Ssssss— title: “Untitled” author: “J” date: “15 December 2018” output: html_document —
Modelo general
crelogit <- glm(credito ~ ahorro + educ + venta + cultivo + sierra +
edad + produccion + sexo + provincia,
family = binomial (link = "logit"),
data = pu)
coeftest(crelogit, vcov = vcovHC, tipe = "HC1")
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.8652e+00 3.5868e-01 -5.2003 1.989e-07 ***
## ahorro 4.5628e-01 1.9205e-01 2.3758 0.0175111 *
## educ 2.1176e-01 3.1023e-02 6.8259 8.740e-12 ***
## venta 6.2252e-05 1.2995e-05 4.7904 1.665e-06 ***
## cultivo 6.2483e-02 2.0085e-01 0.3111 0.7557301
## sierra 4.9423e-03 2.3952e-01 0.0206 0.9835375
## edad -3.3139e-03 4.1545e-03 -0.7977 0.4250711
## produccion 2.0684e-05 6.6327e-05 0.3118 0.7551555
## sexo 5.6020e-02 1.5747e-01 0.3557 0.7220308
## provincia -1.2923e-01 3.7635e-02 -3.4338 0.0005953 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
el modelo corregido
crelogit1 <- glm(credito ~ ahorro + educ + venta + provincia,
family = binomial (link = "logit"),
data = pu)
coeftest(crelogit1, vcov = vcovHC, tipe = "HC1")
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.9505e+00 2.7574e-01 -7.0735 1.511e-12 ***
## ahorro 4.4859e-01 1.9107e-01 2.3478 0.0188846 *
## educ 2.1846e-01 2.9553e-02 7.3923 1.443e-13 ***
## venta 6.3228e-05 1.2643e-05 5.0010 5.703e-07 ***
## provincia -1.3063e-01 3.6915e-02 -3.5386 0.0004022 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(crelogit1)$coefficients[,1]
## (Intercept) ahorro educ venta provincia
## -1.950451e+00 4.485901e-01 2.184627e-01 6.322776e-05 -1.306295e-01
z<-summary(crelogit1)$coefficients[,4]
p <- (1 - pnorm(abs(z), 0, 1)) * 2
1-p
## (Intercept) ahorro educ venta provincia
## 1.598721e-14 1.057290e-02 6.177281e-13 1.088019e-14 2.448599e-04
#intervalos de confianza
confint(crelogit1)
## Waiting for profiling to be done...
## 2.5 % 97.5 %
## (Intercept) -2.458451e+00 -1.458141e+00
## ahorro 8.974062e-02 8.006228e-01
## educ 1.589908e-01 2.786228e-01
## venta 4.780157e-05 7.999766e-05
## provincia -2.018987e-01 -5.988234e-02
coefplot(crelogit1)+theme_minimal()
allEffects(crelogit1)
## model: credito ~ ahorro + educ + venta + provincia
##
## ahorro effect
## ahorro
## 0 0.2 0.5 0.8 1
## 0.1991556 0.2138518 0.2373461 0.2625595 0.2802968
##
## educ effect
## educ
## 0 2 5 8 10
## 0.09595075 0.14110731 0.24035482 0.37863475 0.48539875
##
## venta effect
## venta
## 0 40000 90000 1e+05 2e+05
## 0.1561899 0.6989400 0.9820780 0.9903960 0.9999826
##
## provincia effect
## provincia
## 1 3 5 7 9
## 0.3436086 0.2873042 0.2368962 0.1929381 0.1554749
plot(allEffects(crelogit1))
effectos marginales
round(mfx::logitmfx(credito ~ ahorro + educ + venta + provincia, pu)$mfxest,6)
## dF/dx Std. Err. z P>|z|
## ahorro 0.081141 0.034860 2.327619 0.019932
## educ 0.036853 0.005006 7.361222 0.000000
## venta 0.000011 0.000001 7.150001 0.000000
## provincia -0.022036 0.005979 -3.685349 0.000228