The goal of the assignment is to explore the NOAA Storm Database and explore the effects of severe weather events on both population and economy.The database covers the time period between 1950 and November 2011.
The following analysis investigates which types of severe weather events are most harmful on:
Information on the Data: Documentation
Download the raw data file and extract the data into a dataframe.Then convert to a data.table
library("data.table")
library("ggplot2")
fileUrl <- "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2"
download.file(fileUrl, destfile = paste0("E:/datascience/datasciencecoursera/Course5Assignment2", '/repdata%2Fdata%2FStormData.csv.bz2'))
stormDF <- read.csv("E:/datascience/datasciencecoursera/Course5Assignment2/repdata%2Fdata%2FStormData.csv.bz2")
# Converting data.frame to data.table
stormDT <- as.data.table(stormDF)
colnames(stormDT)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
Subset the dataset on the parameters of interest. Basically, we remove the columns we don’t need for clarity.
# Finding columns to remove
cols2Remove <- colnames(stormDT[, !c("EVTYPE"
, "FATALITIES"
, "INJURIES"
, "PROPDMG"
, "PROPDMGEXP"
, "CROPDMG"
, "CROPDMGEXP")])
# Removing columns
stormDT[, c(cols2Remove) := NULL]
# Only use data where fatalities or injuries occurred.
stormDT <- stormDT[(EVTYPE != "?" &
(INJURIES > 0 | FATALITIES > 0 | PROPDMG > 0 | CROPDMG > 0)), c("EVTYPE"
, "FATALITIES"
, "INJURIES"
, "PROPDMG"
, "PROPDMGEXP"
, "CROPDMG"
, "CROPDMGEXP") ]
Making the PROPDMGEXP and CROPDMGEXP columns cleaner so they can be used to calculate property and crop cost.
# Change all damage exponents to uppercase.
cols <- c("PROPDMGEXP", "CROPDMGEXP")
stormDT[, (cols) := c(lapply(.SD, toupper)), .SDcols = cols]
# Map property damage alphanumeric exponents to numeric values.
propDmgKey <- c("\"\"" = 10^0,
"-" = 10^0,
"+" = 10^0,
"0" = 10^0,
"1" = 10^1,
"2" = 10^2,
"3" = 10^3,
"4" = 10^4,
"5" = 10^5,
"6" = 10^6,
"7" = 10^7,
"8" = 10^8,
"9" = 10^9,
"H" = 10^2,
"K" = 10^3,
"M" = 10^6,
"B" = 10^9)
# Map crop damage alphanumeric exponents to numeric values
cropDmgKey <- c("\"\"" = 10^0,
"?" = 10^0,
"0" = 10^0,
"K" = 10^3,
"M" = 10^6,
"B" = 10^9)
stormDT[, PROPDMGEXP := propDmgKey[as.character(stormDT[,PROPDMGEXP])]]
stormDT[is.na(PROPDMGEXP), PROPDMGEXP := 10^0 ]
stormDT[, CROPDMGEXP := cropDmgKey[as.character(stormDT[,CROPDMGEXP])] ]
stormDT[is.na(CROPDMGEXP), CROPDMGEXP := 10^0 ]
stormDT <- stormDT[, .(EVTYPE, FATALITIES, INJURIES, PROPDMG, PROPDMGEXP, propCost = PROPDMG * PROPDMGEXP, CROPDMG, CROPDMGEXP, cropCost = CROPDMG * CROPDMGEXP)]
totalCostDT <- stormDT[, .(propCost = sum(propCost), cropCost = sum(cropCost), Total_Cost = sum(propCost) + sum(cropCost)), by = .(EVTYPE)]
totalCostDT <- totalCostDT[order(-Total_Cost), ]
totalCostDT <- totalCostDT[1:10, ]
head(totalCostDT, 5)
## EVTYPE propCost cropCost Total_Cost
## 1: FLOOD 144657709807 5661968450 150319678257
## 2: HURRICANE/TYPHOON 69305840000 2607872800 71913712800
## 3: TORNADO 56947380677 414953270 57362333947
## 4: STORM SURGE 43323536000 5000 43323541000
## 5: HAIL 15735267513 3025954473 18761221986
totalInjuriesDT <- stormDT[, .(FATALITIES = sum(FATALITIES), INJURIES = sum(INJURIES), totals = sum(FATALITIES) + sum(INJURIES)), by = .(EVTYPE)]
totalInjuriesDT <- totalInjuriesDT[order(-FATALITIES), ]
totalInjuriesDT <- totalInjuriesDT[1:10, ]
head(totalInjuriesDT, 5)
## EVTYPE FATALITIES INJURIES totals
## 1: TORNADO 5633 91346 96979
## 2: EXCESSIVE HEAT 1903 6525 8428
## 3: FLASH FLOOD 978 1777 2755
## 4: HEAT 937 2100 3037
## 5: LIGHTNING 816 5230 6046
Melting data.table so that it is easier to put in bar graph format
bad_stuff <- melt(totalInjuriesDT, id.vars="EVTYPE", variable.name = "bad_thing")
head(bad_stuff, 5)
## EVTYPE bad_thing value
## 1: TORNADO FATALITIES 5633
## 2: EXCESSIVE HEAT FATALITIES 1903
## 3: FLASH FLOOD FATALITIES 978
## 4: HEAT FATALITIES 937
## 5: LIGHTNING FATALITIES 816
# Create chart
healthChart <- ggplot(bad_stuff, aes(x=reorder(EVTYPE, -value), y=value))
# Plot data as bar chart
healthChart = healthChart + geom_bar(stat="identity", aes(fill=bad_thing), position="dodge")
# Format y-axis scale and set y-axis label
healthChart = healthChart + ylab("Frequency Count")
# Set x-axis label
healthChart = healthChart + xlab("Event Type")
# Rotate x-axis tick labels
healthChart = healthChart + theme(axis.text.x = element_text(angle=45, hjust=1))
# Set chart title and center it
healthChart = healthChart + ggtitle("Top 10 US Killers") + theme(plot.title = element_text(hjust = 0.5))
healthChart
Melting data.table so that it is easier to put in bar graph format
econ_consequences <- melt(totalCostDT, id.vars="EVTYPE", variable.name = "Damage_Type")
head(econ_consequences, 5)
## EVTYPE Damage_Type value
## 1: FLOOD propCost 144657709807
## 2: HURRICANE/TYPHOON propCost 69305840000
## 3: TORNADO propCost 56947380677
## 4: STORM SURGE propCost 43323536000
## 5: HAIL propCost 15735267513
# Create chart
econChart <- ggplot(econ_consequences, aes(x=reorder(EVTYPE, -value), y=value))
# Plot data as bar chart
econChart = econChart + geom_bar(stat="identity", aes(fill=Damage_Type), position="dodge")
# Format y-axis scale and set y-axis label
econChart = econChart + ylab("Cost (dollars)")
# Set x-axis label
econChart = econChart + xlab("Event Type")
# Rotate x-axis tick labels
econChart = econChart + theme(axis.text.x = element_text(angle=45, hjust=1))
# Set chart title and center it
econChart = econChart + ggtitle("Top 10 US Storm Events causing Economic Consequences") + theme(plot.title = element_text(hjust = 0.5))
econChart