Multiple linear regression

Grading the professor

Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)

In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.

The data

The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. (This is aslightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).) The result is a data frame where each row contains a different course and columns represent variables about the courses and professors.

#download the data from openintro.org
download.file("https://www.openintro.org/stat/data/evals.RData", destfile = "evals.RData")
load("evals.RData")
# load the data in github
evals <-read.csv("https://raw.githubusercontent.com/maharjansudhan/DATA606/master/evals.csv", sep=",")

Exploring the data

Exercise 1

Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.

Answer: Since this is an observational study there are no control and experimental groups. There can only be a correlation between the variables. The statement we can give is if the instructor’s beauty has a positive or negative correlation to student’s course evaluation.

Exercise 2

Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?

Answer:

hist(evals$score)

According to the histogram, the evaluation scores are skewed to the left. Students have give positive evaluations for their teachers. Usually, teachers are rated average and some rate them super nice some say they are waste of time.

Exercise 3

Excluding score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).

Answer:

boxplot(evals$bty_avg ~ evals$age)

It doesn’t seem there is a relation relationship between the teacher’s age and beauty score. Student are attracted to younger teachears and score more but here it doesn’t seems that situation.

Simple linear regression

The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:

plot(evals$score ~ evals$bty_avg)

Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?

It seems there are more observations than the approximate number of points on the scatterplot.

nrow(evals)
## [1] 463

Exercise 4

Replot the scatterplot, but this time use the function jitter() on the y- or the x-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?

Answer: It is not possible to show the relationship between beauty average and score for the teacher because of multiple ties that is just represented by a single circle on the scatterplot.

library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.1
ggplot(evals, aes(bty_avg, score)) + geom_point(position = position_jitter(w = 0.3, h = 0.3)) + ylab("score") + xlab("beauty average")

Exercise 5

Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?

m_bty <- lm(evals$score ~ evals$bty_avg)
plot(jitter(evals$score,factor=1.2) ~ jitter(evals$bty_avg,factor=1.2))
abline(m_bty)

cor(evals$score, evals$bty_avg)
## [1] 0.1871424
summary(m_bty)
## 
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9246 -0.3690  0.1420  0.3977  0.9309 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    3.88034    0.07614   50.96  < 2e-16 ***
## evals$bty_avg  0.06664    0.01629    4.09 5.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared:  0.03502,    Adjusted R-squared:  0.03293 
## F-statistic: 16.73 on 1 and 461 DF,  p-value: 5.083e-05

\[ \hat{y} = 3.88034+0.06664???beauty_avg \]

According to the summary, beauty_avg is a statistically significant predictor of evaluation score with p-value close of 0. It may not be a practically significant predictor of evaluation score though since for every 1 point increase in beauty_ave.

Exercise 6

Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).

Multiple linear regression

The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.

plot(evals$bty_avg ~ evals$bty_f1lower)

cor(evals$bty_avg, evals$bty_f1lower)
## [1] 0.8439112

As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:

plot(evals[,13:19])

These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.

In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.

m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07

Exercise 7

P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.

Answer:

1The residuals of the this model are approximately normal.

suppressWarnings(library(StMoSim))
qqnormSim(m_bty_gen$residuals)

2. Absolute values of residuals against fitted values. (the variability of the residuals is nearly constant)

plot(abs(m_bty_gen$residuals) ~ m_bty_gen$fitted.values)

  1. the residuals are independent
plot(m_bty_gen$residuals ~ c(1:nrow(evals)))

  1. each variable is linearly related to the outcome.
plot(evals$score ~ evals$gender)

plot(evals$score ~ evals$bty_avg)

There is a is a linear relationship between gender and evaluation score. The median scores and variability for both males and females are similar in terms of evaluation scores.

Exercise 8

Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?

Answer: Yes bty_avg is and gender made beauty average even more significant as the p-value computed is even smaller now compared to a model where beauty average was the sole variable.

Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of female and male to being an indicator variable called gendermale that takes a value of 0 for females and a value of 1 for males. (Such variables are often referred to as “dummy” variables.)

As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression. \[ \hat{score} = ??^0+??^1×bty_avg+??^2×(0) =??^0+??^1×bty_avg \] We can plot this line and the line corresponding to males with the following custom function.

multiLines(m_bty_gen)

Exercise 9

What is the equation of the line corresponding to males? (Hint: For males, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score? The decision to call the indicator variable gendermale instead ofgenderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a 0. (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel function. Use ?relevel to learn more.)

\[ \hat{score} = ??^0+??^1×bty_avg+??^2×(1) = ??^0+??^1×bty_avg+??^2 \]

Exercise 10

Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.

m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)
## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05
names(m_bty_rank)
##  [1] "coefficients"  "residuals"     "effects"       "rank"         
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "contrasts"     "xlevels"       "call"          "terms"        
## [13] "model"
multiLines(m_bty_rank)

The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.

The search for the best model

We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.

Exercise 11

Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score. Answer: It seems “number of professors” cls_profs as the variable to have the least assoication with the professor’s evaluation score.

Let’s run the model.

m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14

Exercise 12

Check your suspicions from the previous exercise. Include the model output in your response. Answer: Yes it is “number professors” that has the least association to “scores”. It has the highest p-value in the model.

plot(evals$score ~ evals$cls_profs)

Exercise 13

Interpret the coefficient associated with the ethnicity variable. Answer: The ethnicity p-value means that it has a weak relationship to scores and can be dropped as part of the model.

Exercise 14

Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?

m_back <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
    cls_students + cls_level + cls_credits + bty_avg + pic_outfit + pic_color, 
    data = evals)
summary(m_back)
## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7836 -0.3257  0.0859  0.3513  0.9551 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0872523  0.2888562  14.150  < 2e-16 ***
## ranktenure track      -0.1476746  0.0819824  -1.801 0.072327 .  
## ranktenured           -0.0973829  0.0662614  -1.470 0.142349    
## ethnicitynot minority  0.1274458  0.0772887   1.649 0.099856 .  
## gendermale             0.2101231  0.0516873   4.065 5.66e-05 ***
## languagenon-english   -0.2282894  0.1111305  -2.054 0.040530 *  
## age                   -0.0089992  0.0031326  -2.873 0.004262 ** 
## cls_perc_eval          0.0052888  0.0015317   3.453 0.000607 ***
## cls_students           0.0004687  0.0003737   1.254 0.210384    
## cls_levelupper         0.0606374  0.0575010   1.055 0.292200    
## cls_creditsone credit  0.5061196  0.1149163   4.404 1.33e-05 ***
## bty_avg                0.0398629  0.0174780   2.281 0.023032 *  
## pic_outfitnot formal  -0.1083227  0.0721711  -1.501 0.134080    
## pic_colorcolor        -0.2190527  0.0711469  -3.079 0.002205 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared:  0.187,  Adjusted R-squared:  0.1634 
## F-statistic: 7.943 on 13 and 449 DF,  p-value: 2.336e-14

There was a little change in the coefficients and significance of the other explanatory variables when cls_profs was removed. The values are more significant now to the level than before.

Exercise 15

Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.

m_back2 <- lm(score ~ ethnicity + gender + language + age + cls_perc_eval + 
    cls_credits + bty_avg + pic_color, data = evals)
summary(m_back2)
## 
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.85320 -0.32394  0.09984  0.37930  0.93610 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.771922   0.232053  16.255  < 2e-16 ***
## ethnicitynot minority  0.167872   0.075275   2.230  0.02623 *  
## gendermale             0.207112   0.050135   4.131 4.30e-05 ***
## languagenon-english   -0.206178   0.103639  -1.989  0.04726 *  
## age                   -0.006046   0.002612  -2.315  0.02108 *  
## cls_perc_eval          0.004656   0.001435   3.244  0.00127 ** 
## cls_creditsone credit  0.505306   0.104119   4.853 1.67e-06 ***
## bty_avg                0.051069   0.016934   3.016  0.00271 ** 
## pic_colorcolor        -0.190579   0.067351  -2.830  0.00487 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4992 on 454 degrees of freedom
## Multiple R-squared:  0.1722, Adjusted R-squared:  0.1576 
## F-statistic:  11.8 on 8 and 454 DF,  p-value: 2.58e-15

Exercise 16

Verify that the conditions for this model are reasonable using diagnostic plots. 1. the residuals of the model are nearly normal

qqnormSim(m_back2$residuals)

  1. Absolute values of residuals against fitted values. (the variability of the residuals is nearly constant)
plot(abs(m_back2$residuals) ~ m_back2$fitted.values)

  1. the residuals are independent
plot(m_back2$residuals ~ c(1:nrow(evals)))

  1. each variable is linearly related to the outcome.
plot(evals$score ~ evals$ethnicity)

plot(evals$score ~ evals$gender)

plot(evals$score ~ evals$language)

plot(evals$score ~ evals$age)

plot(evals$score ~ evals$cls_perc_eval)

plot(evals$score ~ evals$cls_credits)

plot(evals$score ~ evals$bty_avg)

plot(evals$score ~ evals$pic_color)

Exercise 17

The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?

Answer: No, Class courses are independent of each other. Evaluation scores from one course is indpendent of the other even if the course is being taught by the same professor.

Exercise 18

Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.

Answer: The professor is a young, well educated white male who has a good English speech(may be white guy whose first language is English). Since, young teacher are liked mostly by students because they are more flexible and close to the students, majority of the students of his class must have completed the evaluation.

Exercise 19

Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?

Answer: It depends on the students to like their teachers or not. But mostly when in colleges if the teachers are open to help and shows willingness to assist students in anyway possible, students like them.

This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written by Mine Çetinkaya-Rundel and Andrew Bray.