yearly_ts <- read.csv("https://raw.githubusercontent.com/forvis/forvision_data/master/M3_yearly_TSTS.csv", stringsAsFactors = FALSE)
yearly_fs <- read.csv("https://raw.githubusercontent.com/forvis/forvision_data/master/M3_yearly_PIs_FTS.csv", stringsAsFactors = FALSE)
head(yearly_ts)
## series_id category value timestamp
## 1 Y1 MICRO 940.66 1975
## 2 Y1 MICRO 1084.86 1976
## 3 Y1 MICRO 1244.98 1977
## 4 Y1 MICRO 1445.02 1978
## 5 Y1 MICRO 1683.17 1979
## 6 Y1 MICRO 2038.15 1980
head(yearly_fs)
## series_id method timestamp origin_timestamp forecast lo80 hi80
## 1 Y1 ARIMA 1989 1988 5486.10 5363.602 5608.598
## 2 Y1 ARIMA 1990 1988 6035.21 5761.297 6309.123
## 3 Y1 ARIMA 1991 1988 6584.32 6125.975 7042.665
## 4 Y1 ARIMA 1992 1988 7133.43 6462.482 7804.378
## 5 Y1 ARIMA 1993 1988 7682.54 6774.072 8591.008
## 6 Y1 ARIMA 1994 1988 8231.65 7063.095 9400.205
## lo90 hi90 lo95 hi95 horizon
## 1 5328.876 5643.324 5298.756 5673.444 1
## 2 5683.646 6386.774 5616.295 6454.125 2
## 3 5996.041 7172.599 5883.342 7285.298 3
## 4 6272.277 7994.583 6107.303 8159.557 4
## 5 6516.534 8848.546 6293.158 9071.922 5
## 6 6731.826 9731.474 6444.500 10018.800 6
library(forvision)
plotHitrateChart(ts = yearly_ts, fs = yearly_fs, pi = 80)
library(forvision)
plotHitrateChart(ts = yearly_ts, fs = yearly_fs, h = 1, pi = 80)
library(forvision)
plotHitrateChart(ts = yearly_ts, fs = yearly_fs, pi = 90)
library(forvision)
plotHitrateChart(ts = yearly_ts, fs = yearly_fs, m ="ETS", h = 1, pi = 90)
library(forvision)
plotHitrateChart(ts = yearly_ts, fs = yearly_fs, pi = 95)
other_ts <- read.csv("https://raw.githubusercontent.com/forvis/forvision_data/master/M3_other_TSTS.csv", stringsAsFactors = FALSE)
other_fs <- read.csv("https://raw.githubusercontent.com/forvis/forvision_data/master/M3_other_PIs_FTS.csv", stringsAsFactors = FALSE)
head(other_ts)
## series_id category value timestamp
## 1 O1 MICRO 3060.42 1
## 2 O1 MICRO 3021.19 2
## 3 O1 MICRO 3301.13 3
## 4 O1 MICRO 3287.03 4
## 5 O1 MICRO 3080.71 5
## 6 O1 MICRO 3160.68 6
head(other_fs)
## series_id method timestamp origin_timestamp forecast lo80 hi80
## 1 O1 ARIMA 97 96 4571.389 4408.975 4733.803
## 2 O1 ARIMA 98 96 4531.236 4261.024 4801.447
## 3 O1 ARIMA 99 96 4558.815 4216.000 4901.630
## 4 O1 ARIMA 100 96 4550.705 4159.840 4941.570
## 5 O1 ARIMA 101 96 4544.681 4098.461 4990.900
## 6 O1 ARIMA 102 96 4555.453 4067.195 5043.710
## lo90 hi90 lo95 hi95 horizon
## 1 4362.933 4779.845 4322.998 4819.780 1
## 2 4184.423 4878.048 4117.983 4944.489 2
## 3 4118.816 4998.814 4034.524 5083.106 3
## 4 4049.035 5052.375 3952.928 5148.482 4
## 5 3971.964 5117.397 3862.247 5227.115 5
## 6 3928.781 5182.124 3808.727 5302.178 6
library(forvision)
plotHitrateChart(ts = other_ts, fs = other_fs, pi = 80)
library(forvision)
plotHitrateChart(ts = other_ts, fs = other_fs, h = 1:3, pi = 80)
library(forvision)
plotHitrateChart(ts = other_ts, fs = other_fs, pi = 90)
library(forvision)
plotHitrateChart(ts = other_ts, fs = other_fs, m = "ARIMA", h = 3:8, pi = 80)
library(forvision)
plotHitrateChart(ts = other_ts, fs = other_fs, pi = 95)