Introduction

Research Question

Does working more or less than average affect your work life balance?

For this project I will be analyzing whether work life balance is affected by the number of hours worked. The data that I will be analyzing is the 2016 American Time Use Survey (ATUS). The purpose of this analysis is to illustrate the fact that work life balance does in fact suffer or benefit from the number of hours worked relative to our definition of average (working less or more than a 9 to 5, or 8 hours, will affect other facets of life). I believe that by illustrating this fact people may begin to more effectively allocate their time.

I will provide a variety of summary statistics that illustrate work and leisure hours across age, sex, and employment status. Based on the statistics provided I will draw my final conclusion; given that this is an observational study causality will not be examined, but rather we will examine the correlation associated with the underlying variables.

“Work life balance” will be defined as the level of leisure time experienced outside of work versus the time spent at work. For both simplicity’s sake and for a direct and effective analysis I will only examine leisure against work as it provides a very insightful amount of data into time spent.

“Average work day” will be defined as 8 hours, which is a 9 to 5 job as this is the clear association with average that people generally construct.

Data: Cases, Structure, Variables, and Collection

Sampling

Given that the survey is a random sample of the population it would be prudent to create multiple strata to analyze homogenous data points without a strong skew.

Cases

Each case represents a household in the U.S. There are 10493 cases in the primary dataset (atusresp file).

Data Collection

Data collection is sponsored by the Bureau of Labor Statistics as part of the American Time Use Survey (ATUS) and is conducted by the U.S Census Bureau. “In ATUS, individuals are randomly selected from a subset of households that have completed their eighth and final month of interviews for the Current Population Survey(CPS). ATUS respondents are interviewed only one time about how they spent their time on the previous day, where they were, and whom they were with.” - Quoted from the ATUS User Guide

Type of Study

This is an observational study. This can be discerned by the method of collection which is the use of surveys and interviews. No control groups are established indicating that this is not an experiment.

Data Source

Data is collected by the U.S Census Bureau and is available online at two sources, http://asdfree.com/american-time-use-survey-atus.html and https://www.bls.gov/tus/datafiles_2016.htm. In order to collect this data in an efficient and reproducible manner I utilized the lodown library to download the files.

(June 2018). American Time Use Survey User’s Guide. https://www.bls.gov/tus/atususersguide.pdf#page=33 (2003-2017). The American Time Use Survey (ATUS) is sponsored by the Bureau of Labor Statistics and conducted by the U.S. Census Bureau. Retrieved October 30th, 2018 from https://www.bls.gov/tus/datafiles_2016.htm

Response

The response variable is time dedicated to leisure and it is numerical.

Explanatory Variable

The explanatory variable is hours worked per day and it is numerical.

Scope of Inference

The population of interest is everyone who works greater than 8 hours and those who work less than 8 hours. Given that this is a national study the findings can be generalized to the population with the scope of the definition established in this project. If a person is seeking a broader scope of “work life balance” more variables will need to be incorporated. Skews/biases may exist in the data based on age, employment status, and gender. I will attempt to remove these in this analysis to the best of my ability.

Causality cannot be determined in this study as it is observational and not an experiment with a control group.

Parsing

## Download of ATUS files using the lodown library

atus_cat = get_catalog("atus",output_dir = file.path(path.expand( "~" ) , "ATUS" ))
atus_cat = subset(atus_cat,directory == 2016)
atus_cat = lodown("atus",atus_cat)
## Load libraries

library(lodown)
library(psych)
load("inference.RData")
load("multilines.RData")
## Data load 
## Parsing to read ATUS files 

atusact <- readRDS( file.path( path.expand( "~" ) , "ATUS" , "2016/atusact.rds" ) )
atusact <- atusact[ c( 'tucaseid' , 'tutier1code' , 'tutier2code' , 'tuactdur24' ) ]

atusresp <- readRDS( file.path( path.expand( "~" ) , "ATUS" , "2016/atusresp.rds" ) )
atusresp <- atusresp[ c( 'tucaseid' , 'telfs' , 'tulineno' ) ]

atusrost <- readRDS( file.path( path.expand( "~" ) , "ATUS" , "2016/atusrost.rds" ) )
atusrost <- atusrost[ , c( 'tucaseid' , 'tulineno' , 'teage' , 'tesex' ) ]

atuswgts <- readRDS( file.path( path.expand( "~" ) , "ATUS" , "2016/atuswgts.rds" ) )
atuswgts <- atuswgts[ , c( 1 , grep( 'finlwgt' , names( atuswgts ) ) ) ]

## Filter into two separate dfs

atusactF = atusact[atusact$tutier1code==5|atusact$tutier1code==12,]
atusact[atusact$tutier1code==5|atusact$tutier1code==12,'tutier1code']=
  atusact[atusact$tutier1code==5|atusact$tutier1code==12,'tutier2code']

agg_table = aggregate(tuactdur24~tucaseid+tutier1code,data = atusactF,sum)

wide_table = reshape(agg_table,idvar = 'tucaseid' , 
                     timevar = 'tutier1code' , direction = 'wide' )

wide_table[is.na(wide_table)] = 0
wide_table[,-1] = wide_table[,-1]/60

#####

merge_table_one_resp = merge(atusresp,wide_table)
merge_table_one_rost = merge(merge_table_one_resp,atusrost)

names(merge_table_one_rost) = gsub("\\.","_",names(merge_table_one_rost))

merge_table_one_rost$Gender = ifelse(merge_table_one_rost$tesex == 1,"male","female")
merge_table_one_rost$Employment_Status = 
  ifelse((merge_table_one_rost$telfs==1)|(merge_table_one_rost$telfs==2),"Employed",
         ifelse((merge_table_one_rost$telfs==3)|(merge_table_one_rost$telfs==4),"Unemployed","Out of Work Force"))

General Summary Statistics

describe(merge_table_one_rost$tuactdur24_5)
##    vars     n mean   sd median trimmed mad min  max range skew kurtosis
## X1    1 10315 2.67 4.04      0    1.97   0   0 22.5  22.5 1.17     0.06
##      se
## X1 0.04
describe(merge_table_one_rost$tuactdur24_12)
##    vars     n mean   sd median trimmed  mad min  max range skew kurtosis
## X1    1 10315 5.06 3.53   4.42    4.74 3.58   0 23.2  23.2 0.82     0.41
##      se
## X1 0.03
describe(merge_table_one_rost$teage)
##    vars     n  mean   sd median trimmed   mad min max range skew kurtosis
## X1    1 10315 49.56 18.1     49   49.49 20.76  15  85    70 0.04    -0.92
##      se
## X1 0.18
table(merge_table_one_rost$Gender,useNA = "ifany")
## 
## female   male 
##   5701   4614
table(merge_table_one_rost$Employment_Status,useNA = "ifany")
## 
##          Employed Out of Work Force        Unemployed 
##              6282              3699               334
prop.table(table(merge_table_one_rost$Employment_Status,useNA = "ifany"))*100
## 
##          Employed Out of Work Force        Unemployed 
##         60.901600         35.860397          3.238003
## Description of general work hours by employment status
## Tier One Code of 5 composes the general working hours according to the Lexicon

describeBy(merge_table_one_rost$tuactdur24_5,group = 
             merge_table_one_rost$Employment_Status, mat = TRUE)
##     item            group1 vars    n      mean        sd   median
## X11    1          Employed    1 6282 4.3426350 4.4145744 3.508333
## X12    2 Out of Work Force    1 3699 0.0446427 0.4892487 0.000000
## X13    3        Unemployed    1  334 0.3816866 1.2749171 0.000000
##        trimmed      mad min       max     range       skew   kurtosis
## X11 3.94284719 5.201455   0 22.500000 22.500000  0.4270567  -1.080162
## X12 0.00000000 0.000000   0  9.516667  9.516667 13.5751986 201.951041
## X13 0.04266169 0.000000   0  8.333333  8.333333  4.2446138  18.942907
##              se
## X11 0.055698035
## X12 0.008044286
## X13 0.069760358
## Description of general work hours by employment status 
## Tier One Code of 12 composes the general leisure hours according to the Lexicon

describeBy(merge_table_one_rost$tuactdur24_12,group = 
             merge_table_one_rost$Employment_Status, mat = TRUE)
##     item            group1 vars    n     mean       sd   median  trimmed
## X11    1          Employed    1 6282 3.983660 2.974093 3.333333 3.669999
## X12    2 Out of Work Force    1 3699 6.798919 3.674028 6.500000 6.609580
## X13    3        Unemployed    1  334 6.035828 3.582504 5.666667 5.798570
##         mad min      max    range      skew   kurtosis         se
## X11 2.71810   0 20.43333 20.43333 0.9906968 0.86421358 0.03752369
## X12 3.87947   0 23.20000 23.20000 0.5046794 0.03012316 0.06040882
## X13 3.95360   0 20.45000 20.45000 0.6825584 0.38503967 0.19602587
## Description of general work hours by age

plot(merge_table_one_rost$tuactdur24_5~merge_table_one_rost$teage)

## Description of general leisure hours by age

plot(merge_table_one_rost$tuactdur24_12~merge_table_one_rost$teage)

## Description of leisure against work hours

plot(merge_table_one_rost$tuactdur24_12~merge_table_one_rost$tuactdur24_5)

## Description of general work hours by gender

describeBy(merge_table_one_rost$tuactdur24_5,group = merge_table_one_rost$Gender, mat = TRUE)
##     item group1 vars    n     mean       sd median  trimmed mad min
## X11    1 female    1 5701 2.138388 3.632258      0 1.420997   0   0
## X12    2   male    1 4614 3.333788 4.412284      0 2.696167   0   0
##          max    range      skew   kurtosis         se
## X11 21.31667 21.31667 1.4202368  0.6790776 0.04810621
## X12 22.50000 22.50000 0.8937269 -0.5361100 0.06495681
## Description of general leisure hours by gender

describeBy(merge_table_one_rost$tuactdur24_12,group = merge_table_one_rost$Gender, mat = TRUE)
##     item group1 vars    n     mean       sd   median  trimmed     mad min
## X11    1 female    1 5701 4.847708 3.343635 4.250000 4.554769 3.33585   0
## X12    2   male    1 4614 5.321572 3.731478 4.583333 4.987681 3.83005   0
##          max    range      skew  kurtosis         se
## X11 22.41667 22.41667 0.8198401 0.5305863 0.04428364
## X12 23.20000 23.20000 0.7828516 0.1962094 0.05493411
## Histograms

hist(merge_table_one_rost$tuactdur24_5)

hist(merge_table_one_rost$tuactdur24_12)

## Linear Model: Age and Gender against Hours worked
age_gender_lm = lm(merge_table_one_rost$tuactdur24_5~merge_table_one_rost$teage+as.factor(merge_table_one_rost$Gender))
age_gender_lm
## 
## Call:
## lm(formula = merge_table_one_rost$tuactdur24_5 ~ merge_table_one_rost$teage + 
##     as.factor(merge_table_one_rost$Gender))
## 
## Coefficients:
##                                (Intercept)  
##                                    4.35254  
##                 merge_table_one_rost$teage  
##                                   -0.04391  
## as.factor(merge_table_one_rost$Gender)male  
##                                    1.11036
multiLines(age_gender_lm)

## Linear Model: Age and Gender against Hours of Leisure
age_gender_leisure_lm = lm(merge_table_one_rost$tuactdur24_12~merge_table_one_rost$teage+as.factor(merge_table_one_rost$Gender))
age_gender_leisure_lm
## 
## Call:
## lm(formula = merge_table_one_rost$tuactdur24_12 ~ merge_table_one_rost$teage + 
##     as.factor(merge_table_one_rost$Gender))
## 
## Coefficients:
##                                (Intercept)  
##                                    1.79800  
##                 merge_table_one_rost$teage  
##                                    0.06048  
## as.factor(merge_table_one_rost$Gender)male  
##                                    0.59100
multiLines(age_gender_leisure_lm)

Exploratory Analysis

## Df of average hours worked (assuming 9 to 5 is average hours worked)

avg_data_frame = merge_table_one_rost[merge_table_one_rost$tuactdur24_5==8,]

## Df of greater than 8 hours (assuming 9 to 5 is average hours worked)
max_data_frame = merge_table_one_rost[merge_table_one_rost$tuactdur24_5>8,]

## Df of less than 8 hours (assuming 9 to 5 is average hours worked)
min_data_frame = merge_table_one_rost[merge_table_one_rost$tuactdur24_5<8,]

## Average Hours: Summary

describe(avg_data_frame$tuactdur24_12)
##    vars   n mean   sd median trimmed  mad min  max range skew kurtosis
## X1    1 117 2.58 1.94   2.33    2.39 1.98   0 9.15  9.15 0.82     0.41
##      se
## X1 0.18
describeBy(avg_data_frame$tuactdur24_12,group = 
             avg_data_frame$Employment_Status, mat = TRUE)
##     item     group1 vars   n     mean       sd   median  trimmed     mad
## X11    1   Employed    1 115 2.584638 1.953425 2.333333 2.394444 1.97680
## X12    2 Unemployed    1   2 2.250000 1.060660 2.250000 2.250000 1.11195
##     min  max range      skew   kurtosis        se
## X11 0.0 9.15  9.15 0.8137692  0.3659598 0.1821578
## X12 1.5 3.00  1.50 0.0000000 -2.7500000 0.7500000
plot(avg_data_frame$tuactdur24_12~avg_data_frame$teage)

describeBy(avg_data_frame$tuactdur24_12,group = avg_data_frame$Gender, mat = TRUE)
##     item group1 vars  n     mean       sd   median  trimmed     mad min
## X11    1 female    1 50 2.117333 1.631962 1.916667 2.011250 2.02622   0
## X12    2   male    1 67 2.923383 2.086208 2.750000 2.723333 2.10035   0
##      max range      skew   kurtosis        se
## X11 6.00  6.00 0.3983394 -0.9248016 0.2307942
## X12 9.15  9.15 0.8273920  0.1592530 0.2548709
hist(avg_data_frame$tuactdur24_12)

age_gender_leisure_avg_lm = lm(avg_data_frame$tuactdur24_12~avg_data_frame$teage+as.factor(avg_data_frame$Gender))
age_gender_leisure_avg_lm
## 
## Call:
## lm(formula = avg_data_frame$tuactdur24_12 ~ avg_data_frame$teage + 
##     as.factor(avg_data_frame$Gender))
## 
## Coefficients:
##                          (Intercept)  
##                              1.10887  
##                 avg_data_frame$teage  
##                              0.02308  
## as.factor(avg_data_frame$Gender)male  
##                              0.82358
multiLines(age_gender_leisure_avg_lm)

## Max Hours: Summary

describe(max_data_frame$tuactdur24_5)
##    vars    n mean  sd median trimmed  mad  min  max range skew kurtosis
## X1    1 1699 9.97 1.9   9.42    9.66 1.43 8.02 22.5 14.48 1.82     4.92
##      se
## X1 0.05
describe(max_data_frame$tuactdur24_12)
##    vars    n mean   sd median trimmed  mad min   max range skew kurtosis
## X1    1 1699 2.05 1.56   1.87    1.92 1.66   0 10.42 10.42  0.8     0.79
##      se
## X1 0.04
describeBy(max_data_frame$tuactdur24_5,group = 
             max_data_frame$Employment_Status, mat = TRUE)
##     item            group1 vars    n     mean        sd   median  trimmed
## X11    1          Employed    1 1693 9.972672 1.9024081 9.416667 9.667528
## X12    2 Out of Work Force    1    5 8.666667 0.5478493 8.500000 8.666667
## X13    3        Unemployed    1    1 8.333333        NA 8.333333 8.333333
##         mad      min       max    range      skew  kurtosis         se
## X11 1.43318 8.016667 22.500000 14.48333 1.8193553  4.904075 0.04623546
## X12 0.49420 8.066667  9.516667  1.45000 0.4652411 -1.541227 0.24500567
## X13 0.00000 8.333333  8.333333  0.00000        NA        NA         NA
describeBy(max_data_frame$tuactdur24_12,group = 
             max_data_frame$Employment_Status, mat = TRUE)
##     item            group1 vars    n     mean       sd   median  trimmed
## X11    1          Employed    1 1693 2.050158 1.561476 1.866667 1.921956
## X12    2 Out of Work Force    1    5 2.863333 2.061465 3.000000 2.863333
## X13    3        Unemployed    1    1 0.000000       NA 0.000000 0.000000
##         mad min      max    range       skew   kurtosis         se
## X11 1.65557   0 10.41667 10.41667 0.80360613  0.8024708 0.03794957
## X12 1.01311   0  5.75000  5.75000 0.01085767 -1.4853717 0.92191528
## X13 0.00000   0  0.00000  0.00000         NA         NA         NA
plot(max_data_frame$tuactdur24_5~max_data_frame$teage)

plot(max_data_frame$tuactdur24_12~max_data_frame$teage)

plot(max_data_frame$tuactdur24_12~max_data_frame$tuactdur24_5)

hist(max_data_frame$tuactdur24_12)

age_gender_leisure_max_lm = lm(max_data_frame$tuactdur24_12~max_data_frame$teage+as.factor(max_data_frame$Gender))
age_gender_leisure_max_lm
## 
## Call:
## lm(formula = max_data_frame$tuactdur24_12 ~ max_data_frame$teage + 
##     as.factor(max_data_frame$Gender))
## 
## Coefficients:
##                          (Intercept)  
##                              1.26796  
##                 max_data_frame$teage  
##                              0.01503  
## as.factor(max_data_frame$Gender)male  
##                              0.20209
multiLines(age_gender_leisure_max_lm)

age_gender_work_max_lm = lm(max_data_frame$tuactdur24_5~max_data_frame$teage+as.factor(max_data_frame$Gender))
age_gender_work_max_lm
## 
## Call:
## lm(formula = max_data_frame$tuactdur24_5 ~ max_data_frame$teage + 
##     as.factor(max_data_frame$Gender))
## 
## Coefficients:
##                          (Intercept)  
##                             9.550398  
##                 max_data_frame$teage  
##                             0.003167  
## as.factor(max_data_frame$Gender)male  
##                             0.468375
multiLines(age_gender_work_max_lm)

## Min Hours: Summary

describe(min_data_frame$tuactdur24_5)
##    vars    n mean  sd median trimmed mad min  max range skew kurtosis   se
## X1    1 8499 1.14 2.4      0    0.52   0   0 7.98  7.98  1.9     1.98 0.03
describe(min_data_frame$tuactdur24_12)
##    vars    n mean   sd median trimmed  mad min  max range skew kurtosis
## X1    1 8499  5.7 3.51   5.17    5.43 3.58   0 23.2  23.2 0.69     0.28
##      se
## X1 0.04
describeBy(min_data_frame$tuactdur24_5,group = 
             min_data_frame$Employment_Status, mat = TRUE)
##     item            group1 vars    n       mean        sd median   trimmed
## X11    1          Employed    1 4474 2.11817166 2.9506412      0 1.6861825
## X12    2 Out of Work Force    1 3694 0.03297239 0.3722608      0 0.0000000
## X13    3        Unemployed    1  331 0.31163142 1.0449477      0 0.0318239
##     mad min      max    range       skew    kurtosis          se
## X11   0   0 7.983333 7.983333  0.9357372  -0.8394584 0.044113184
## X12   0   0 7.500000 7.500000 13.9706090 213.7941289 0.006124898
## X13   0   0 7.800000 7.800000  4.3069768  19.9906945 0.057435519
describeBy(min_data_frame$tuactdur24_12,group = 
             min_data_frame$Employment_Status, mat = TRUE)
##     item            group1 vars    n     mean       sd   median  trimmed
## X11    1          Employed    1 4474 4.751274 3.057170 4.250000 4.504912
## X12    2 Out of Work Force    1 3694 6.804246 3.673031 6.500000 6.615212
## X13    3        Unemployed    1  331 6.076939 3.570524 5.666667 5.837987
##         mad min      max    range      skew  kurtosis         se
## X11 3.08875   0 20.43333 20.43333 0.7654666 0.3973029 0.04570583
## X12 3.83005   0 23.20000 23.20000 0.5041833 0.0302574 0.06043328
## X13 3.95360   0 20.45000 20.45000 0.6839070 0.3953828 0.19625375
plot(min_data_frame$tuactdur24_5~min_data_frame$teage)

plot(min_data_frame$tuactdur24_12~min_data_frame$teage)

plot(min_data_frame$tuactdur24_12~min_data_frame$tuactdur24_5)

hist(min_data_frame$tuactdur24_12)

age_gender_leisure_min_lm = lm(min_data_frame$tuactdur24_12~min_data_frame$teage+as.factor(min_data_frame$Gender))
age_gender_leisure_min_lm
## 
## Call:
## lm(formula = min_data_frame$tuactdur24_12 ~ min_data_frame$teage + 
##     as.factor(min_data_frame$Gender))
## 
## Coefficients:
##                          (Intercept)  
##                               2.4889  
##                 min_data_frame$teage  
##                               0.0544  
## as.factor(min_data_frame$Gender)male  
##                               1.0727
multiLines(age_gender_leisure_min_lm)

age_gender_work_min_lm = lm(min_data_frame$tuactdur24_5~min_data_frame$teage+as.factor(min_data_frame$Gender))
age_gender_work_min_lm
## 
## Call:
## lm(formula = min_data_frame$tuactdur24_5 ~ min_data_frame$teage + 
##     as.factor(min_data_frame$Gender))
## 
## Coefficients:
##                          (Intercept)  
##                              2.17758  
##                 min_data_frame$teage  
##                             -0.02244  
## as.factor(min_data_frame$Gender)male  
##                              0.24582
multiLines(age_gender_work_min_lm)

Findings of Exploratory Analysis

The general summary statistics indicate a couple of key high level facts:

Leisure:

\(y = 1.79800 + 0.06048 * age + 0.59100 * 1\)

Work:

\(y = 4.35254 + -0.04391 * age + 1.11036 * 1\)

Findings of groupings based on hours:

The groups are divided based on those that work greater than 8 hours, less than 8 hours, and the exact 9-5 day of 8 hours.

Inference

Hypothesis

\({ H }_{ 0 } = Leisure(work > 8 hrs) = Leisure(work=8hrs) = Leisure(work<8hrs\) \({ H }_{ A } = Leisure(work > 8 hrs) \neq Leisure(work=8hrs) \neq Leisure(work<8hrs)\)

Checking Conditions

## Leisure Comparison

boxplot(min_data_frame$tuactdur24_12,avg_data_frame$tuactdur24_12,max_data_frame$tuactdur24_12,names=c('< 8 Hours work','8 hours work','> 8 hours work'), main = 'Work Life Balance', ylab = 'Leisure')

tempdf = merge_table_one_rost
tempdf$workflag = ifelse(tempdf$tuactdur24_5>=8,'Max Work','Min Work')

## Reject null hypothesis as 0 is not in CI range and p value less than .05

inference(y = tempdf$tuactdur24_12, x = tempdf$workflag, est = "mean", type = "ci", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_Max Work = 1816, mean_Max Work = 2.0853, sd_Max Work = 1.5949
## n_Min Work = 8499, mean_Min Work = 5.6952, sd_Min Work = 3.5053

## Observed difference between means (Max Work-Min Work) = -3.6099
## 
## Standard error = 0.0534 
## 95 % Confidence interval = ( -3.7144 , -3.5053 )
inference(y = tempdf$tuactdur24_12, x = tempdf$workflag, est = "mean", type = "ht", null = 0, 
          alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_Max Work = 1816, mean_Max Work = 2.0853, sd_Max Work = 1.5949
## n_Min Work = 8499, mean_Min Work = 5.6952, sd_Min Work = 3.5053
## Observed difference between means (Max Work-Min Work) = -3.6099
## 
## H0: mu_Max Work - mu_Min Work = 0 
## HA: mu_Max Work - mu_Min Work != 0 
## Standard error = 0.053 
## Test statistic: Z =  -67.662 
## p-value =  0

Given that the CI theoretical inference model does not include the null hypothesis value in the CI interval and the hypothesis test theoretical inference model has a p-value less than .05, we reject the null hypothesis in favor of the alternative concluding that work life balance as we have defined it (balance between leisure and work) is affected by the number of hours worked below or above the defined average hours (9 to 5 job or 8 hours).

Conclusion

This research project has given me great insight into how leisure and work is divided among employment, gender, and age groups. From a statistically significant stance there is a clear difference in “work life balance” based on hours worked among the groups and at a general level, but from a practical sense the concept has evolved over time and has been challenged in the modern day. It very well could be that we reach a point where the current definition is obsolete and this research would need to be redone. For future analysis it would be interesting to bring in other variables to further examine the breakout of people’s spent time outside of these two categories (i.e sports, religion, chores etc.) and possibly discern if a field could be added to indicate whether people consider these activites as additions to their labor or their leisure time. With the additional field a broader scope can be applied to the concept of ‘work/life balance’ and more interesting insights could be produced.

Appendix

Condensed estimates for activity by average hours per day from the 2016 survey can be found at https://www.bls.gov/tus/a1_2016.pdf

https://smallbusiness.chron.com/constitutes-work-day-salaried-employee-18816.html