## >> CARREGAR PACOTES

library(tidyverse)
## -- Attaching packages --------------------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.1.0     v purrr   0.2.5
## v tibble  1.4.2     v dplyr   0.7.8
## v tidyr   0.8.1     v stringr 1.3.1
## v readr   1.1.1     v forcats 0.3.0
## -- Conflicts ------------------------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(data.table)
## 
## Attaching package: 'data.table'
## The following objects are masked from 'package:dplyr':
## 
##     between, first, last
## The following object is masked from 'package:purrr':
## 
##     transpose
library(corrplot) # https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html
## corrplot 0.84 loaded
library(agricolae)
library(NCStats) # para instalar, rode o comando: source("http://www.rforge.net/NCStats/InstallNCStats.R")
## Loading required package: FSA
## ## FSA v0.8.22. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
## ## NCStats v0.4.7 by Derek H. Ogle, Northland College.
## 
## Attaching package: 'NCStats'
## The following object is masked from 'package:FSA':
## 
##     rSquared
library(qwraps2)
library(summarytools)
## 
## Attaching package: 'summarytools'
## The following object is masked from 'package:NCStats':
## 
##     view
## >> CARREGAR BANCO DE DADOS

banco = readstata13::read.dta13(file.choose()) # bancofinalwide281118.dta


## >> RENOMEAR VARIÁVEIS 

banco=rename(banco, 
             parity=nativivoss1, 
             schooling=anos_de_estudo1, 
             mother_age=idade_mae_calc1,
             total_energy=new_kcal_total2,
             total_protein=prottotal2,
             total_fat=liptotal2,
             total_carbohydrates=carbtotal2,
             total_fiber=fibrtotal2,
             saturated_fat=sattotal2,
             unsaturated_fat=instotal2,
             calcium=calciototal2, 
             iron=ferrototal2,
             tryptophan=triptofanototal2,
             
             HMOSecretor=HMOSecretor3,                  
             Diversity_7d=Diversity3,                   
             Evenness_7d=Evenness3,                     
             "2'FL_7d"=FL2nmolmL3,                   
             "3FL_7d"=FL3nmolmL3,                    
             LNnT_7d=LNnTnmolmL3,                  
             "3'SL_7d"=SL3nmolmL3,                    
             DFLac_7d=DFLacnmolmL3,                 
             "6'SL_7d"=SL6nmolmL3,                    
             LNT_7d=LNTnmolmL3,                  
             LNFPI_7d=LNFPInmolmL3,                  
             LNFPII_7d=LNFPIInmolmL3,                
             LNFPIII_7d=LNFPIIInmolmL3,                
             LSTb_7d=LSTbnmolmL3,                  
             LSTc_7d=LSTcnmolmL3,                   
             DFLNT_7d=DFLNTnmolmL3,                 
             LNH_7d=LNHnmolmL3,                    
             DSLNT_7d=DSLNTnmolmL3,                 
             FLNH_7d=FLNHnmolmL3,                   
             DFLNH_7d=DFLNHnmolmL3,                 
             FDSLNH_7d=FDSLNHnmolmL3,                 
             DSLNH_7d=DSLNHnmolmL3,                 
             SUM_7d=SUMnmolmL3,                    
             Sia_7d=SianmolmL3,                   
             Fuc_7d=FucnmolmL3,
             
             HMOSecretor_1m=HMOSecretor4,                  
             Diversity_1m=Diversity4,                   
             Evenness_1m=Evenness4,                     
             "2'FL_1m"=FL2nmolmL4,                   
             "3FL_1m"=FL3nmolmL4,                    
             LNnT_1m=LNnTnmolmL4,                  
             "3'SL_1m"=SL3nmolmL4,                    
             DFLac_1m=DFLacnmolmL4,                 
             "6'SL_1m"=SL6nmolmL4,                    
             LNT_1m=LNTnmolmL4,                  
             LNFPI_1m=LNFPInmolmL4,                  
             LNFPII_1m=LNFPIInmolmL4,                
             LNFPIII_1m=LNFPIIInmolmL4,                
             LSTb_1m=LSTbnmolmL4,                  
             LSTc_1m=LSTcnmolmL4,                   
             DFLNT_1m=DFLNTnmolmL4,                 
             LNH_1m=LNHnmolmL4,                    
             DSLNT_1m=DSLNTnmolmL4,                 
             FLNH_1m=FLNHnmolmL4,                   
             DFLNH_1m=DFLNHnmolmL4,                 
             FDSLNH_1m=FDSLNHnmolmL4,                 
             DSLNH_1m=DSLNHnmolmL4,                 
             SUM_1m=SUMnmolmL4,                    
             Sia_1m=SianmolmL4,                   
             Fuc_1m=FucnmolmL4,
             
             HMOSecretor_3m=HMOSecretor5,                  
             Diversity_3m=Diversity5,                   
             Evenness_3m=Evenness5,                     
             "2'FL_3m"=FL2nmolmL5,                   
             "3FL_3m"=FL3nmolmL5,                    
             LNnT_3m=LNnTnmolmL5,                  
             "3'SL_3m"=SL3nmolmL5,                    
             DFLac_3m=DFLacnmolmL5,                 
             "6'SL_3m"=SL6nmolmL5,                    
             LNT_3m=LNTnmolmL5,                  
             LNFPI_3m=LNFPInmolmL5,                  
             LNFPII_3m=LNFPIInmolmL5,                
             LNFPIII_3m=LNFPIIInmolmL5,                
             LSTb_3m=LSTbnmolmL5,                  
             LSTc_3m=LSTcnmolmL5,                   
             DFLNT_3m=DFLNTnmolmL5,                 
             LNH_3m=LNHnmolmL5,                    
             DSLNT_3m=DSLNTnmolmL5,                 
             FLNH_3m=FLNHnmolmL5,                   
             DFLNH_3m=DFLNHnmolmL5,                 
             FDSLNH_3m=FDSLNHnmolmL5,                 
             DSLNH_3m=DSLNHnmolmL5,                 
             SUM_3m=SUMnmolmL5,                    
             Sia_3m=SianmolmL5,                   
             Fuc_3m=FucnmolmL5)


##############################################
#### 1-FACTOR ANOVA + Bonferroni #############
##############################################

## PREPARAR...

tb2 = banco %>% select("record_id", 238:257, 583:602, 928:947) #dim = 148 x 60 (=20 x 3)
tb2 = melt(tb2, id="record_id")
headtail(tb2)
##      record_id variable value
## 1            1  2'FL_7d    NA
## 2            2  2'FL_7d    NA
## 3            3  2'FL_7d    NA
## 8878       146   SUM_3m    NA
## 8879       147   SUM_3m    NA
## 8880       148   SUM_3m    NA
tb2$onda=rep(c("w1","w2","w3"), each=2960)
tb2$onda=as.factor(tb2$onda)
headtail(tb2)
##      record_id variable value onda
## 1            1  2'FL_7d    NA   w1
## 2            2  2'FL_7d    NA   w1
## 3            3  2'FL_7d    NA   w1
## 8878       146   SUM_3m    NA   w3
## 8879       147   SUM_3m    NA   w3
## 8880       148   SUM_3m    NA   w3
tb2$variable = as.factor(sub("[_].*", "", tb2$variable)) # levels(tb2$variable)
headtail(tb2)
##      record_id variable value onda
## 1            1     2'FL    NA   w1
## 2            2     2'FL    NA   w1
## 3            3     2'FL    NA   w1
## 8878       146      SUM    NA   w3
## 8879       147      SUM    NA   w3
## 8880       148      SUM    NA   w3
## APONTAR...

mean_sd_w1 = tapply(tb2$value[tb2$onda=="w1"], tb2$variable[tb2$onda=="w1"], mean_sd, na_rm=T, show_n="never") 
mean_sd_w2 = tapply(tb2$value[tb2$onda=="w2"], tb2$variable[tb2$onda=="w2"], mean_sd, na_rm=T, show_n="never") 
mean_sd_w3 = tapply(tb2$value[tb2$onda=="w3"], tb2$variable[tb2$onda=="w3"], mean_sd, na_rm=T, show_n="never") 

knitr::kable(mean_sd_w1, format="pandoc", col.names=c("Mean (SD)"), caption = "Title of the table")
Title of the table
Mean (SD)
2’FL 4,575.30 \(\pm\) 2,394.27
3’SL 342.46 \(\pm\) 187.23
3FL 235.14 \(\pm\) 116.77
6’SL 350.21 \(\pm\) 224.24
DFLac 253.30 \(\pm\) 134.79
DFLNH 160.79 \(\pm\) 147.04
DFLNT 1,451.19 \(\pm\) 790.97
DSLNH 237.30 \(\pm\) 104.67
DSLNT 635.73 \(\pm\) 218.85
FDSLNH 110.29 \(\pm\) 102.04
FLNH 119.35 \(\pm\) 82.04
LNFPI 2,638.96 \(\pm\) 1,377.29
LNFPII 1,047.32 \(\pm\) 653.09
LNFPIII 99.20 \(\pm\) 50.33
LNH 88.89 \(\pm\) 93.16
LNnT 814.53 \(\pm\) 486.69
LNT 1,617.76 \(\pm\) 892.83
LSTb 120.78 \(\pm\) 108.50
LSTc 825.28 \(\pm\) 321.24
SUM 15,723.77 \(\pm\) 2,636.81
knitr::kable(mean_sd_w2, format="markdown", col.names=c("Mean (SD)"))
Mean (SD)
2’FL 5,001.34 \(\pm\) 2,487.45
3’SL 440.48 \(\pm\) 219.58
3FL 335.93 \(\pm\) 174.35
6’SL 578.32 \(\pm\) 227.09
DFLac 385.91 \(\pm\) 186.37
DFLNH 172.78 \(\pm\) 124.98
DFLNT 1,434.74 \(\pm\) 836.71
DSLNH 287.09 \(\pm\) 123.18
DSLNT 264.65 \(\pm\) 221.52
FDSLNH 283.94 \(\pm\) 220.80
FLNH 135.71 \(\pm\) 86.44
LNFPI 1,721.06 \(\pm\) 1,233.38
LNFPII 1,308.19 \(\pm\) 721.88
LNFPIII 77.10 \(\pm\) 39.09
LNH 108.42 \(\pm\) 78.93
LNnT 352.32 \(\pm\) 224.29
LNT 1,496.85 \(\pm\) 650.19
LSTb 123.09 \(\pm\) 49.69
LSTc 295.55 \(\pm\) 128.66
SUM 14,803.45 \(\pm\) 2,402.59
knitr::kable(mean_sd_w3, format="markdown", col.names=c("Mean (SD)"))
Mean (SD)
2’FL 5,937.33 \(\pm\) 3,257.14
3’SL 672.92 \(\pm\) 434.00
3FL 373.56 \(\pm\) 155.32
6’SL 344.50 \(\pm\) 131.90
DFLac 425.27 \(\pm\) 177.84
DFLNH 65.18 \(\pm\) 55.60
DFLNT 1,327.04 \(\pm\) 718.03
DSLNH 128.27 \(\pm\) 54.49
DSLNT 57.79 \(\pm\) 74.31
FDSLNH 355.06 \(\pm\) 259.80
FLNH 88.59 \(\pm\) 52.32
LNFPI 1,164.30 \(\pm\) 838.89
LNFPII 1,745.22 \(\pm\) 808.22
LNFPIII 52.00 \(\pm\) 24.67
LNH 70.60 \(\pm\) 40.95
LNnT 672.56 \(\pm\) 287.32
LNT 1,412.98 \(\pm\) 674.99
LSTb 95.00 \(\pm\) 38.70
LSTc 131.58 \(\pm\) 78.46
SUM 15,119.75 \(\pm\) 2,554.96
#by(tb2$value[tb2$onda=="w1"], tb2$variable[tb2$onda=="w1"], mean_sd, na_rm=T, show_n="never")

## FOGOOO !!!

levels(tb2$variable)
##  [1] "2'FL"    "3'SL"    "3FL"     "6'SL"    "DFLac"   "DFLNH"   "DFLNT"  
##  [8] "DSLNH"   "DSLNT"   "FDSLNH"  "FLNH"    "LNFPI"   "LNFPII"  "LNFPIII"
## [15] "LNH"     "LNnT"    "LNT"     "LSTb"    "LSTc"    "SUM"
model_1=aov(value[variable=="2'FL"] ~ onda[variable=="2'FL"], data=tb2)
out_1=LSD.test(model_1, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_1 ~ "onda"
## 
## LSD t Test for value[variable == "2'FL"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  6785050 
## 
## onda[variable == "2'FL"],  means and individual ( 95 %) CI
## 
##    value.variable.....2.FL..      std  r      LCL      UCL       Min
## w1                  4575.304 2394.269 43 3788.539 5362.068  8.873210
## w2                  5001.336 2487.450 55 4305.675 5696.997  1.473807
## w3                  5937.334 3257.144 21 4811.513 7063.155 47.255995
##          Max
## w1  9436.263
## w2 10619.831
## w3 12839.160
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL      UCL
## w1 - w2  -426.0320 1.0000         -1714.092 862.0281
## w1 - w3 -1362.0298 0.1557         -3046.583 322.5237
## w2 - w3  -935.9978 0.4918         -2559.132 687.1367
#out_1

model_2=aov(value[variable=="3'SL"] ~ onda[variable=="3'SL"], data=tb2)
out_2=LSD.test(model_2, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_2 ~ "onda"
## 
## LSD t Test for value[variable == "3'SL"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  67611.51 
## 
## onda[variable == "3'SL"],  means and individual ( 95 %) CI
## 
##    value.variable.....3.SL..      std  r      LCL      UCL       Min
## w1                  342.4587 187.2320 43 263.9210 420.9965  49.48814
## w2                  440.4754 219.5762 55 371.0319 509.9189 141.66936
## w3                  672.9190 433.9960 21 560.5353 785.3026 192.10786
##          Max
## w1  965.1158
## w2 1014.8000
## w3 1771.0216
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL        UCL
## w1 - w2  -98.01669 0.1998         -226.5957   30.56227
## w1 - w3 -330.46024 0.0000     *** -498.6186 -162.30185
## w2 - w3 -232.44355 0.0021      ** -394.4709  -70.41623
#out_2

model_3=aov(value[variable=="3FL"] ~ onda[variable=="3FL"], data=tb2)
out_3=LSD.test(model_3, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_3 ~ "onda"
## 
## LSD t Test for value[variable == "3FL"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  23246.63 
## 
## onda[variable == "3FL"],  means and individual ( 95 %) CI
## 
##    value.variable.....3FL..      std  r      LCL      UCL       Min
## w1                 235.1399 116.7747 43 189.0879 281.1918  15.47513
## w2                 335.9340 174.3458 55 295.2147 376.6534 102.52644
## w3                 373.5552 155.3181 21 307.6572 439.4533 145.13431
##          Max
## w1  531.6593
## w2 1090.3054
## w3  708.7105
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL       UCL
## w1 - w2  -100.7942 0.0046      ** -176.1887 -25.39970
## w1 - w3  -138.4154 0.0027      ** -237.0179 -39.81282
## w2 - w3   -37.6212 1.0000         -132.6287  57.38630
#out_3

model_4=aov(value[variable=="6'SL"] ~ onda[variable=="6'SL"], data=tb2)
out_4=LSD.test(model_4, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_4 ~ "onda"
## 
## LSD t Test for value[variable == "6'SL"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  45213.68 
## 
## onda[variable == "6'SL"],  means and individual ( 95 %) CI
## 
##    value.variable.....6.SL..      std  r      LCL      UCL       Min
## w1                  350.2109 224.2430 43 285.9861 414.4358  66.30064
## w2                  578.3153 227.0937 55 521.5274 635.1033 193.59157
## w3                  344.5038 131.9007 21 252.6012 436.4064 100.23206
##          Max
## w1 1253.9314
## w2 1168.9649
## w3  532.4109
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##          difference pvalue signif.       LCL       UCL
## w1 - w2 -228.104400  0e+00     *** -333.2508 -122.9580
## w1 - w3    5.707099  1e+00         -131.8057  143.2199
## w2 - w3  233.811499  1e-04     ***  101.3124  366.3106
#out_4

model_5=aov(value[variable=="DFLac"] ~ onda[variable=="DFLac"], data=tb2)
out_5=LSD.test(model_5, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_5 ~ "onda"
## 
## LSD t Test for value[variable == "DFLac"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  28200.08 
## 
## onda[variable == "DFLac"],  means and individual ( 95 %) CI
## 
##    value.variable.....DFLac..      std  r      LCL      UCL       Min
## w1                   253.2968 134.7861 43 202.5751 304.0184  8.383564
## w2                   385.9064 186.3712 55 341.0580 430.7547 24.976855
## w3                   425.2714 177.8392 21 352.6912 497.8515 10.772385
##         Max
## w1 601.4064
## w2 872.8305
## w3 759.9184
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL       UCL
## w1 - w2  -132.6096  5e-04     *** -215.6491 -49.57005
## w1 - w3  -171.9746  6e-04     *** -280.5755 -63.37366
## w2 - w3   -39.3650  1e+00         -144.0063  65.27630
#out_5

model_6=aov(value[variable=="DFLNH"] ~ onda[variable=="DFLNH"], data=tb2)
out_6=LSD.test(model_6, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_6 ~ "onda"
## 
## LSD t Test for value[variable == "DFLNH"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  15632.47 
## 
## onda[variable == "DFLNH"],  means and individual ( 95 %) CI
## 
##    value.variable.....DFLNH..       std  r       LCL      UCL       Min
## w1                  160.78542 147.03719 43 123.02107 198.5498  7.736311
## w2                  172.77919 124.98161 55 139.38776 206.1706  7.324023
## w3                   65.17786  55.60009 21  11.13895 119.2168 17.595097
##         Max
## w1 793.9381
## w2 606.3908
## w3 206.9968
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL       UCL
## w1 - w2  -11.99377 1.0000         -73.82008  49.83255
## w1 - w3   95.60756 0.0145       *  14.74974 176.46538
## w2 - w3  107.60132 0.0032      **  29.69159 185.51106
#out_6

model_7=aov(value[variable=="DFLNT"] ~ onda[variable=="DFLNT"], data=tb2)
out_7=LSD.test(model_7, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_7 ~ "onda"
## 
## LSD t Test for value[variable == "DFLNT"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  641314.1 
## 
## onda[variable == "DFLNT"],  means and individual ( 95 %) CI
## 
##    value.variable.....DFLNT..      std  r       LCL      UCL       Min
## w1                   1451.191 790.9748 43 1209.3087 1693.073 148.66005
## w2                   1434.740 836.7051 55 1220.8670 1648.614  13.26986
## w3                   1327.039 718.0333 21  980.9174 1673.160  64.93601
##         Max
## w1 3532.190
## w2 3379.887
## w3 2270.841
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL      UCL
## w1 - w2   16.45048      1         -379.5494 412.4503
## w1 - w3  124.15215      1         -393.7452 642.0495
## w2 - w3  107.70168      1         -391.3130 606.7164
#out_7

model_8=aov(value[variable=="DSLNH"] ~ onda[variable=="DSLNH"], data=tb2)
out_8=LSD.test(model_8, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_8 ~ "onda"
## 
## LSD t Test for value[variable == "DSLNH"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  11541.81 
## 
## onda[variable == "DSLNH"],  means and individual ( 95 %) CI
## 
##    value.variable.....DSLNH..       std  r       LCL      UCL      Min
## w1                   237.2962 104.67281 43 204.84685 269.7454 57.39176
## w2                   287.0922 123.17568 55 258.40041 315.7841 89.36123
## w3                   128.2675  54.48875 21  81.83412 174.7008 14.77203
##         Max
## w1 479.5164
## w2 556.1867
## w3 247.4448
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.        LCL        UCL
## w1 - w2  -49.79608 0.0739       . -102.92080   3.328639
## w1 - w3  109.02869 0.0007     ***   39.55101 178.506373
## w2 - w3  158.82477 0.0000     ***   91.88026 225.769290
#out_8

model_9=aov(value[variable=="DSLNT"] ~ onda[variable=="DSLNT"], data=tb2)
out_9=LSD.test(model_9, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_9 ~ "onda"
## 
## LSD t Test for value[variable == "DSLNT"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  41138.35 
## 
## onda[variable == "DSLNT"],  means and individual ( 95 %) CI
## 
##    value.variable.....DSLNT..       std  r       LCL      UCL       Min
## w1                  635.72806 218.85386 43 574.46599 696.9901 25.979887
## w2                  264.64741 221.52380 55 210.47919 318.8156  3.194394
## w3                   57.79312  74.31118 21 -29.86987 145.4561  7.785786
##          Max
## w1 1130.3700
## w2  736.7102
## w3  336.1953
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL      UCL
## w1 - w2   371.0806  0e+00     *** 270.78478 471.3765
## w1 - w3   577.9349  0e+00     *** 446.76579 709.1041
## w2 - w3   206.8543  4e-04     ***  80.46759 333.2410
#out_9

model_10=aov(value[variable=="FDSLNH"] ~ onda[variable=="FDSLNH"], data=tb2)
out_10=LSD.test(model_10, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_10 ~ "onda"
## 
## LSD t Test for value[variable == "FDSLNH"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  38102.92 
## 
## onda[variable == "FDSLNH"],  means and individual ( 95 %) CI
## 
##    value.variable.....FDSLNH..      std  r       LCL      UCL      Min
## w1                    110.2931 102.0421 43  51.33442 169.2517 20.18971
## w2                    283.9391 220.8017 55 231.80755 336.0706 37.33255
## w3                    355.0608 259.8006 21 270.69389 439.4276 87.96471
##          Max
## w1  478.1588
## w2  992.3354
## w3 1092.6768
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL        UCL
## w1 - w2  -173.6460 0.0001     *** -270.1708  -77.12124
## w1 - w3  -244.7677 0.0000     *** -371.0049 -118.53050
## w2 - w3   -71.1217 0.4745         -192.7563   50.51288
#out_10

model_11=aov(value[variable=="FLNH"] ~ onda[variable=="FLNH"], data=tb2)
out_11=LSD.test(model_11, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_11 ~ "onda"
## 
## LSD t Test for value[variable == "FLNH"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  6387.157 
## 
## onda[variable == "FLNH"],  means and individual ( 95 %) CI
## 
##    value.variable.....FLNH..      std  r       LCL      UCL      Min
## w1                  119.3451 82.03619 43  95.20598 143.4843 10.23279
## w2                  135.7129 86.44340 55 114.36893 157.0568 15.16136
## w3                   88.5876 52.31639 21  54.04566 123.1295 17.50512
##         Max
## w1 363.1713
## w2 408.1923
## w3 237.2466
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.        LCL      UCL
## w1 - w2  -16.36775 0.9494         -55.887434 23.15193
## w1 - w3   30.75754 0.4529         -20.927170 82.44225
## w2 - w3   47.12529 0.0699       .  -2.674985 96.92557
#out_11

model_12=aov(value[variable=="LNFPI"] ~ onda[variable=="LNFPI"], data=tb2)
out_12=LSD.test(model_12, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_12 ~ "onda"
## 
## LSD t Test for value[variable == "LNFPI"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  1516313 
## 
## onda[variable == "LNFPI"],  means and individual ( 95 %) CI
## 
##    value.variable.....LNFPI..       std  r       LCL      UCL       Min
## w1                   2638.964 1377.2946 43 2267.0327 3010.895  57.73936
## w2                   1721.061 1233.3797 55 1392.1979 2049.925  92.17351
## w3                   1164.302  838.8868 21  632.0865 1696.517 125.01014
##         Max
## w1 5000.461
## w2 5171.549
## w3 2965.465
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL      UCL
## w1 - w2   917.9027 0.0011      **  308.9914 1526.814
## w1 - w3  1474.6623 0.0000     ***  678.3147 2271.010
## w2 - w3   556.7596 0.2418         -210.5530 1324.072
#out_12

model_13=aov(value[variable=="LNFPII"] ~ onda[variable=="LNFPII"], data=tb2)
out_13=LSD.test(model_13, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_13 ~ "onda"
## 
## LSD t Test for value[variable == "LNFPII"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  509643.2 
## 
## onda[variable == "LNFPII"],  means and individual ( 95 %) CI
## 
##    value.variable.....LNFPII..      std  r       LCL      UCL      Min
## w1                    1047.319 653.0938 43  831.6926 1262.945 267.5823
## w2                    1308.185 721.8783 55 1117.5278 1498.843 328.8927
## w3                    1745.219 808.2214 21 1436.6687 2053.769 735.7669
##         Max
## w1 2921.199
## w2 3433.966
## w3 3627.576
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.        LCL         UCL
## w1 - w2  -260.8667 0.2257          -613.8813   92.147940
## w1 - w3  -697.9002 0.0011      ** -1159.5805 -236.219908
## w2 - w3  -437.0335 0.0559       .  -881.8809    7.813869
#out_13

model_14=aov(value[variable=="LNFPIII"] ~ onda[variable=="LNFPIII"], data=tb2)
out_14=LSD.test(model_14, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_14 ~ "onda"
## 
## LSD t Test for value[variable == "LNFPIII"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  1733.484 
## 
## onda[variable == "LNFPIII"],  means and individual ( 95 %) CI
## 
##    value.variable.....LNFPIII..      std  r      LCL       UCL      Min
## w1                     99.20448 50.32939 43 86.62889 111.78006 45.24402
## w2                     77.09704 39.09277 55 65.97765  88.21643 23.76174
## w3                     51.99749 24.66874 21 34.00245  69.99253 17.37602
##          Max
## w1 300.21614
## w2 248.89678
## w3  89.47754
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.        LCL      UCL
## w1 - w2   22.10744 0.0309       *  1.5191818 42.69569
## w1 - w3   47.20699 0.0001     *** 20.2812139 74.13276
## w2 - w3   25.09955 0.0614       . -0.8445058 51.04361
#out_14

model_15=aov(value[variable=="LNH"] ~ onda[variable=="LNH"], data=tb2)
out_15=LSD.test(model_15, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_15 ~ "onda"
## 
## LSD t Test for value[variable == "LNH"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  6331.485 
## 
## onda[variable == "LNH"],  means and individual ( 95 %) CI
## 
##    value.variable.....LNH..      std  r      LCL      UCL       Min
## w1                 88.89172 93.16362 43 64.85800 112.9254  9.598484
## w2                108.42429 78.92617 55 87.17356 129.6750 21.820551
## w3                 70.59994 40.94547 21 36.20887 104.9910 16.490096
##         Max
## w1 525.6633
## w2 428.2573
## w3 175.0604
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL      UCL
## w1 - w2  -19.53257 0.6909         -58.87964 19.81450
## w1 - w3   18.29178 1.0000         -33.16718 69.75075
## w2 - w3   37.82435 0.1992         -11.75841 87.40712
#out_15

model_16=aov(value[variable=="LNnT"] ~ onda[variable=="LNnT"], data=tb2)
out_16=LSD.test(model_16, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_16 ~ "onda"
## 
## LSD t Test for value[variable == "LNnT"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  123413.3 
## 
## onda[variable == "LNnT"],  means and individual ( 95 %) CI
## 
##    value.variable.....LNnT..      std  r      LCL      UCL       Min
## w1                  814.5270 486.6904 43 708.4187 920.6353 154.00172
## w2                  352.3151 224.2884 55 258.4937 446.1366  67.55773
## w3                  672.5642 287.3165 21 520.7286 824.3999 324.57999
##         Max
## w1 2048.859
## w2 1118.779
## w3 1498.809
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.        LCL       UCL
## w1 - w2   462.2119 0.0000     ***  288.49560  635.9282
## w1 - w3   141.9628 0.3953          -85.22723  369.1528
## w2 - w3  -320.2491 0.0017      ** -539.15574 -101.3425
#out_16

model_17=aov(value[variable=="LNT"] ~ onda[variable=="LNT"], data=tb2)
out_17=LSD.test(model_17, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_17 ~ "onda"
## 
## LSD t Test for value[variable == "LNT"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  563970.9 
## 
## onda[variable == "LNT"],  means and individual ( 95 %) CI
## 
##    value.variable.....LNT..      std  r      LCL      UCL      Min
## w1                 1617.760 892.8264 43 1390.932 1844.588 286.4739
## w2                 1496.848 650.1947 55 1296.286 1697.410 542.2827
## w3                 1412.980 674.9859 21 1088.401 1737.560 519.0140
##         Max
## w1 5211.305
## w2 3721.284
## w3 3167.202
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL      UCL
## w1 - w2  120.91225 1.0000         -250.4416 492.2661
## w1 - w3  204.77988 0.9235         -280.8849 690.4447
## w2 - w3   83.86763 1.0000         -384.0898 551.8250
#out_17

model_18=aov(value[variable=="LSTb"] ~ onda[variable=="LSTb"], data=tb2)
out_18=LSD.test(model_18, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_18 ~ "onda"
## 
## LSD t Test for value[variable == "LSTb"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  5669.823 
## 
## onda[variable == "LSTb"],  means and individual ( 95 %) CI
## 
##    value.variable.....LSTb..       std  r       LCL      UCL      Min
## w1                 120.77566 108.49924 43  98.03239 143.5189 37.49274
## w2                 123.09114  49.68634 55 102.98143 143.2009 38.22470
## w3                  94.99957  38.70427 21  62.45507 127.5441 31.99769
##         Max
## w1 760.9990
## w2 308.9165
## w3 167.3872
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL      UCL
## w1 - w2  -2.315477 1.0000         -39.54988 34.91892
## w1 - w3  25.776090 0.6032         -22.91988 74.47206
## w2 - w3  28.091567 0.4456         -18.82894 75.01208
#out_18

model_19=aov(value[variable=="LSTc"] ~ onda[variable=="LSTc"], data=tb2)
out_19=LSD.test(model_19, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_19 ~ "onda"
## 
## LSD t Test for value[variable == "LSTc"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  46129.97 
## 
## onda[variable == "LSTc"],  means and individual ( 95 %) CI
## 
##    value.variable.....LSTc..       std  r       LCL      UCL       Min
## w1                  825.2800 321.23687 43 760.40764 890.1524 201.83792
## w2                  295.5469 128.65637 55 238.18646 352.9074  79.63516
## w3                  131.5765  78.46418 21  38.74736 224.4057  23.57499
##          Max
## w1 1692.6517
## w2  668.2915
## w3  384.6444
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.       LCL      UCL
## w1 - w2   529.7331 0.0000     *** 423.52655 635.9396
## w1 - w3   693.7035 0.0000     *** 554.80426 832.6027
## w2 - w3   163.9704 0.0107       *  30.13546 297.8054
#out_19

model_20=aov(value[variable=="SUM"] ~ onda[variable=="SUM"], data=tb2)
out_20=LSD.test(model_20, "onda", p.adj="bonferroni", console=T, group=F)
## 
## Study: model_20 ~ "onda"
## 
## LSD t Test for value[variable == "SUM"] 
## P value adjustment method: bonferroni 
## 
## Mean Square Error:  6330049 
## 
## onda[variable == "SUM"],  means and individual ( 95 %) CI
## 
##    value.variable.....SUM..      std  r      LCL      UCL      Min
## w1                 15723.77 2636.812 43 14963.84 16483.70 9099.194
## w2                 14803.45 2402.593 55 14131.52 15475.38 8241.586
## w3                 15119.75 2554.962 21 14032.33 16207.16 8583.907
##         Max
## w1 18503.51
## w2 18243.79
## w3 19008.19
## 
## Alpha: 0.05 ; DF Error: 116
## Critical Value of t: 2.429194 
## 
## Comparison between treatments means
## 
##         difference pvalue signif.        LCL      UCL
## w1 - w2   920.3232 0.2248          -323.7992 2164.446
## w1 - w3   604.0234 1.0000         -1023.0674 2231.114
## w2 - w3  -316.2999 1.0000         -1884.0667 1251.467
#out_20


print(out_1$comparison)
##         difference pvalue signif.       LCL      UCL
## w1 - w2  -426.0320 1.0000         -1714.092 862.0281
## w1 - w3 -1362.0298 0.1557         -3046.583 322.5237
## w2 - w3  -935.9978 0.4918         -2559.132 687.1367
print(out_2$comparison)
##         difference pvalue signif.       LCL        UCL
## w1 - w2  -98.01669 0.1998         -226.5957   30.56227
## w1 - w3 -330.46024 0.0000     *** -498.6186 -162.30185
## w2 - w3 -232.44355 0.0021      ** -394.4709  -70.41623
print(out_3$comparison)
##         difference pvalue signif.       LCL       UCL
## w1 - w2  -100.7942 0.0046      ** -176.1887 -25.39970
## w1 - w3  -138.4154 0.0027      ** -237.0179 -39.81282
## w2 - w3   -37.6212 1.0000         -132.6287  57.38630
print(out_4$comparison)
##          difference pvalue signif.       LCL       UCL
## w1 - w2 -228.104400  0e+00     *** -333.2508 -122.9580
## w1 - w3    5.707099  1e+00         -131.8057  143.2199
## w2 - w3  233.811499  1e-04     ***  101.3124  366.3106
print(out_5$comparison)
##         difference pvalue signif.       LCL       UCL
## w1 - w2  -132.6096  5e-04     *** -215.6491 -49.57005
## w1 - w3  -171.9746  6e-04     *** -280.5755 -63.37366
## w2 - w3   -39.3650  1e+00         -144.0063  65.27630
print(out_6$comparison)
##         difference pvalue signif.       LCL       UCL
## w1 - w2  -11.99377 1.0000         -73.82008  49.83255
## w1 - w3   95.60756 0.0145       *  14.74974 176.46538
## w2 - w3  107.60132 0.0032      **  29.69159 185.51106
print(out_7$comparison)
##         difference pvalue signif.       LCL      UCL
## w1 - w2   16.45048      1         -379.5494 412.4503
## w1 - w3  124.15215      1         -393.7452 642.0495
## w2 - w3  107.70168      1         -391.3130 606.7164
print(out_8$comparison)
##         difference pvalue signif.        LCL        UCL
## w1 - w2  -49.79608 0.0739       . -102.92080   3.328639
## w1 - w3  109.02869 0.0007     ***   39.55101 178.506373
## w2 - w3  158.82477 0.0000     ***   91.88026 225.769290
print(out_9$comparison)
##         difference pvalue signif.       LCL      UCL
## w1 - w2   371.0806  0e+00     *** 270.78478 471.3765
## w1 - w3   577.9349  0e+00     *** 446.76579 709.1041
## w2 - w3   206.8543  4e-04     ***  80.46759 333.2410
print(out_10$comparison)
##         difference pvalue signif.       LCL        UCL
## w1 - w2  -173.6460 0.0001     *** -270.1708  -77.12124
## w1 - w3  -244.7677 0.0000     *** -371.0049 -118.53050
## w2 - w3   -71.1217 0.4745         -192.7563   50.51288
print(out_11$comparison)
##         difference pvalue signif.        LCL      UCL
## w1 - w2  -16.36775 0.9494         -55.887434 23.15193
## w1 - w3   30.75754 0.4529         -20.927170 82.44225
## w2 - w3   47.12529 0.0699       .  -2.674985 96.92557
print(out_12$comparison)
##         difference pvalue signif.       LCL      UCL
## w1 - w2   917.9027 0.0011      **  308.9914 1526.814
## w1 - w3  1474.6623 0.0000     ***  678.3147 2271.010
## w2 - w3   556.7596 0.2418         -210.5530 1324.072
print(out_13$comparison)
##         difference pvalue signif.        LCL         UCL
## w1 - w2  -260.8667 0.2257          -613.8813   92.147940
## w1 - w3  -697.9002 0.0011      ** -1159.5805 -236.219908
## w2 - w3  -437.0335 0.0559       .  -881.8809    7.813869
print(out_14$comparison)
##         difference pvalue signif.        LCL      UCL
## w1 - w2   22.10744 0.0309       *  1.5191818 42.69569
## w1 - w3   47.20699 0.0001     *** 20.2812139 74.13276
## w2 - w3   25.09955 0.0614       . -0.8445058 51.04361
print(out_15$comparison)
##         difference pvalue signif.       LCL      UCL
## w1 - w2  -19.53257 0.6909         -58.87964 19.81450
## w1 - w3   18.29178 1.0000         -33.16718 69.75075
## w2 - w3   37.82435 0.1992         -11.75841 87.40712
print(out_16$comparison)
##         difference pvalue signif.        LCL       UCL
## w1 - w2   462.2119 0.0000     ***  288.49560  635.9282
## w1 - w3   141.9628 0.3953          -85.22723  369.1528
## w2 - w3  -320.2491 0.0017      ** -539.15574 -101.3425
print(out_17$comparison)
##         difference pvalue signif.       LCL      UCL
## w1 - w2  120.91225 1.0000         -250.4416 492.2661
## w1 - w3  204.77988 0.9235         -280.8849 690.4447
## w2 - w3   83.86763 1.0000         -384.0898 551.8250
print(out_18$comparison)
##         difference pvalue signif.       LCL      UCL
## w1 - w2  -2.315477 1.0000         -39.54988 34.91892
## w1 - w3  25.776090 0.6032         -22.91988 74.47206
## w2 - w3  28.091567 0.4456         -18.82894 75.01208
print(out_19$comparison)
##         difference pvalue signif.       LCL      UCL
## w1 - w2   529.7331 0.0000     *** 423.52655 635.9396
## w1 - w3   693.7035 0.0000     *** 554.80426 832.6027
## w2 - w3   163.9704 0.0107       *  30.13546 297.8054
print(out_20$comparison)
##         difference pvalue signif.        LCL      UCL
## w1 - w2   920.3232 0.2248          -323.7992 2164.446
## w1 - w3   604.0234 1.0000         -1023.0674 2231.114
## w2 - w3  -316.2999 1.0000         -1884.0667 1251.467
#############################################################################################
###### Chi-square test with Benjamini and Hochberg false discovery-rate corrections #########
#############################################################################################


df3 = banco %>% select("record_id", "HMOSecretor", "HMOSecretor_1m", "HMOSecretor_3m")
headtail(df3)
##     record_id HMOSecretor HMOSecretor_1m HMOSecretor_3m
## 1           1          NA             NA             NA
## 2           2          NA              1             NA
## 3           3          NA             NA             NA
## 146       146          NA             NA             NA
## 147       147          NA             NA             NA
## 148       148          NA             NA             NA
df3 = melt(df3, id="record_id")
headtail(df3)
##     record_id       variable value
## 1           1    HMOSecretor    NA
## 2           2    HMOSecretor    NA
## 3           3    HMOSecretor    NA
## 442       146 HMOSecretor_3m    NA
## 443       147 HMOSecretor_3m    NA
## 444       148 HMOSecretor_3m    NA
tab = table(df3$variable, df3$value)
tab
##                 
##                   0  1
##   HMOSecretor     6 37
##   HMOSecretor_1m  6 49
##   HMOSecretor_3m  2 19
chi_sq = chisq.test(tab) # simulate.p.value = T
## Warning in chisq.test(tab): Chi-squared approximation may be incorrect
chi_sq
## Pearson's Chi-squared test with tab 
## X-squared = 0.3388, df = 2, p-value = 0.8442
chisqPostHoc(chi_sq, control = "BH")
## Warning in stats::chisq.test(tmp): Chi-squared approximation may be
## incorrect
## Warning in stats::chisq.test(tmp): Chi-squared approximation may be
## incorrect
## Adjusted p-values used the BH method.
##                          comparison  raw.p adj.p
## 1    HMOSecretor vs. HMOSecretor_1m 0.8841     1
## 2    HMOSecretor vs. HMOSecretor_3m 0.9198     1
## 3 HMOSecretor_1m vs. HMOSecretor_3m 1.0000     1
#chisqPostHoc(chi_sq)

#chisq.test(tab[1,])
#chisq.test(tab[2,])
#chisq.test(tab[3,])


#################################################################
########### correlogram with the significance test ##############
#################################################################


bd_w1 = banco[,c(8,29,104,164:173,235:259)]
str(bd_w1)
## 'data.frame':    148 obs. of  38 variables:
##  $ mother_age         : num  36 29.4 25.8 27.7 23.1 ...
##  $ parity             : int  NA NA NA NA NA 2 1 1 2 NA ...
##  $ schooling          : int  10 15 12 11 7 9 NA 11 5 12 ...
##  $ total_energy       : num  10287 5219 NA 3541 2811 ...
##  $ total_protein      : num  507 259 0 146 107 ...
##  $ total_fat          : num  434 203 0 129 102 ...
##  $ total_carbohydrates: num  1120 603 0 460 374 ...
##  $ total_fiber        : num  43.1 42.5 0 47.5 22.3 ...
##  $ saturated_fat      : num  251.3 90.1 0 50.4 49.3 ...
##  $ unsaturated_fat    : num  131.4 75 0 55.5 38.4 ...
##  $ calcium            : num  14545 4258 0 1845 2379 ...
##  $ iron               : num  20.7 18.9 0 17.5 7.4 ...
##  $ tryptophan         : num  1.845 2.042 0 1.275 0.703 ...
##  $ HMOSecretor        : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ Diversity_7d       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Evenness_7d        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ 2'FL_7d            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ 3FL_7d             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNnT_7d            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ 3'SL_7d            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DFLac_7d           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ 6'SL_7d            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNT_7d             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNFPI_7d           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNFPII_7d          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNFPIII_7d         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LSTb_7d            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LSTc_7d            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DFLNT_7d           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNH_7d             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DSLNT_7d           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ FLNH_7d            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DFLNH_7d           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ FDSLNH_7d          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DSLNH_7d           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ SUM_7d             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Sia_7d             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Fuc_7d             : num  NA NA NA NA NA NA NA NA NA NA ...
bd_w2 = banco[,c(8,29,104,164:173,580:604)]
str(bd_w2)
## 'data.frame':    148 obs. of  38 variables:
##  $ mother_age         : num  36 29.4 25.8 27.7 23.1 ...
##  $ parity             : int  NA NA NA NA NA 2 1 1 2 NA ...
##  $ schooling          : int  10 15 12 11 7 9 NA 11 5 12 ...
##  $ total_energy       : num  10287 5219 NA 3541 2811 ...
##  $ total_protein      : num  507 259 0 146 107 ...
##  $ total_fat          : num  434 203 0 129 102 ...
##  $ total_carbohydrates: num  1120 603 0 460 374 ...
##  $ total_fiber        : num  43.1 42.5 0 47.5 22.3 ...
##  $ saturated_fat      : num  251.3 90.1 0 50.4 49.3 ...
##  $ unsaturated_fat    : num  131.4 75 0 55.5 38.4 ...
##  $ calcium            : num  14545 4258 0 1845 2379 ...
##  $ iron               : num  20.7 18.9 0 17.5 7.4 ...
##  $ tryptophan         : num  1.845 2.042 0 1.275 0.703 ...
##  $ HMOSecretor_1m     : int  NA 1 NA NA NA 1 NA NA 1 NA ...
##  $ Diversity_1m       : num  NA 3.42 NA NA NA ...
##  $ Evenness_1m        : num  NA 0.18 NA NA NA ...
##  $ 2'FL_1m            : num  NA 8227 NA NA NA ...
##  $ 3FL_1m             : num  NA 290 NA NA NA ...
##  $ LNnT_1m            : num  NA 172 NA NA NA ...
##  $ 3'SL_1m            : num  NA 596 NA NA NA ...
##  $ DFLac_1m           : num  NA 373 NA NA NA ...
##  $ 6'SL_1m            : num  NA 374 NA NA NA ...
##  $ LNT_1m             : num  NA 602 NA NA NA ...
##  $ LNFPI_1m           : num  NA 2578 NA NA NA ...
##  $ LNFPII_1m          : num  NA 608 NA NA NA ...
##  $ LNFPIII_1m         : num  NA 27.1 NA NA NA ...
##  $ LSTb_1m            : num  NA 66.1 NA NA NA ...
##  $ LSTc_1m            : num  NA 235 NA NA NA ...
##  $ DFLNT_1m           : num  NA 1633 NA NA NA ...
##  $ LNH_1m             : num  NA 34.1 NA NA NA ...
##  $ DSLNT_1m           : num  NA 83.8 NA NA NA ...
##  $ FLNH_1m            : num  NA 56.7 NA NA NA ...
##  $ DFLNH_1m           : num  NA 201 NA NA NA ...
##  $ FDSLNH_1m          : num  NA 84.7 NA NA NA ...
##  $ DSLNH_1m           : num  NA 161 NA NA NA ...
##  $ SUM_1m             : num  NA 16401 NA NA NA ...
##  $ Sia_1m             : num  NA 1929 NA NA NA ...
##  $ Fuc_1m             : num  NA 16284 NA NA NA ...
bd_w3 = banco[,c(8,29,104,164:173,925:949)]
str(bd_w3)
## 'data.frame':    148 obs. of  38 variables:
##  $ mother_age         : num  36 29.4 25.8 27.7 23.1 ...
##  $ parity             : int  NA NA NA NA NA 2 1 1 2 NA ...
##  $ schooling          : int  10 15 12 11 7 9 NA 11 5 12 ...
##  $ total_energy       : num  10287 5219 NA 3541 2811 ...
##  $ total_protein      : num  507 259 0 146 107 ...
##  $ total_fat          : num  434 203 0 129 102 ...
##  $ total_carbohydrates: num  1120 603 0 460 374 ...
##  $ total_fiber        : num  43.1 42.5 0 47.5 22.3 ...
##  $ saturated_fat      : num  251.3 90.1 0 50.4 49.3 ...
##  $ unsaturated_fat    : num  131.4 75 0 55.5 38.4 ...
##  $ calcium            : num  14545 4258 0 1845 2379 ...
##  $ iron               : num  20.7 18.9 0 17.5 7.4 ...
##  $ tryptophan         : num  1.845 2.042 0 1.275 0.703 ...
##  $ HMOSecretor_3m     : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ Diversity_3m       : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Evenness_3m        : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ 2'FL_3m            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ 3FL_3m             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNnT_3m            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ 3'SL_3m            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DFLac_3m           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ 6'SL_3m            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNT_3m             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNFPI_3m           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNFPII_3m          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNFPIII_3m         : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LSTb_3m            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LSTc_3m            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DFLNT_3m           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ LNH_3m             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DSLNT_3m           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ FLNH_3m            : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DFLNH_3m           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ FDSLNH_3m          : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ DSLNH_3m           : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ SUM_3m             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Sia_3m             : num  NA NA NA NA NA NA NA NA NA NA ...
##  $ Fuc_3m             : num  NA NA NA NA NA NA NA NA NA NA ...
# colnames(bd_w1) = c()

res1 = cor.mtest(bd_w1, conf.level = .99, method="spearman",  exact=F, use = "pairwise.complete.obs")
res2 = cor.mtest(bd_w2, conf.level = .99, method="spearman",  exact=F, use = "pairwise.complete.obs")
res3 = cor.mtest(bd_w3, conf.level = .99, method="spearman",  exact=F, use = "pairwise.complete.obs")

corrplot(cor(bd_w1, 
             method = "spearman", use = "pairwise.complete.obs"), 
         method = "circle", type = "upper", diag = F, tl.col = "black", number.cex = .3,
         p.mat = res1$p, sig.level = 0.01)

corrplot(cor(bd_w2, 
             method = "spearman", use = "pairwise.complete.obs"),
         method = "circle", type = "upper", diag = F, tl.col = "black", number.cex = .3,
         p.mat = res2$p, sig.level = 0.01)

corrplot(cor(bd_w3, 
             method = "spearman", use = "pairwise.complete.obs"),
         method = "circle", type = "upper", diag = F, tl.col = "black", number.cex = .3,
         p.mat = res3$p, sig.level = 0.01)

## >> Exemplo de outra apresentação do corrplot


corrplot(cor(bd_w1, 
             method = "spearman", use = "pairwise.complete.obs"), 
         method = "circle", type = "upper", diag = F, tl.col = "black", number.cex = .3,
         p.mat = res1$p, sig.level = 0.01,
         insig = "blank") # leave blank on no significant coefficient

corrplot(cor(bd_w2, 
             method = "spearman", use = "pairwise.complete.obs"), 
         method = "circle", type = "upper", diag = F, tl.col = "black", number.cex = .3,
         p.mat = res1$p, sig.level = 0.01,
         insig = "blank") # leave blank on no significant coefficient

corrplot(cor(bd_w3, 
             method = "spearman", use = "pairwise.complete.obs"), 
         method = "circle", type = "upper", diag = F, tl.col = "black", number.cex = .3,
         p.mat = res1$p, sig.level = 0.01,
         insig = "blank") # leave blank on no significant coefficient

########################################
############## GGPLOTS #################
########################################


tb3 = banco %>% select("record_id", 238:256, 583:601, 928:946) # dim = 148 x 58 (=19 x 3)
tb3 = melt(tb3, id="record_id")
headtail(tb3)
##      record_id variable value
## 1            1  2'FL_7d    NA
## 2            2  2'FL_7d    NA
## 3            3  2'FL_7d    NA
## 8434       146 DSLNH_3m    NA
## 8435       147 DSLNH_3m    NA
## 8436       148 DSLNH_3m    NA
tb3$onda=rep(c("w1","w2","w3"), each=2812) # 19 vars x 148 ind
tb3$onda=as.factor(tb3$onda)
headtail(tb3)
##      record_id variable value onda
## 1            1  2'FL_7d    NA   w1
## 2            2  2'FL_7d    NA   w1
## 3            3  2'FL_7d    NA   w1
## 8434       146 DSLNH_3m    NA   w3
## 8435       147 DSLNH_3m    NA   w3
## 8436       148 DSLNH_3m    NA   w3
tb3$variable = as.factor(sub("[_].*", "", tb3$variable)) # levels(tb3$variable)
headtail(tb3)
##      record_id variable value onda
## 1            1     2'FL    NA   w1
## 2            2     2'FL    NA   w1
## 3            3     2'FL    NA   w1
## 8434       146    DSLNH    NA   w3
## 8435       147    DSLNH    NA   w3
## 8436       148    DSLNH    NA   w3
sum_hmo = Rmisc::summarySE(tb3, measurevar="value", groupvars=c("onda","variable"),
                                 na.rm = T)
headtail(sum_hmo)
##    onda variable  N      value         sd         se        ci
## 1    w1     2'FL 43 4575.30384 2394.26944 365.122666 736.84737
## 2    w1     3'SL 43  342.45873  187.23204  28.552619  57.62152
## 3    w1      3FL 43  235.13986  116.77472  17.807977  35.93795
## 55   w3      LNT 21 1412.98045  674.98590 147.293998 307.24990
## 56   w3     LSTb 21   94.99957   38.70427   8.445964  17.61797
## 57   w3     LSTc 21  131.57653   78.46418  17.122288  35.71647
# ABSOLUTE GGPLOT

library(RColorBrewer)

colourCount = length(unique(sum_hmo$variable))
getPalette = colorRampPalette(brewer.pal(12, "Paired")) # "Set3" "Accent" "Set1"

#dev.new()
ggplot(data=sum_hmo, aes(x=onda, y=value, group=variable, fill=variable)) + 
  geom_bar(stat="identity", position=position_stack(reverse=T)) +
  scale_fill_manual(values=getPalette(colourCount),
                    guide = guide_legend(reverse=T)) +
  labs(title="HMO profile by postpartum period",
       x="Postpartum period", 
       y="HMO concentration (nmol/mL)") +
  scale_x_discrete(labels=c("w1"="1-7 days","w2"="30-45 days","w3"="3 months")) + 
  theme_minimal() + 
  theme(panel.grid = element_blank(),
        legend.position="right",
        legend.title=element_blank(),
        text = element_text(size=13),
        axis.text=element_text(size = 13))

# RELATIVE GGPLOT

#dev.new()
ggplot(data=sum_hmo, aes(x=onda, y=value, group=variable, fill=variable)) + 
  geom_bar(stat="identity", position=position_fill(reverse = TRUE)) +
  scale_y_continuous(labels=scales::percent) +
  scale_fill_manual(values=getPalette(colourCount),
                    guide = guide_legend(reverse=T)) +
  labs(title="HMO profile by postpartum period",
       x="Postpartum period", 
       y="Relative HMO concentration (% of total)") +
  scale_x_discrete(labels=c("w1"="1-7 days","w2"="30-45 days","w3"="3 months")) + 
  theme_minimal() + 
  theme(panel.grid = element_blank(),
        legend.position="right",
        legend.title=element_blank(),
        text = element_text(size=13),
        axis.text=element_text(size = 13))

#############
#### FIM ####
#############


#require(graphics) # library(help = "graphics")
#dev.new()
#pairs(bd_w1[17:27]) # matrix of scatterplots
#pairs(bd_w1[28:36]) # matrix of scatterplots
#dev.off()

#rm(list=ls())
#q()