kids_descr <- filter(kid,trial_index==0) %>%
group_by(condition) %>%
summarize(N=sum(!is.na(unique(subject))), gender_f=sum(Gender==1), avg_age = round(mean(Age,na.rm=T),2), ppvt=round(mean(PPVT)),ppvtSE=round(sd(PPVT,na.rm=T),2),newscript_N=sum(script=="short"), new_f=sum(Gender==1&script=="short"),new_age=round(mean(Age[script=="short"],na.rm=T),2))
stargazer(kids_descr,summary=F,header=F,type="html")
| condition | N | gender_f | avg_age | ppvt | ppvtSE | newscript_N | new_f | new_age | |
| 1 | high | 49 | 18 | 63.51 | 9 | 1.47 | 41 | 16 | 64.17 |
| 2 | low | 49 | 28 | 62.75 | 9 | 1.72 | 44 | 26 | 63.37 |
Overall, we have a total of 98 child participants after exclusions, and 85 who participated after the slight shortening of the introductory script.
adults_descr <- filter(adult,trial_index==0) %>%
group_by(condition) %>%
summarize(N=sum(!is.na(unique(subject))), gender_f=sum(Gender==1))
stargazer(adults_descr,summary=F,header=F,type="html")
| condition | N | gender_f | |
| 1 | high | 45 | 37 |
| 2 | low | 45 | 33 |
Overall, we have a total of 90 adult participants.
First, we can simply look at learning across time.
#summarize by block
kids_learn <- kid %>%
filter(trial_kind=="learn"&isRepeatedTrial==0) %>%
group_by(subject,condition,blockNum) %>%
summarize(accuracy=mean(isRight)) %>%
summarySEwithin(measurevar="accuracy",betweenvars=c("condition"),withinvars=c("blockNum"),idvar="subject")
#plot by block
#learning phase
library(cowplot)
p1=ggplot(kids_learn, aes(blockNum,accuracy,color=condition,group=condition))+
geom_point(position=position_dodge(0.3))+
geom_line(position=position_dodge(0.3))+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),width=0,size=0.75,position=position_dodge(.3))+
xlab("Block")+
ylab("Accuracy")+
scale_color_brewer(palette="Set1",name="Nameability")+
ggtitle("Performance during training \n All Kids")+
geom_hline(yintercept=0.5, linetype="dashed",size=1)+
theme(legend.position=c(0.3,0.3))+
ylim(0,1)
#summarize by block
adults_learn <- adult %>%
filter(trial_kind=="learn"&isRepeatedTrial==0) %>%
group_by(subject,condition,blockNum) %>%
summarize(accuracy=mean(isRight)) %>%
summarySEwithin(measurevar="accuracy",betweenvars=c("condition"),withinvars=c("blockNum"),idvar="subject")
#plot by block
#learning phase
library(cowplot)
p2=ggplot(adults_learn, aes(blockNum,accuracy,color=condition,group=condition))+
geom_point(position=position_dodge(0.3))+
geom_line(position=position_dodge(0.3))+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),width=0,size=0.75,position=position_dodge(.3))+
xlab("Block")+
ylab("Accuracy")+
scale_color_brewer(palette="Set1",name="Nameability")+
ggtitle("Performance during training \n All Adults")+
geom_hline(yintercept=0.5, linetype="dashed",size=1)+
theme(legend.position=c(0.3,0.3))+
ylim(0,1)
plot_grid(p1,p2)
#summarize by block
kids_learn <- kid %>%
filter(trial_kind=="learn"&isRepeatedTrial==0&script=="short") %>%
group_by(subject,condition,blockNum) %>%
summarize(accuracy=mean(isRight)) %>%
summarySEwithin(measurevar="accuracy",betweenvars=c("condition"),withinvars=c("blockNum"),idvar="subject")
#plot by block
#learning phase
library(cowplot)
p1=ggplot(kids_learn, aes(blockNum,accuracy,color=condition,group=condition))+
geom_point(position=position_dodge(0.3))+
geom_line(position=position_dodge(0.3))+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),width=0,size=0.75,position=position_dodge(.3))+
xlab("Block")+
ylab("Accuracy")+
scale_color_brewer(palette="Set1",name="Nameability")+
ggtitle("Performance during training \n Reduced Sample Kids")+
geom_hline(yintercept=0.5, linetype="dashed",size=1)+
theme(legend.position=c(0.3,0.3))+
ylim(0,1)
#summarize by block
adults_learn <- adult %>%
filter(trial_kind=="learn"&isRepeatedTrial==0) %>%
group_by(subject,condition,blockNum) %>%
summarize(accuracy=mean(isRight)) %>%
summarySEwithin(measurevar="accuracy",betweenvars=c("condition"),withinvars=c("blockNum"),idvar="subject")
#plot by block
#learning phase
library(cowplot)
p2=ggplot(adults_learn, aes(blockNum,accuracy,color=condition,group=condition))+
geom_point(position=position_dodge(0.3))+
geom_line(position=position_dodge(0.3))+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),width=0,size=0.75,position=position_dodge(.3))+
xlab("Block")+
ylab("Accuracy")+
scale_color_brewer(palette="Set1",name="Nameability")+
ggtitle("Performance during training \n All Adults")+
geom_hline(yintercept=0.5, linetype="dashed",size=1)+
theme(legend.position=c(0.3,0.3))+
ylim(0,1)
plot_grid(p1,p2)
There is an overall condition difference for adults.
m=glmer(isRight~condition+(1|subject), data=subset(adult, trial_kind=="learn"&isRepeatedTrial==0), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 3.417 |
| (0.178) | |
| t = 19.229 | |
| p = 0.000*** | |
| conditionlow | -1.211 |
| (0.227) | |
| t = -5.339 | |
| p = 0.00000*** | |
| Observations | 4,320 |
| Log Likelihood | -1,140.790 |
| Akaike Inf. Crit. | 2,287.581 |
| Bayesian Inf. Crit. | 2,306.694 |
| Note: | p<0.1; p<0.05; p<0.01 |
There is also an interaction with trial number, i.e. the condition difference increases across trials.
m=glmer(isRight~conditionC*trial_idC+(1+trial_idC|subject), data=subset(adult, trial_kind=="learn"&isRepeatedTrial==0), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 3.734 |
| (0.253) | |
| t = 14.762 | |
| p = 0.000*** | |
| conditionC | 1.836 |
| (0.406) | |
| t = 4.518 | |
| p = 0.00001*** | |
| trial_idC | 0.104 |
| (0.013) | |
| t = 8.109 | |
| p = 0.000*** | |
| conditionC:trial_idC | 0.052 |
| (0.019) | |
| t = 2.684 | |
| p = 0.008*** | |
| Observations | 4,320 |
| Log Likelihood | -1,044.022 |
| Akaike Inf. Crit. | 2,102.045 |
| Bayesian Inf. Crit. | 2,146.642 |
| Note: | p<0.1; p<0.05; p<0.01 |
m=glmer(isRight~conditionC+(1|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 0.872 |
| (0.079) | |
| t = 11.006 | |
| p = 0.000*** | |
| conditionC | 0.243 |
| (0.157) | |
| t = 1.542 | |
| p = 0.124 | |
| Observations | 4,704 |
| Log Likelihood | -2,820.091 |
| Akaike Inf. Crit. | 5,646.182 |
| Bayesian Inf. Crit. | 5,665.551 |
| Note: | p<0.1; p<0.05; p<0.01 |
Overall, there is no significant condition effect (p = 0.1230543).
This is also true if we reduce the sample to the 85 children with the updated instructions.
m=glmer(isRight~conditionC+(1|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0&script=="short"), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 0.894 |
| (0.082) | |
| t = 10.921 | |
| p = 0.000*** | |
| conditionC | 0.223 |
| (0.163) | |
| t = 1.371 | |
| p = 0.171 | |
| Observations | 4,080 |
| Log Likelihood | -2,433.858 |
| Akaike Inf. Crit. | 4,873.716 |
| Bayesian Inf. Crit. | 4,892.658 |
| Note: | p<0.1; p<0.05; p<0.01 |
Looking at accuracy across trials, there is clear evidence for learning, but no significant interaction with trial number.
m=glmer(isRight~conditionC*trial_idC+(1+trial_idC|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 0.942 |
| (0.090) | |
| t = 10.409 | |
| p = 0.000*** | |
| conditionC | 0.288 |
| (0.179) | |
| t = 1.614 | |
| p = 0.107 | |
| trial_idC | 0.020 |
| (0.004) | |
| t = 5.217 | |
| p = 0.00000*** | |
| conditionC:trial_idC | 0.011 |
| (0.007) | |
| t = 1.500 | |
| p = 0.134 | |
| Observations | 4,704 |
| Log Likelihood | -2,778.716 |
| Akaike Inf. Crit. | 5,571.431 |
| Bayesian Inf. Crit. | 5,616.625 |
| Note: | p<0.1; p<0.05; p<0.01 |
We have comparable results with the reduced sample (with the updated script).
m=glmer(isRight~conditionC*trial_idC+(1+trial_idC|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0&script=="short"), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 0.972 |
| (0.094) | |
| t = 10.300 | |
| p = 0.000*** | |
| conditionC | 0.268 |
| (0.186) | |
| t = 1.437 | |
| p = 0.151 | |
| trial_idC | 0.021 |
| (0.004) | |
| t = 4.963 | |
| p = 0.00000*** | |
| conditionC:trial_idC | 0.011 |
| (0.008) | |
| t = 1.332 | |
| p = 0.183 | |
| Observations | 4,080 |
| Log Likelihood | -2,391.989 |
| Akaike Inf. Crit. | 4,797.979 |
| Bayesian Inf. Crit. | 4,842.175 |
| Note: | p<0.1; p<0.05; p<0.01 |
From the plot, it appears that the biggest differences for the kids are on the final blocks of each half (blocks 3 and 6). This also turns out to be the two blocks on which there are significant condition differences.
m=glmer(isRight~conditionC+(1|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0&blockNum==1), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 0.399 |
| (0.082) | |
| t = 4.846 | |
| p = 0.00001*** | |
| conditionC | -0.011 |
| (0.164) | |
| t = -0.066 | |
| p = 0.948 | |
| Observations | 784 |
| Log Likelihood | -527.930 |
| Akaike Inf. Crit. | 1,061.860 |
| Bayesian Inf. Crit. | 1,075.854 |
| Note: | p<0.1; p<0.05; p<0.01 |
m=glmer(isRight~conditionC+(1|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0&blockNum==2), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 0.807 |
| (0.101) | |
| t = 7.991 | |
| p = 0.000*** | |
| conditionC | 0.180 |
| (0.197) | |
| t = 0.917 | |
| p = 0.360 | |
| Observations | 784 |
| Log Likelihood | -487.146 |
| Akaike Inf. Crit. | 980.291 |
| Bayesian Inf. Crit. | 994.285 |
| Note: | p<0.1; p<0.05; p<0.01 |
Significant condition difference
m=glmer(isRight~conditionC+(1|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0&blockNum==3), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 0.882 |
| (0.105) | |
| t = 8.375 | |
| p = 0.000*** | |
| conditionC | 0.529 |
| (0.205) | |
| t = 2.579 | |
| p = 0.010*** | |
| Observations | 784 |
| Log Likelihood | -474.638 |
| Akaike Inf. Crit. | 955.275 |
| Bayesian Inf. Crit. | 969.269 |
| Note: | p<0.1; p<0.05; p<0.01 |
m=glmer(isRight~conditionC+(1|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0&blockNum==4), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 1.017 |
| (0.115) | |
| t = 8.860 | |
| p = 0.000*** | |
| conditionC | 0.204 |
| (0.221) | |
| t = 0.926 | |
| p = 0.355 | |
| Observations | 784 |
| Log Likelihood | -461.153 |
| Akaike Inf. Crit. | 928.307 |
| Bayesian Inf. Crit. | 942.300 |
| Note: | p<0.1; p<0.05; p<0.01 |
m=glmer(isRight~conditionC+(1|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0&blockNum==5), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 1.128 |
| (0.134) | |
| t = 8.396 | |
| p = 0.000*** | |
| conditionC | 0.198 |
| (0.256) | |
| t = 0.773 | |
| p = 0.440 | |
| Observations | 784 |
| Log Likelihood | -448.492 |
| Akaike Inf. Crit. | 902.984 |
| Bayesian Inf. Crit. | 916.977 |
| Note: | p<0.1; p<0.05; p<0.01 |
Significant condition difference
m=glmer(isRight~conditionC+(1|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0&blockNum==6), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 1.018 |
| (0.118) | |
| t = 8.609 | |
| p = 0.000*** | |
| conditionC | 0.530 |
| (0.227) | |
| t = 2.329 | |
| p = 0.020** | |
| Observations | 784 |
| Log Likelihood | -459.163 |
| Akaike Inf. Crit. | 924.327 |
| Bayesian Inf. Crit. | 938.320 |
| Note: | p<0.1; p<0.05; p<0.01 |
Another way of putting this is that by the final block of each of two training phases, children in the high nameability condition do better than children in the low nameability condition.
To give a sense of the variability, here is what the distribution of accuracy looks like across blocks
#plot by block violins
subset(kid,trial_kind=="learn"&isRepeatedTrial==0) %>%
group_by(subject,condition,blockNum) %>%
summarize(accuracy=mean(isRight)) %>%
ggplot(aes(condition,accuracy,color=condition)) +
scale_color_brewer(palette="Set1",name="Nameability")+
scale_fill_brewer(palette="Set1",name="Nameability")+
geom_violin(draw_quantiles=c(0.1,0.5,0.9),alpha=0.5)+
geom_dotplot(aes(fill=condition),binaxis="y",stackdir="center",alpha=0.5)+
stat_summary(fun.y="mean",geom="point",size=5)+
stat_summary(fun.data = "mean_cl_boot", geom = "crossbar")+
facet_wrap(~blockNum)
subset(kid,trial_kind=="learn"&isRepeatedTrial==0) %>%
group_by(subject,condition,blockNum,stimType) %>%
summarize(accuracy=mean(isRight)) %>%
ggplot(aes(blockNum,accuracy,color=condition,group=condition)) +
scale_color_brewer(palette="Set1",name="Nameability")+
stat_summary(fun.y="mean",geom="point",size=5)+
stat_summary(fun.y="mean",geom="line",size=1.5)+
stat_summary(fun.data = "mean_se", geom = "errorbar")+
geom_hline(yintercept=0.5,linetype="dashed")+
facet_wrap(~stimType)
It appears that most of the difference is in children’s gains in accuracy on the prototype in the high nameability condition, but there is no significant condition by stimulus type interaction.
m=glmer(isRight~conditionC*stimTypeC+(1+stimTypeC|subject), data=subset(kid, trial_kind=="learn"&isRepeatedTrial==0), family=binomial)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| isRight | |
| Constant | 0.911 |
| (0.084) | |
| t = 10.853 | |
| p = 0.000*** | |
| conditionC | 0.258 |
| (0.166) | |
| t = 1.555 | |
| p = 0.121 | |
| stimTypeC | 0.632 |
| (0.085) | |
| t = 7.441 | |
| p = 0.000*** | |
| conditionC:stimTypeC | 0.205 |
| (0.161) | |
| t = 1.273 | |
| p = 0.204 | |
| Observations | 4,704 |
| Log Likelihood | -2,778.707 |
| Akaike Inf. Crit. | 5,571.413 |
| Bayesian Inf. Crit. | 5,616.607 |
| Note: | p<0.1; p<0.05; p<0.01 |
sumName <- kid %>%
filter(isRepeatedTrial==0) %>%
group_by(subject, condition, Age, gender) %>%
summarize(learningAcc=mean(isRight[trial_kind=="learn"]),testAcc=mean(isRight[trial_kind=="test"]))
#merge with subj data
sumName=merge(sumName,kidSubj)
#plot Age by Gender relationship
ggplot(sumName,aes(Age,learningAcc, color=condition))+
geom_point()+
geom_smooth(method="lm")+
scale_color_brewer(palette="Set1",name="Nameability")+
ylab("overall categorization accuracy")+
xlab("Age in Months")+
facet_wrap(~gender)
There is an odd age by gender interaction in the learning data, such that learning accuracy gets better generally across age, but specifically for girls, there is if anything a decrease in performance only in the high nameability condition. This also coincides with the fact that we don’t have any data from girls in the upper end of the age spectrum (70-80 months, say) specifically in the high nameability condition.
kids_test <- kid %>%
filter(trial_kind=="test") %>%
group_by(subject,condition,stimType) %>%
summarize(accuracy=mean(isRight))
kids_test_overall <- kids_test %>%
summarySEwithin(measurevar="accuracy",betweenvars=c("condition"),withinvars=c("stimType"),idvar="subject")
ggplot(kids_test_overall,aes(condition,accuracy,fill=condition))+
geom_bar(stat="identity")+
geom_dotplot(d=kids_test, binaxis="y", stackdir="center", dotsize=0.3)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),width=.1,color="black",position=position_dodge(.9))+
xlab("Condition")+
ylab("Accuracy")+
scale_fill_brewer(palette="Set1",name="Nameability")+
geom_hline(yintercept=0.5, linetype="dashed",size=1)+
facet_wrap(~stimType)
kids_test <- kid %>%
filter(trial_kind=="test"&script=="short") %>%
group_by(subject,condition,stimType) %>%
summarize(accuracy=mean(isRight))
kids_test_overall <- kids_test %>%
summarySEwithin(measurevar="accuracy",betweenvars=c("condition"),withinvars=c("stimType"),idvar="subject")
ggplot(kids_test_overall,aes(condition,accuracy,fill=condition))+
geom_bar(stat="identity")+
geom_dotplot(d=kids_test, binaxis="y", stackdir="center", dotsize=0.3)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),width=.1,color="black",position=position_dodge(.9))+
xlab("Condition")+
ylab("Accuracy")+
scale_fill_brewer(palette="Set1",name="Nameability")+
geom_hline(yintercept=0.5, linetype="dashed",size=1)+
facet_wrap(~stimType)
adult_test <- adult %>%
filter(trial_kind=="test") %>%
group_by(subject,condition,stimType) %>%
summarize(accuracy=mean(isRight))
adult_test_overall <- adult_test %>%
summarySEwithin(measurevar="accuracy",betweenvars=c("condition"),withinvars=c("stimType"),idvar="subject")
ggplot(adult_test_overall,aes(condition,accuracy,fill=condition))+
geom_bar(stat="identity")+
geom_dotplot(d=adult_test, binaxis="y", stackdir="center", dotsize=0.3)+
geom_errorbar(aes(ymin=accuracy-se,ymax=accuracy+se),width=.1,color="black",position=position_dodge(.9))+
xlab("Condition")+
ylab("Accuracy")+
scale_fill_brewer(palette="Set1",name="Nameability")+
geom_hline(yintercept=0.5, linetype="dashed",size=1)+
facet_wrap(~stimType)
subj_long <- gather(subset(kidSubj,select=c(Condition,Age,gender,Race,Ethnicity,Language.History,PPVT,colorPPVTHigh,colorPPVTLow)), nameability, ppvt, colorPPVTHigh:colorPPVTLow)
subj_long$colorType <- ifelse(subj_long$nameability=="colorPPVTHigh","high",
ifelse(subj_long$nameability=="colorPPVTLow","low",NA))
subj_long$PPVTacc <- subj_long$ppvt/6
subj_long_summarized <- subj_long %>%
group_by(colorType,gender) %>%
summarize(ppvtM=mean(PPVTacc,na.rm=T),ppvtSE=se(PPVTacc,na.rm=T))
ggplot(subj_long,aes(colorType,PPVTacc,fill=colorType,color=colorType))+
#stat_summary(fun.data="mean_se",geom="crossbar",fill="white")+
#geom_violin(fill="white",draw_quantiles=c(0.25,0.5,0.75))+
geom_bar(data=subj_long_summarized,aes(x=colorType,y=ppvtM),fill="white",stat="identity")+
geom_errorbar(data=subj_long_summarized,aes(y=ppvtM,ymin=ppvtM-ppvtSE,ymax=ppvtM+ppvtSE),width=0.01,size=0.5)+
geom_jitter(width=0.1, height=0.05)+
scale_color_brewer(palette="Set1",name="Nameability")+
scale_fill_brewer(palette="Set1",name="Nameability")+
geom_hline(yintercept=1/6,linetype="dashed")+
ylab("PPVT Accuracy on Color Words")+
xlab("Color Type (Nameability)")+
theme(legend.position="none")+
facet_wrap(~gender)
Plotting the percent of modal choices for each color type
naming=subset(kidSubj,select=c("Word.1..high.","Word.2..high.","Word.3..high.","Word.4..high.","Word.5..high.","Word.6..high.","Word.1..low.","Word.2..low.","Word.3..low.","Word.4..low.","Word.5..low.","Word.6..low."))
library(tidyverse)
naming_long= gather(naming, color, colorname, Word.1..high.:Word.6..low.)
naming_long$colorname=gsub(" ","",tolower(as.character(naming_long$colorname)))
colorSum <- naming_long %>%
group_by(color) %>%
count(colorname) %>%
summarize(modalName = colorname[n==max(n)],numResponses=sum(n),modalNamePercentage=n[colorname==colorname[n==max(n)]]/sum(n))
colorSum$type=ifelse(colorSum$color %in% c("Word.1..high.","Word.2..high.","Word.3..high.","Word.4..high.","Word.5..high.","Word.6..high."),"high","low")
ggplot(colorSum,aes(color,modalNamePercentage,fill=type,label=modalName))+
geom_bar(stat="identity")+
geom_label()+
scale_fill_brewer(palette="Set1",name="Nameability")+
scale_x_discrete(limits = colorSum$color[order(colorSum$modalNamePercentage)])+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
xlab("color item")+
ylab("percent modal name")
ggplot(sumName,aes(PPVT,learningAcc, color=condition))+
geom_point()+
geom_smooth(method="lm",se=F)+
scale_color_brewer(palette="Set1",name="Nameability")+
ylab("overall categorization accuracy")
ggplot(sumName,aes(colorPPVTLow,learningAcc, color=condition))+
geom_jitter()+
geom_smooth(method="lm")+
ylab("overall categorization accuracy")+
scale_color_brewer(palette="Set1",name="Nameability")+
xlab("Low Nameable Colors PPVT")
There’s a condition by Low Color PPVT interaction.
m=lm(learningAcc~colorPPVTLow*condition, data=sumName)
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| learningAcc | |
| Constant | 0.728 |
| (0.035) | |
| t = 20.784 | |
| p = 0.000*** | |
| colorPPVTLow | -0.012 |
| (0.020) | |
| t = -0.622 | |
| p = 0.536 | |
| conditionlow | -0.143 |
| (0.049) | |
| t = -2.917 | |
| p = 0.005*** | |
| colorPPVTLow:conditionlow | 0.057 |
| (0.026) | |
| t = 2.204 | |
| p = 0.030** | |
| Observations | 98 |
| R2 | 0.102 |
| Adjusted R2 | 0.074 |
| Residual Std. Error | 0.137 (df = 94) |
| F Statistic | 3.576** (df = 3; 94) |
| Note: | p<0.1; p<0.05; p<0.01 |
There’s also a significant positive relationship between Low Color PPVT and learning in the Low nameability condition.
m=lm(learningAcc~colorPPVTLow, data=filter(sumName,condition=="low"))
stargazer(m,type="html",report="vcstp*",intercept.bottom=F)
| Dependent variable: | |
| learningAcc | |
| Constant | 0.585 |
| (0.035) | |
| t = 16.643 | |
| p = 0.000*** | |
| colorPPVTLow | 0.045 |
| (0.017) | |
| t = 2.590 | |
| p = 0.013** | |
| Observations | 49 |
| R2 | 0.125 |
| Adjusted R2 | 0.106 |
| Residual Std. Error | 0.141 (df = 47) |
| F Statistic | 6.706** (df = 1; 47) |
| Note: | p<0.1; p<0.05; p<0.01 |
ggplot(sumName,aes(EVTColorLow,learningAcc, color=condition))+
geom_jitter()+
geom_smooth(method="lm",se=F)+
scale_color_brewer(palette="Set1",name="Nameability")+
ylab("overall categorization accuracy")+
xlab("Low Nameable Colors Production 'Goodness'")