Find the equation of the regression line for the given points. Round any final values to the nearest hundredth, if necessary.
\[ (5.6, 8.8), \ (6.3, 12.4), \ (7.0, 14.8), \ (7.7, 18.2), \ (8.4, 20.8) \]
# Model the points using lm
x <- c(5.6, 6.3, 7.0, 7.7, 8.4)
y <- c(8.8, 12.4, 14.8, 18.2, 20.8)
model <- lm(y ~ x)
summary(model)
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## 1 2 3 4 5
## -0.24 0.38 -0.20 0.22 -0.16
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -14.8000 1.0365 -14.28 0.000744 ***
## x 4.2571 0.1466 29.04 8.97e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared: 0.9965, Adjusted R-squared: 0.9953
## F-statistic: 843.1 on 1 and 3 DF, p-value: 8.971e-05
ggplot(model, aes(x, y)) +
geom_point() + stat_smooth(method="lm") +
labs(title="Regression Line: y = 4.26x - 14.80")
Find all local maxima, local minima, and saddle points for the function given below. Write your answer(s) in the form \((x, y, z)\). Separate multiple points with a comma.
\[ f(x, y) = 24x - 6xy^2-8y^3 \]
\[ \begin{align} f_{x} &= 24-6y^2 &f_y &= xy+2y^2 &\text{1st partial derivative} \\ f_{xx} &= 0 &f_{yy} &= -12x-48y^2 &\text{2nd partial derivative} \\ f_{xy} &= 0 &f_{yx} &= -12y &\text{Mixed partial derivative} \end{align} \]
\[ \begin{cases} f_x = 24-6y^2=0 \\ f_y = xy+2y^2=0 \end{cases} \]
\[ \begin{align} 24 - 6y^2 &= 0 &x(2)+2(2)^2 &= 0 &x(-2)+2(-2)^2 &= 0 \\ -6y^2 &= -24 &2x+8&= 0 &-2x-8 &= 0 \\ y^2 &= 4 &2x &= -8 &-2x &= -8 \\ y &= 2, -2 &x &= -4 &x &= 4 \end{align} \]
\[ \begin{align} D &= f_{xx}(x_0, y_0) \cdot f_{yy}(x_0, y_0) - f_{xy}(x_0, y_0)^2 \\ &= (0) \cdot (12x-48y^2) - (12y)^2 \\ &= (-12y)^2 \end{align} \]
\[ \begin{align} &D = (12(2))^2 = 572 &D>0 \\ \\ &f_{yy}(-4,2) = -12(-4)-48(2)^2 = -144 &f_{yy}(x_0, y_0) <0 \end{align} \]
\[ \begin{align} &D = (12(-2))^2 = 572 &D>0 \\ \\ &f_{yy}(4,-2) = -12(4)-48(-2)^2 = -240 &f_{yy}(x_0, y_0) <0 \end{align} \]
A grocery store sells two brands of a product, the “house” brand and a “name” brand. The manager estimates that if she sells the “house” brand for \(x\) dollars and the “name” brand for \(y\) dollars, she will be able to sell \(81-21x+17y\) units of the “house brand” and \(40+11x-23y\) units of the “name” brand.
Step 1: Find the revenue function \(R (x, y).\)
\[ \begin{align} \text{Revenue} &= [\text{HB Price} \times \text{HB Units Sold}] + [\text{NB Price} \times \text{NB Units Sold}] \\ \\ &= [x \times (81-21x+17y)] + [y \times (40+11x-23y)]\\ \\ &= 81x - 21x^2 + 17xy + 40y + 11xy - 23y^2 \\ \\ &= -21x^2 - 23y^2 + 81x + 40y + 28xy \end{align} \]
Step 2: What is the revenue if she sells the “house” brand for \(\$2.30\) and the “name” brand for \(\$4.10\)?
revenue <- function(x, y) {
return(-21*(x^2) - 23*(y^2) + 81*x + 40*y + 28*x*y)
}
revenue(2.30, 4.10)
## [1] 116.62
A company has a plant in Los Angeles and a plant in Denver. The firm is committed to produce a total of \(96\) units of a product each week. The total weekly cost is given by \(C(x,y) = \frac{1}{6}x^2 + \frac{1}{6}y^2 + 7x + 25y + 700\), where \(x\) is the number of units produced in Los Angeles and \(y\) is the number of units produced in Denver. How many units should be produced in each plant to minimize the total weekly cost?
\[ \begin{align} C(x,y) &= \frac{1}{6}x^2 + \frac{1}{6}y^2 + 7x + 25y + 700 \\ \\ C(x) &= \frac{x^2}{6} + \frac{(96-x)^2}{6} + 25(96-x) + 700 \\ \\ &= \frac{x^2}{6} + \frac{x^2}{6} + \frac{9216}{6} - \frac{192x}{6} + 7x + 2400 - 25x + 700 \\ \\ &= \frac{1}{3}x^2 + 1536 - 32x - 18x + 3100 \\ \\ &= \frac{1}{3}x^2 - 50x + 4636 \end{align} \]
\[ \begin{align} C'(x) &= \frac{2}{3}x-50 \\ \\ 0 &= \frac{2}{3}x-50 \\ \\ x &= 75 \text{ units from Los Angeles} \end{align} \]
\[ \begin{align} y &= 96-75 \\ y &= 21 \text{ units from Denver} \end{align} \]
Evaluate the double integral on the given region. Write your answer in exact form without decimals.
\[ \displaystyle \iint_R (e^{8x+3y}) \ dA; \qquad R: \ 2 \leq x \leq 4 \qquad and \qquad 2 \leq y \leq 4 \]
\[ \int_2^4 \int_2^4 (e^{8x+3y}) \ dx \ dy \]
\[ \begin{align} du = 8 \ dx \\ dx = \frac{1}{8} du \end{align} \]
\[ \begin{align} \int_2^4 (e^u) \cdot \frac{1}{8}du = \frac{1}{8} \int e^u \ du &= \frac{1}{8} \left. \int e^{8x+3y} \ du \right|_2^4 \\ \\ &= \frac{1}{8}(e^{32+3y} - e^{16+3y}) \end{align} \]
\[ \begin{align} &\int_2^4 \frac{1}{8}(e^{32+3y} - e^{16+3y}) \ dy \\ \\ &= \int_2^4 \frac{1}{8} \cdot \frac{1}{3} \cdot (e^{32+3y} - e^{16+3y}) \ dy \\ \\ &= \left. \frac{1}{8} \cdot \frac{1}{3} \cdot (e^{32+3y}) \right|_2^4 - \left. \frac{1}{8} \cdot \frac{1}{3} (e^{16+3y}) \right|_2^4 \\ &= \frac{1}{24} [e^{32+12} - e^{32+6}] - \frac{1}{24}[e^{16+12} - e^{16+6}]\\ \\ &= \frac{1}{24} \ (e^{44} - e^{38} - e^{28} + e^{22}) \end{align} \]