.43 0.124 0.068 0.0126
ses57 3 6256 16.3 11.1 14 15 10.4 1 97 96 1.29 2.61 0.14

 

CPEM vs linear regression

Under which conditions is CPEM more powerful than using linear regression and looking at the interaction term? I perform some simulations to investigate this question here