This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.
Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.
attach(Group_4_)
The following objects are masked from Group_3_:
ANNUITY, CHILDREN, CREDIT, DAYS_BIRTH, DAYS_EMPLOYED, DAYS_LAST_PHONE_CHANGE,
DAYS_REGISTRATION, DEF_LARGE_SOCIAL_CIRCLE, DEF_SMALL_SOCIAL_CIRCLE, DOC_01,
DOC_02, DOC_03, DOC_04, DOC_05, DOC_06, DOC_07, DOC_08, DOC_09, DOC_10, DOC_11,
DOC_12, DOC_13, DOC_14, DOC_15, DOC_16, DOC_17, DOC_18, DOC_19, DOC_20,
EDUCATION, EMAIL, EMPLOYMENT, EMP_PHONE, FAMILY, FAMILY_STATUS, GENDER,
GOODS_PRICE, HOME_PHONE, HOUSING_TYPE, INCOME, LIVE_CITY_NOT_WORK_CITY,
LIVE_REGION_NOT_WORK_REGION, NAME_TYPE_SUITE, OBS_LARGE_SOCIAL_CIRCLE,
OBS_SMALL_SOCIAL_CIRCLE, OCCUPATION, ORGANIZATION_TYPE, OTHER_MOBILE, OWN_CAR,
OWN_MOBILE, OWN_REALTY, PROCESS_START_DAY, PROCESS_START_HOUR, REGION_RATING,
REGION_RATING_CITY, REG_CITY_NOT_LIVE_CITY, REG_CITY_NOT_WORK_CITY,
REG_REGION_NOT_LIVE_REGION, REG_REGION_NOT_WORK_REGION, WORK_PHONE
# Regression Dependence on the basis of Income
model_1<-lm(ANNUITY~INCOME)
summary(model_1)
Call:
lm(formula = ANNUITY ~ INCOME)
Residuals:
Min 1Q Median 3Q Max
-179511 -8698 -1620 6650 111478
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.621e+04 2.321e+02 69.85 <2e-16 ***
INCOME 6.447e-02 1.191e-03 54.15 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 12830 on 11798 degrees of freedom
Multiple R-squared: 0.1991, Adjusted R-squared: 0.199
F-statistic: 2932 on 1 and 11798 DF, p-value: < 2.2e-16
plot(model_1)
# Regression dependence on the basis of gender.
model_2<-lm(ANNUITY~factor(GENDER)-1)
summary(model_2)
Call:
lm(formula = ANNUITY ~ factor(GENDER) - 1)
Residuals:
Min 1Q Median 3Q Max
-28774 -10379 -2278 7115 116711
Coefficients:
Estimate Std. Error t value Pr(>|t|)
factor(GENDER)F 26128.7 162.0 161.3 <2e-16 ***
factor(GENDER)M 28773.9 225.2 127.8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14280 on 11798 degrees of freedom
Multiple R-squared: 0.7821, Adjusted R-squared: 0.7821
F-statistic: 2.118e+04 on 2 and 11798 DF, p-value: < 2.2e-16
plot(model_2)
# Regression dependence on the basis of ownership of home.
model_3<-lm(ANNUITY~factor(HOUSING_TYPE)-1)
summary(model_3)
Call:
lm(formula = ANNUITY ~ factor(HOUSING_TYPE) - 1)
Residuals:
Min 1Q Median 3Q Max
-27139 -10574 -2252 7327 118346
Coefficients:
Estimate Std. Error t value Pr(>|t|)
factor(HOUSING_TYPE)Co-op Apartment 24738.1 2294.9 10.78 <2e-16 ***
factor(HOUSING_TYPE)Municipal Apartment 27458.8 715.7 38.37 <2e-16 ***
factor(HOUSING_TYPE)Office Apartment 27772.2 1563.7 17.76 <2e-16 ***
factor(HOUSING_TYPE)Own Apartment 27138.5 139.9 193.95 <2e-16 ***
factor(HOUSING_TYPE)Rented Apartment 26334.5 1031.6 25.53 <2e-16 ***
factor(HOUSING_TYPE)With Parents 25099.2 589.0 42.61 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14330 on 11794 degrees of freedom
Multiple R-squared: 0.7807, Adjusted R-squared: 0.7806
F-statistic: 6998 on 6 and 11794 DF, p-value: < 2.2e-16
plot(model_3)
#Regression dependence on the basis of Education
model_4<-lm(ANNUITY~factor(EDUCATION)-1)
summary(model_4)
Call:
lm(formula = ANNUITY ~ factor(EDUCATION) - 1)
Residuals:
Min 1Q Median 3Q Max
-30759 -10200 -2031 7197 114726
Coefficients:
Estimate Std. Error t value Pr(>|t|)
factor(EDUCATION)Academic degree 35742.0 6338.2 5.639 1.75e-08 ***
factor(EDUCATION)Higher education 30758.7 263.8 116.612 < 2e-16 ***
factor(EDUCATION)Incomplete higher 27103.4 758.6 35.726 < 2e-16 ***
factor(EDUCATION)Lower secondary 22410.3 1120.4 20.001 < 2e-16 ***
factor(EDUCATION)Secondary 25828.8 154.6 167.020 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14170 on 11795 degrees of freedom
Multiple R-squared: 0.7855, Adjusted R-squared: 0.7854
F-statistic: 8640 on 5 and 11795 DF, p-value: < 2.2e-16
plot(model_4)
#Regression dependence on the basis of Employment
model_5<-lm(ANNUITY~factor(EMPLOYMENT)-1)
summary(model_5)
Call:
lm(formula = ANNUITY ~ factor(EMPLOYMENT) - 1)
Residuals:
Min 1Q Median 3Q Max
-29749 -10201 -2129 7115 115736
Coefficients:
Estimate Std. Error t value Pr(>|t|)
factor(EMPLOYMENT)Commercial Associate 29748.6 270.4 110.018 < 2e-16 ***
factor(EMPLOYMENT)Pensioner 23920.2 313.0 76.431 < 2e-16 ***
factor(EMPLOYMENT)State Servant 28755.8 476.3 60.379 < 2e-16 ***
factor(EMPLOYMENT)Student 23274.3 8203.1 2.837 0.00456 **
factor(EMPLOYMENT)Working 26600.2 182.1 146.042 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 14210 on 11795 degrees of freedom
Multiple R-squared: 0.7845, Adjusted R-squared: 0.7844
F-statistic: 8585 on 5 and 11795 DF, p-value: < 2.2e-16
plot(model_5)
#Regression on employment and gender
model_6<-lm(ANNUITY~factor(EMPLOYMENT)-1+INCOME)
summary(model_6)
Call:
lm(formula = ANNUITY ~ factor(EMPLOYMENT) - 1 + INCOME)
Residuals:
Min 1Q Median 3Q Max
-175876 -8672 -1634 6631 111580
Coefficients:
Estimate Std. Error t value Pr(>|t|)
factor(EMPLOYMENT)Commercial Associate 1.712e+04 3.442e+02 49.754 <2e-16 ***
factor(EMPLOYMENT)Pensioner 1.528e+04 3.275e+02 46.663 <2e-16 ***
factor(EMPLOYMENT)State Servant 1.769e+04 4.794e+02 36.892 <2e-16 ***
factor(EMPLOYMENT)Student 1.313e+04 7.402e+03 1.774 0.0761 .
factor(EMPLOYMENT)Working 1.631e+04 2.572e+02 63.402 <2e-16 ***
INCOME 6.321e-02 1.216e-03 51.993 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 12820 on 11794 degrees of freedom
Multiple R-squared: 0.8246, Adjusted R-squared: 0.8246
F-statistic: 9244 on 6 and 11794 DF, p-value: < 2.2e-16
plot(model_6)
Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Cmd+Option+I.
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Cmd+Shift+K to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.