setwd("~/Dropbox/Proyecto_Neusa/data")
abun<-read.table("m10.csv",sep = ",",header = T)
attach(abun)
Zona<-as.factor(Zona)
Profundidad<-as.factor(Profundidad)
Month<-as.factor(Month)
Grupo.funcional<-as.factor(Grupo.Funcional)
library("lme4", lib.loc="/Library/Frameworks/R.framework/Versions/3.5/Resources/library")
## Loading required package: Matrix
###Modelo Lineal generalizado incluyendo todos los factores
fit1<-glmer(Abundance~Month*Zona+(1|Profundidad)+Grupo.Funcional,family = "poisson")
summary(fit1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: poisson  ( log )
## Formula: Abundance ~ Month * Zona + (1 | Profundidad) + Grupo.Funcional
## 
##      AIC      BIC   logLik deviance df.resid 
##  38197.2  38393.0 -19068.6  38137.2     5011 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
##  -4.554  -1.051  -0.746  -0.061 185.546 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  Profundidad (Intercept) 0.04876  0.2208  
## Number of obs: 5041, groups:  Profundidad, 2
## 
## Fixed effects:
##                  Estimate Std. Error z value Pr(>|z|)    
## (Intercept)      3.130792   0.168764  18.551  < 2e-16 ***
## Month8          -2.434694   0.188517 -12.915  < 2e-16 ***
## Month14         -1.973392   0.104668 -18.854  < 2e-16 ***
## Month18         -2.793581   0.256356 -10.897  < 2e-16 ***
## Month22         -2.401543   0.166572 -14.417  < 2e-16 ***
## Month34         -2.708815   0.145356 -18.636  < 2e-16 ***
## Month39         -2.652768   0.144107 -18.408  < 2e-16 ***
## Zona2           -0.995574   0.063681 -15.634  < 2e-16 ***
## Zona3           -1.200836   0.064413 -18.643  < 2e-16 ***
## Zona4           -2.076339   0.067791 -30.628  < 2e-16 ***
## Grupo.Funcional -0.114499   0.008526 -13.429  < 2e-16 ***
## Month8:Zona2     1.848544   0.193967   9.530  < 2e-16 ***
## Month14:Zona2    1.029850   0.115303   8.932  < 2e-16 ***
## Month18:Zona2    2.195908   0.260569   8.427  < 2e-16 ***
## Month22:Zona2    1.428850   0.177489   8.050 8.26e-16 ***
## Month34:Zona2    2.099724   0.150825  13.922  < 2e-16 ***
## Month39:Zona2    1.934155   0.149813  12.910  < 2e-16 ***
## Month8:Zona3     1.243945   0.201601   6.170 6.81e-10 ***
## Month14:Zona3    1.267474   0.116614  10.869  < 2e-16 ***
## Month18:Zona3    1.862395   0.263496   7.068 1.57e-12 ***
## Month22:Zona3    1.284455   0.185552   6.922 4.44e-12 ***
## Month34:Zona3    1.608098   0.161027   9.986  < 2e-16 ***
## Month39:Zona3    1.758687   0.154033  11.418  < 2e-16 ***
## Month8:Zona4     2.369869   0.195880  12.099  < 2e-16 ***
## Month14:Zona4    1.935786   0.116688  16.589  < 2e-16 ***
## Month18:Zona4    2.917736   0.260673  11.193  < 2e-16 ***
## Month22:Zona4    2.441033   0.174666  13.975  < 2e-16 ***
## Month34:Zona4    2.840187   0.154651  18.365  < 2e-16 ***
## Month39:Zona4    2.486652   0.155740  15.967  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 29 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
##Modelo nulo
fit2<-glm(Abundance~1,family = "poisson")
##Significancia modelo completo
anova(fit1,fit2)
## Data: NULL
## Models:
## fit2: Abundance ~ 1
## fit1: Abundance ~ Month * Zona + (1 | Profundidad) + Grupo.Funcional
##      Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit2  1 41381 41388 -20690    41379                             
## fit1 30 38197 38393 -19069    38137 3242.2     29  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia de la interacción y Grupo funcional
drop1(fit1,test = "Chisq")
## Single term deletions
## 
## Model:
## Abundance ~ Month * Zona + (1 | Profundidad) + Grupo.Funcional
##                 Df   AIC     LRT   Pr(Chi)    
## <none>             38197                      
## Grupo.Funcional  1 38374  178.41 < 2.2e-16 ***
## Month:Zona      18 39165 1004.06 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia del Mes
fit3<-glmer(Abundance~Zona+(1|Profundidad)+Grupo.Funcional,family = "poisson")
anova(fit1, fit3)
## Data: NULL
## Models:
## fit3: Abundance ~ Zona + (1 | Profundidad) + Grupo.Funcional
## fit1: Abundance ~ Month * Zona + (1 | Profundidad) + Grupo.Funcional
##      Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit3  6 40162 40201 -20075    40150                             
## fit1 30 38197 38393 -19069    38137 2012.8     24  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia de Zona
fit4<-glmer(Abundance~Month+(1|Profundidad)+Grupo.Funcional,family = "poisson")
anova(fit1,fit4)
## Data: NULL
## Models:
## fit4: Abundance ~ Month + (1 | Profundidad) + Grupo.Funcional
## fit1: Abundance ~ Month * Zona + (1 | Profundidad) + Grupo.Funcional
##      Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
## fit4  9 39856 39914 -19919    39838                             
## fit1 30 38197 38393 -19069    38137 1700.4     21  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Significancia de efecto aleatorio Profundidad
modsinprof<-glm(Abundance~Month*Zona+Grupo.Funcional,family = "poisson")
anova(fit1,modsinprof)
## Data: NULL
## Models:
## modsinprof: Abundance ~ Month * Zona + Grupo.Funcional
## fit1: Abundance ~ Month * Zona + (1 | Profundidad) + Grupo.Funcional
##            Df   AIC   BIC logLik deviance  Chisq Chi Df Pr(>Chisq)    
## modsinprof 29 38614 38803 -19278    38556                             
## fit1       30 38197 38393 -19069    38137 419.02      1  < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##Diagnostico de residuales del modelo...
plot(residuals(fit1)~predict(fit1,type="link"), xlab=expression(hat(eta)), ylab="Deviance residuals")

# los intervalos de confianza para las profundidades
library(lattice)
dput(cl<-ranef(fit1,condVar=T))
## structure(list(Profundidad = structure(list(`(Intercept)` = c(0.220278387217556, 
## -0.220091370138298)), class = "data.frame", row.names = c("1", 
## "2"), postVar = structure(c(8.01346763385051e-05, 0.000403547305662984
## ), .Dim = c(1L, 1L, 2L)))), class = "ranef.mer")
dotplot(cl)
## $Profundidad

##Graficando las abundancias en función del tiempo con intervalos de confianza al 95% (inferencia directa)
fit1fit<-fitted(fit1)
abun$abundance<-fit1fit
library(ggplot2)
p<-ggplot(abun,aes(Month,abundance, group=Zona, color=Zona))
p + geom_smooth(method = "lm", se=F)+theme(legend.position="top")+stat_smooth(method = "lm",level = 0.95)

##Pruesbas aposteriori interacción
Month<-as.factor(Month)
library(multcompView)
library(lsmeans)
## The 'lsmeans' package is being deprecated.
## Users are encouraged to switch to 'emmeans'.
## See help('transition') for more information, including how
## to convert 'lsmeans' objects and scripts to work with 'emmeans'.
marginal = lsmeans(fit1, 
                   ~ Zona:Month)
sum<-cld(marginal,
         alpha   = 0.05, 
         Letters = letters,     ### Use lower-case letters for .group
         adjust  = "tukey")     ###  Tukey-adjusted comparisons
sum
##  Zona Month       lsmean        SE df   asymp.LCL asymp.UCL .group      
##  1    18    -0.004626434 0.2947840 NA -0.92331556 0.9140627  abcdef     
##  1    34     0.080139427 0.2055852 NA -0.56056316 0.7208420  a          
##  1    39     0.136186565 0.2047086 NA -0.50178414 0.7741573  ab         
##  1    8      0.354260728 0.2381779 NA -0.38801660 1.0965381  abcdef     
##  1    22     0.387411667 0.2211263 NA -0.30172452 1.0765479  abcdef     
##  3    8      0.397369940 0.1693054 NA -0.13026720 0.9250071  abc        
##  3    22     0.471031115 0.1739718 NA -0.07114888 1.0132111  abcd       
##  3    34     0.487401198 0.1685163 NA -0.03777675 1.0125791  abcd       
##  4    39     0.546499864 0.1631108 NA  0.03816785 1.0548319  abcd       
##  4    8      0.647790839 0.1610549 NA  0.14586600 1.1497157   bcde      
##  3    18     0.656932765 0.1652254 NA  0.14201064 1.1718549   bcdef     
##  4    14     0.675009443 0.1605720 NA  0.17458955 1.1754293    cdef     
##  3    39     0.694037504 0.1630719 NA  0.18582696 1.2022480    cdef     
##  4    0      0.712615702 0.1604035 NA  0.21272113 1.2125103     def     
##  4    22     0.752106157 0.1608552 NA  0.25080368 1.2534086     def     
##  1    14     0.815562501 0.1791472 NA  0.25725339 1.3738716     defg    
##  2    22     0.820687634 0.1656140 NA  0.30455461 1.3368207      ef     
##  4    18     0.836770547 0.1592354 NA  0.34051638 1.3330247       f     
##  4    34     0.843987924 0.1608333 NA  0.34275383 1.3452220      ef     
##  2    14     0.849838441 0.1613262 NA  0.34706807 1.3526088      ef     
##  3    14     0.882200827 0.1619802 NA  0.37739224 1.3870094       fg    
##  2    39     1.074767663 0.1592803 NA  0.57837328 1.5711620        gh   
##  2    34     1.184289754 0.1590407 NA  0.68864225 1.6799373         h   
##  2    18     1.195707534 0.1607568 NA  0.69471182 1.6967032         h   
##  2    8      1.207231224 0.1604530 NA  0.70718230 1.7072801         h   
##  3    0      1.588118529 0.1589322 NA  1.09280918 2.0834279          i  
##  2    0      1.793380348 0.1586761 NA  1.29886921 2.2878915           j 
##  1    0      2.788954282 0.1663396 NA  2.27055979 3.3073488            k
## 
## Results are given on the log (not the response) scale. 
## Confidence level used: 0.95 
## Conf-level adjustment: sidak method for 28 estimates 
## P value adjustment: tukey method for comparing a family of 28 estimates 
## significance level used: alpha = 0.05