Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)
In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.
The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. (This is aslightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).) The result is a data frame where each row contains a different course and columns represent variables about the courses and professors.
load("more/evals.RData")| variable | description |
|---|---|
score |
average professor evaluation score: (1) very unsatisfactory - (5) excellent. |
rank |
rank of professor: teaching, tenure track, tenured. |
ethnicity |
ethnicity of professor: not minority, minority. |
gender |
gender of professor: female, male. |
language |
language of school where professor received education: english or non-english. |
age |
age of professor. |
cls_perc_eval |
percent of students in class who completed evaluation. |
cls_did_eval |
number of students in class who completed evaluation. |
cls_students |
total number of students in class. |
cls_level |
class level: lower, upper. |
cls_profs |
number of professors teaching sections in course in sample: single, multiple. |
cls_credits |
number of credits of class: one credit (lab, PE, etc.), multi credit. |
bty_f1lower |
beauty rating of professor from lower level female: (1) lowest - (10) highest. |
bty_f1upper |
beauty rating of professor from upper level female: (1) lowest - (10) highest. |
bty_f2upper |
beauty rating of professor from second upper level female: (1) lowest - (10) highest. |
bty_m1lower |
beauty rating of professor from lower level male: (1) lowest - (10) highest. |
bty_m1upper |
beauty rating of professor from upper level male: (1) lowest - (10) highest. |
bty_m2upper |
beauty rating of professor from second upper level male: (1) lowest - (10) highest. |
bty_avg |
average beauty rating of professor. |
pic_outfit |
outfit of professor in picture: not formal, formal. |
pic_color |
color of professor’s picture: color, black & white. |
This is an observational study. Since this is an observational study beauty doesnt not causational relational with course evalualation. There must be a relation between them and can be correlated.
score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?Based on the histogram, the data is slightly left skewed. Most of teachers are rated as positive.
```r
hist(evals$score)
```
<img src="Charls-multiple_regression_files/figure-html/unnamed-chunk-1-1.png" width="672" />
score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).I choose ‘age’ abd ‘bty_avg’ as two variables. Based on scatter plot and box plot, i cant derive any relationship between them.
```r
library(ggplot2)
ggplot(evals, aes(x=evals$age, y=evals$bty_avg)) + geom_point()
```
<img src="Charls-multiple_regression_files/figure-html/unnamed-chunk-2-1.png" width="672" />
```r
boxplot(evals$age ~ evals$bty_avg, col="orange", main="Distribution of age and bty_avg", ylab="bty_avg", xlab="age")
```
<img src="Charls-multiple_regression_files/figure-html/unnamed-chunk-2-2.png" width="672" />
The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
plot(evals$score ~ evals$bty_avg)Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
The number of Observations is 463, However scatter plot doesnt looks to be having these many points. Looks like some points are overlapped.
nrow(evals)## [1] 463
jitter() on the \(y\)- or the \(x\)-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?Lets use Jitter() to add small noices to observation so that observations doesnt overlap.
plot(evals$score ~ jitter(evals$bty_avg))Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?
lm_bty_score <- lm(evals$score ~ evals$bty_avg)
plot(jitter(evals$score,factor=1.2) ~ jitter(evals$bty_avg,factor=1.2))
abline(lm_bty_score)cor(evals$score, evals$bty_avg)## [1] 0.1871424
summary(lm_bty_score)##
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## evals$bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05Equation : y being score and x being bty_avg y= mx + c => score = 0.06664 * bty_avg + 3.88034
Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).
This doesnt demonstrate the linearity between these variables.
plot(lm_bty_score$residuals ~ evals$bty_avg)
abline(h = 0, lty = 3) hist(lm_bty_score$residuals)The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
plot(evals$bty_avg ~ evals$bty_f1lower)
cor(evals$bty_avg, evals$bty_f1lower)As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:
plot(evals[,13:19])These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.
m_bty_gen <- lm(evals$score ~ evals$bty_avg + evals$gender)
summary(m_bty_gen)
plot(abs(m_bty_gen$residuals) ~ m_bty_gen$fitted.values)
abline(h = 0, lty = 3)
hist(m_bty_gen$residuals)Looking at the plot of residuals ~ evals\(bty_avg + evals\)gender, there is no visible pattern and histogram of m_bty_gen$residuals shows nearly normal. So the conditions for regression are resonable.
bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?yes, p-value reduced and R^2 value got incremented.
Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of female and male to being an indicator variable called gendermale that takes a value of \(0\) for females and a value of \(1\) for males. (Such variables are often referred to as “dummy” variables.)
As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
We can plot this line and the line corresponding to males with the following custom function.
multiLines(m_bty_gen)What is the equation of the line corresponding to males? (Hint: For males, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score?
score=??0+??1×bty_avg+??2×(1) =??0+??1×bty_avg+??^2
The decision to call the indicator variable gendermale instead ofgenderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel function. Use ?relevel to learn more.)
m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.It creates one dummy variable from two variables called ‘ranktenure track’ and ‘ranktenured’
```r
m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)
```
```
##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
```
```r
multiLines(m_bty_rank)
```
<img src="Charls-multiple_regression_files/figure-html/unnamed-chunk-7-1.png" width="672" />
The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.
We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
number of professors
Let’s run the model…
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)`cls_profs’ has highest p-value, So it is not contributing towards the response variable.
‘ethnicity’ has a p-value 0.11698 that is considered to be little high. So that is also not contrubuting muc towards the response variable.
Dropping variables with high p-Values. 1. cls_prof(0.77806) 2. cls_students-0.22896 3. cls_level-0.29369 4. rank - 0.14295 5. pic_outfit - 0.12792
After dropping above variables from the full model, the p-value for other variables slightly got changed and comparably small now.
m_partial <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval
+ cls_credits + bty_avg
+ pic_color, data = evals)
summary(m_partial)##
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85320 -0.32394 0.09984 0.37930 0.93610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.771922 0.232053 16.255 < 2e-16 ***
## ethnicitynot minority 0.167872 0.075275 2.230 0.02623 *
## gendermale 0.207112 0.050135 4.131 4.30e-05 ***
## languagenon-english -0.206178 0.103639 -1.989 0.04726 *
## age -0.006046 0.002612 -2.315 0.02108 *
## cls_perc_eval 0.004656 0.001435 3.244 0.00127 **
## cls_creditsone credit 0.505306 0.104119 4.853 1.67e-06 ***
## bty_avg 0.051069 0.016934 3.016 0.00271 **
## pic_colorcolor -0.190579 0.067351 -2.830 0.00487 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4992 on 454 degrees of freedom
## Multiple R-squared: 0.1722, Adjusted R-squared: 0.1576
## F-statistic: 11.8 on 8 and 454 DF, p-value: 2.58e-15
m_back2 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval +
cls_credits + bty_avg + pic_color, data = evals)
summary(m_back2)##
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.85320 -0.32394 0.09984 0.37930 0.93610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.771922 0.232053 16.255 < 2e-16 ***
## ethnicitynot minority 0.167872 0.075275 2.230 0.02623 *
## gendermale 0.207112 0.050135 4.131 4.30e-05 ***
## languagenon-english -0.206178 0.103639 -1.989 0.04726 *
## age -0.006046 0.002612 -2.315 0.02108 *
## cls_perc_eval 0.004656 0.001435 3.244 0.00127 **
## cls_creditsone credit 0.505306 0.104119 4.853 1.67e-06 ***
## bty_avg 0.051069 0.016934 3.016 0.00271 **
## pic_colorcolor -0.190579 0.067351 -2.830 0.00487 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4992 on 454 degrees of freedom
## Multiple R-squared: 0.1722, Adjusted R-squared: 0.1576
## F-statistic: 11.8 on 8 and 454 DF, p-value: 2.58e-15
Verify that the conditions for this model are reasonable using diagnostic plots.
Below conditions are met.
# residual are nearly normal
hist(m_back2$residuals)#Residuals doesnt have any pattern. Absolute values of residuals against fitted values.
plot(abs(m_back2$residuals) ~ m_back2$fitted.values)
abline(h = 0, lty = 3) The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?
Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.
The professor is not a minority and male, must have graduated from a English speaking school He must also have a high beauty average score and the professor’s class photo should be in black and white. He must also be relatively young. And a good percentage of his class must have completed the evaluation.
No, I would not be comfortable to generalize this conclusions. Because the observations are based on just 6 samples.
This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written by Mine Çetinkaya-Rundel and Andrew Bray.