pu <- read_excel("C:/Users/Jhon/Documents/pu.xlsx")
summary(pu)
##   provincia             numero           unidad           sierra      
##  Length:1186        Min.   :   1.0   Min.   : 1.000   Min.   :0.0000  
##  Class :character   1st Qu.:  30.0   1st Qu.: 4.000   1st Qu.:1.0000  
##  Mode  :character   Median :  59.0   Median : 7.000   Median :1.0000  
##                     Mean   :  68.6   Mean   : 7.448   Mean   :0.7934  
##                     3rd Qu.:  92.0   3rd Qu.:11.000   3rd Qu.:1.0000  
##                     Max.   :1037.0   Max.   :14.000   Max.   :1.0000  
##     credito           ahorro          cultivo         cosecha       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :  0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:  0.200  
##  Median :0.0000   Median :0.0000   Median :1.000   Median :  0.550  
##  Mean   :0.2378   Mean   :0.2133   Mean   :0.688   Mean   :  1.472  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.000   3rd Qu.:  1.500  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :150.000  
##    produccion          venta               sexo             edad      
##  Min.   :    0.1   Min.   :     0.0   Min.   :0.0000   Min.   : 9.00  
##  1st Qu.:   45.0   1st Qu.:   157.8   1st Qu.:0.0000   1st Qu.:28.00  
##  Median :  110.5   Median :  1474.5   Median :1.0000   Median :43.00  
##  Mean   :  399.9   Mean   :  6183.5   Mean   :0.5295   Mean   :44.64  
##  3rd Qu.:  240.0   3rd Qu.:  5383.5   3rd Qu.:1.0000   3rd Qu.:60.00  
##  Max.   :80071.0   Max.   :178045.0   Max.   :1.0000   Max.   :90.00  
##       educ       
##  Min.   : 0.000  
##  1st Qu.: 2.000  
##  Median : 4.000  
##  Mean   : 4.336  
##  3rd Qu.: 5.000  
##  Max.   :10.000
pu1<-select(pu,-numero,-unidad)
summary(pu1)
##   provincia             sierra          credito           ahorro      
##  Length:1186        Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  Class :character   1st Qu.:1.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Mode  :character   Median :1.0000   Median :0.0000   Median :0.0000  
##                     Mean   :0.7934   Mean   :0.2378   Mean   :0.2133  
##                     3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##                     Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##     cultivo         cosecha          produccion          venta         
##  Min.   :0.000   Min.   :  0.000   Min.   :    0.1   Min.   :     0.0  
##  1st Qu.:0.000   1st Qu.:  0.200   1st Qu.:   45.0   1st Qu.:   157.8  
##  Median :1.000   Median :  0.550   Median :  110.5   Median :  1474.5  
##  Mean   :0.688   Mean   :  1.472   Mean   :  399.9   Mean   :  6183.5  
##  3rd Qu.:1.000   3rd Qu.:  1.500   3rd Qu.:  240.0   3rd Qu.:  5383.5  
##  Max.   :1.000   Max.   :150.000   Max.   :80071.0   Max.   :178045.0  
##       sexo             edad            educ       
##  Min.   :0.0000   Min.   : 9.00   Min.   : 0.000  
##  1st Qu.:0.0000   1st Qu.:28.00   1st Qu.: 2.000  
##  Median :1.0000   Median :43.00   Median : 4.000  
##  Mean   :0.5295   Mean   :44.64   Mean   : 4.336  
##  3rd Qu.:1.0000   3rd Qu.:60.00   3rd Qu.: 5.000  
##  Max.   :1.0000   Max.   :90.00   Max.   :10.000

El modelo general

logit <- glm(credito ~ scale(produccion) + sierra + ahorro + cultivo +
               cosecha + venta + sexo + edad + educ,
                  family = binomial(link = "logit"),
                  data = pu1)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                      Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept)       -2.4297e+00  3.1342e-01 -7.7522 9.028e-15 ***
## scale(produccion)  1.0464e-02  6.8558e-02  0.1526   0.87869    
## sierra            -1.2319e-01  2.4039e-01 -0.5125   0.60833    
## ahorro             3.9776e-01  1.8918e-01  2.1025   0.03551 *  
## cultivo            8.2471e-02  1.9837e-01  0.4157   0.67760    
## cosecha            1.4720e-02  1.2489e-02  1.1786   0.23855    
## venta              6.6272e-05  1.3416e-05  4.9399 7.815e-07 ***
## sexo               7.9804e-02  1.5550e-01  0.5132   0.60780    
## edad              -4.7516e-03  4.0943e-03 -1.1605   0.24583    
## educ               1.9687e-01  3.0469e-02  6.4614 1.037e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
pu2 <- select(pu, provincia, credito, ahorro, venta, educ)
summary(pu2)
##   provincia            credito           ahorro           venta         
##  Length:1186        Min.   :0.0000   Min.   :0.0000   Min.   :     0.0  
##  Class :character   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:   157.8  
##  Mode  :character   Median :0.0000   Median :0.0000   Median :  1474.5  
##                     Mean   :0.2378   Mean   :0.2133   Mean   :  6183.5  
##                     3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:  5383.5  
##                     Max.   :1.0000   Max.   :1.0000   Max.   :178045.0  
##       educ       
##  Min.   : 0.000  
##  1st Qu.: 2.000  
##  Median : 4.000  
##  Mean   : 4.336  
##  3rd Qu.: 5.000  
##  Max.   :10.000

modelo con variables significativas

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = pu1)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error  z value  Pr(>|z|)    
## (Intercept) -2.6577e+00  1.7853e-01 -14.8862 < 2.2e-16 ***
## ahorro       3.6977e-01  1.8693e-01   1.9780   0.04792 *  
## venta        7.0585e-05  1.2949e-05   5.4512 5.003e-08 ***
## educ         2.0415e-01  2.9097e-02   7.0161 2.282e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Modelo con provincias Yauli

yauli<-subset(pu1, provincia == "YAULI")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = yauli)
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error  z value  Pr(>|z|)    
## (Intercept) -2.3175e+01  2.1416e+00 -10.8213 < 2.2e-16 ***
## venta        1.8177e-02  5.6579e-04  32.1263 < 2.2e-16 ***
## educ        -1.9582e+00  5.7525e-01  -3.4041 0.0006638 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Junin

junin<-subset(pu1, provincia == "JUNIN")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = junin)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error z value Pr(>|z|)   
## (Intercept) -4.1719e+00  1.3469e+00 -3.0973 0.001953 **
## ahorro       2.3929e+00  8.4524e-01  2.8311 0.004639 **
## venta        2.7513e-04  9.8506e-05  2.7930 0.005222 **
## educ         2.4267e-01  2.6435e-01  0.9180 0.358624   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tarma

tarma<-subset(pu1, provincia == "TARMA")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = tarma)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept) -2.87783393  0.50018121 -5.7536 8.737e-09 ***
## ahorro       1.24186590  0.61182854  2.0298 0.0423808 *  
## venta        0.00018876  0.00005670  3.3290 0.0008716 ***
## educ         0.21244398  0.10612199  2.0019 0.0452971 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Chanchamayo

chanchamayo<-subset(pu1, provincia == "CHANCHAMAYO")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = chanchamayo)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept) -1.5757e+00  4.3297e-01 -3.6393 0.0002733 ***
## ahorro       5.2339e-01  6.1375e-01  0.8528 0.3937909    
## venta        4.8879e-05  1.7987e-05  2.7175 0.0065770 ** 
## educ         1.3947e-01  8.6616e-02  1.6103 0.1073396    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Satipo

satipo<-subset(pu1, provincia == "SATIPO")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = satipo)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept) -2.1674e+00  5.0044e-01 -4.3310 1.485e-05 ***
## ahorro      -2.4933e-01  6.9778e-01 -0.3573   0.72085    
## venta        2.4481e-05  1.8845e-05  1.2990   0.19393    
## educ         1.9065e-01  9.5098e-02  2.0048   0.04498 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Jauja

jauja<-subset(pu1, provincia == "JAUJA")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = jauja)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept) -3.2780e+00  4.4983e-01 -7.2872 3.166e-13 ***
## ahorro      -4.6790e-01  6.2015e-01 -0.7545 0.4505483    
## venta        9.0780e-05  3.6416e-05  2.4928 0.0126734 *  
## educ         2.4815e-01  6.6556e-02  3.7284 0.0001927 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Concepcion

concepcion<-subset(pu1, provincia == "CONCEPCION")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = concepcion)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept) -4.7158e+00  8.6542e-01 -5.4492  5.06e-08 ***
## ahorro       1.8318e+00  6.4364e-01  2.8460 0.0044278 ** 
## venta        8.4576e-05  2.9433e-05  2.8735 0.0040594 ** 
## educ         4.8284e-01  1.3285e-01  3.6346 0.0002784 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Chupaca

chupaca<-subset(pu1, provincia == "CHUPACA")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = chupaca)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept) -3.1483e+00  5.6370e-01 -5.5852 2.335e-08 ***
## ahorro      -3.1772e-01  6.7708e-01 -0.4693   0.63889    
## venta        4.7401e-05  2.9759e-05  1.5928   0.11119    
## educ         2.3249e-01  9.1448e-02  2.5424   0.01101 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Huancayo

huancayo<-subset(pu1, provincia == "HUANCAYO")

logit <- glm(credito ~ ahorro + venta + educ,
                  family = binomial(link = "logit"),
                  data = huancayo)
coeftest(logit,vcov.=vcovHC, type = "HC1")
## 
## z test of coefficients:
## 
##                Estimate  Std. Error z value  Pr(>|z|)    
## (Intercept) -3.1207e+00  3.8685e-01 -8.0668 7.214e-16 ***
## ahorro       6.4097e-01  4.0685e-01  1.5754   0.11516    
## venta        9.4844e-05  4.8465e-05  1.9570   0.05035 .  
## educ         2.6768e-01  5.9360e-02  4.5094 6.500e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1