AUTO REGRESSIVE INTEGRATED MOVING AVERAGE MODELS
#install.packages("rmarkdown",repos = "http://cran.us.r-project.org")
# install.packages("forecast",repos = "http://cran.us.r-project.org")
# install.packages("fpp",repos = "http://cran.us.r-project.org")
# install.packages("smooth",repos = "http://cran.us.r-project.org")
# install.packages("readxl",repos = "http://cran.us.r-project.org")
# install.packages("tseries",repos = "http://cran.us.r-project.org")
library(forecast)
## Warning: package 'forecast' was built under R version 3.5.1
library(fpp)
## Warning: package 'fpp' was built under R version 3.5.1
## Loading required package: fma
## Warning: package 'fma' was built under R version 3.5.1
## Loading required package: expsmooth
## Warning: package 'expsmooth' was built under R version 3.5.1
## Loading required package: lmtest
## Warning: package 'lmtest' was built under R version 3.5.1
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 3.5.1
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: tseries
## Warning: package 'tseries' was built under R version 3.5.1
library(smooth)
## Warning: package 'smooth' was built under R version 3.5.1
## Loading required package: greybox
## Warning: package 'greybox' was built under R version 3.5.1
## Package "greybox", v0.3.3 loaded.
## This is package "smooth", v2.4.7
library(readxl)
## Warning: package 'readxl' was built under R version 3.5.1
library(tseries)
# Using Arima Model -
Plastics<-read.csv(file.choose()) # read the Plastics data
Plastics <- Plastics$Sales
Plastics <- as.ts(Plastics)
View(Plastics)
class(Plastics)
## [1] "ts"
Plastics1 <- ts(Plastics,start=c(1986,1),end=c(1995,6),frequency=4)
start(Plastics1)
## [1] 1986 1
end(Plastics1)
## [1] 1996 2
class(Plastics1)
## [1] "ts"
sum(is.na(Plastics1))
## [1] 0
summary(Plastics1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 697.0 896.5 1082.5 1071.6 1261.2 1473.0
View(Plastics1)
# decomdata<- decompose(Plastics1, "additive")
decomdata<- decompose(Plastics1, "multiplicative")
plot(decomdata)

plot(decomdata$seasonal)

plot(decomdata$trend)

plot(decomdata$random)

# EDA on the Original Data
plot(Plastics1)
abline(reg=lm(Plastics1~time(Plastics1)))

cycle(Plastics1)
## Qtr1 Qtr2 Qtr3 Qtr4
## 1986 1 2 3 4
## 1987 1 2 3 4
## 1988 1 2 3 4
## 1989 1 2 3 4
## 1990 1 2 3 4
## 1991 1 2 3 4
## 1992 1 2 3 4
## 1993 1 2 3 4
## 1994 1 2 3 4
## 1995 1 2 3 4
## 1996 1 2
# Boxplot by Cycle
boxplot(Plastics1~cycle(Plastics1,xlab = "Date", ylab = "Passenger Number(100's)",
main = "Monthly Boxplot of passengers from 1995 to 2002"))

# Use Auto Arima for the Best Model
Newmodel <- auto.arima(Plastics1)
Newmodel
## Series: Plastics1
## ARIMA(2,0,1) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 mean
## 1.6519 -0.8942 -0.3016 1086.9233
## s.e. 0.0775 0.0720 0.1509 32.1603
##
## sigma^2 estimated as 5475: log likelihood=-240.09
## AIC=490.18 AICc=491.85 BIC=498.87
# Use the trace function to understand the determine the best p,d,q values that were selected.
auto.arima(Plastics1, ic = "aic", trace = TRUE)
##
## ARIMA(2,0,2)(1,0,1)[4] with non-zero mean : 491.0166
## ARIMA(0,0,0) with non-zero mean : 578.474
## ARIMA(1,0,0)(1,0,0)[4] with non-zero mean : 522.0507
## ARIMA(0,0,1)(0,0,1)[4] with non-zero mean : 537.9039
## ARIMA(0,0,0) with zero mean : 709.0785
## ARIMA(2,0,2)(0,0,1)[4] with non-zero mean : 492.0116
## ARIMA(2,0,2)(2,0,1)[4] with non-zero mean : 495.0814
## ARIMA(2,0,2)(1,0,0)[4] with non-zero mean : Inf
## ARIMA(2,0,2)(1,0,2)[4] with non-zero mean : Inf
## ARIMA(2,0,2) with non-zero mean : 491.8546
## ARIMA(2,0,2)(2,0,2)[4] with non-zero mean : Inf
## ARIMA(1,0,2)(1,0,1)[4] with non-zero mean : 504.6339
## ARIMA(3,0,2)(1,0,1)[4] with non-zero mean : Inf
## ARIMA(2,0,1)(1,0,1)[4] with non-zero mean : 490.6965
## ARIMA(1,0,0)(1,0,1)[4] with non-zero mean : 521.3338
## ARIMA(2,0,1)(1,0,1)[4] with zero mean : Inf
## ARIMA(2,0,1)(0,0,1)[4] with non-zero mean : 490.9761
## ARIMA(2,0,1)(2,0,1)[4] with non-zero mean : Inf
## ARIMA(2,0,1)(1,0,0)[4] with non-zero mean : 490.7761
## ARIMA(2,0,1)(1,0,2)[4] with non-zero mean : Inf
## ARIMA(2,0,1) with non-zero mean : 490.1845
## ARIMA(1,0,1) with non-zero mean : 509.6646
## ARIMA(3,0,1) with non-zero mean : Inf
## ARIMA(2,0,0) with non-zero mean : 491.0467
## ARIMA(1,0,0) with non-zero mean : 526.7394
## ARIMA(3,0,2) with non-zero mean : Inf
## ARIMA(2,0,1) with zero mean : 510.3341
##
## Best model: ARIMA(2,0,1) with non-zero mean
## Series: Plastics1
## ARIMA(2,0,1) with non-zero mean
##
## Coefficients:
## ar1 ar2 ma1 mean
## 1.6519 -0.8942 -0.3016 1086.9233
## s.e. 0.0775 0.0720 0.1509 32.1603
##
## sigma^2 estimated as 5475: log likelihood=-240.09
## AIC=490.18 AICc=491.85 BIC=498.87
# tseries evaluation
plot.ts(Newmodel$residuals)

acf(ts(Newmodel$residuals),main = 'ACF Residual')

pacf(ts(Newmodel$residuals),main = 'PACF Residual')

# Forecast for next 2 year
Pass_Forecast <- forecast(Newmodel,Level=c(95),h=10*12)
## Warning in forecast.Arima(Newmodel, Level = c(95), h = 10 * 12): The non-
## existent Level arguments will be ignored.
plot(Pass_Forecast)

# Test your final model
Box.test(Newmodel$resid, lag = 5, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: Newmodel$resid
## X-squared = 4.6926, df = 5, p-value = 0.4545
Box.test(Newmodel$resid, lag = 15, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: Newmodel$resid
## X-squared = 19.744, df = 15, p-value = 0.182
Box.test(Newmodel$resid, lag = 10, type = "Ljung-Box")
##
## Box-Ljung test
##
## data: Newmodel$resid
## X-squared = 8.926, df = 10, p-value = 0.5391