CUNY MSDS DATA 605 WEEK 15

Library

library(tidyverse)
library(plotly)

Questions

  1. Find the equation of the regression line for the given points. Round any final values to the nearest hundredth, if necessary. ( 5.6, 8.8 ), ( 6.3, 12.4 ), ( 7, 14.8 ), ( 7.7, 18.2 ), ( 8.4, 20.8 )
data <- c(5.6, 8.8, 6.3, 12.4, 7, 14.8, 7.7, 18.2, 8.4, 20.8)

q1 <- matrix(data, ncol=2, byrow = T)
q1
##      [,1] [,2]
## [1,]  5.6  8.8
## [2,]  6.3 12.4
## [3,]  7.0 14.8
## [4,]  7.7 18.2
## [5,]  8.4 20.8
q1_df <- data.frame(q1)

model1 <- lm(q1_df$X2 ~., q1_df)
summary(model1)
## 
## Call:
## lm(formula = q1_df$X2 ~ ., data = q1_df)
## 
## Residuals:
##     1     2     3     4     5 
## -0.24  0.38 -0.20  0.22 -0.16 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -14.8000     1.0365  -14.28 0.000744 ***
## X1            4.2571     0.1466   29.04 8.97e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3246 on 3 degrees of freedom
## Multiple R-squared:  0.9965, Adjusted R-squared:  0.9953 
## F-statistic: 843.1 on 1 and 3 DF,  p-value: 8.971e-05
p <- ggplot(model1, aes(q1_df$X2, q1_df$X1))
p <- p + geom_point() +
  stat_smooth(method="lm")

p <- ggplotly(p)
p

\[y = 4.2571x + -14.800 \]

  1. Find all local maxima, local minima, and saddle points for the function given below. Write your answer(s) in the form ( x, y, z ). Separate multiple points with a comma.

\[f ( x, y ) = 24x - 6xy^2 - 8y^3\]

\[\frac{d f}{d x} = 24 - 6y^2\] \[\frac{df}{d y} = -12xy - 24y^2\]

\[\frac{d f}{d x} = 24-6y^2 = 0 -> 4-y^2=0\]

\[\frac{d f}{d y}= -12xy-24y^2 = 0 -> -xy-2y^2=0\]

\[for (4,-2) f(x,y) = 24*4-6*4*(-2)^2-8(-2)^3 = 64\]

\[for (4,-2)f(x,y) = 24*-4-(6*-4*(2)^2)-8(2)^3 = -64\] (-4,2) the saddle point

  1. A grocery store sells two brands of a product, the “house” brand and a “name” brand. The manager estimates that if she sells the “house” brand for x dollars and the “name” brand for y dollars, she will be able to sell 81−21x+17y units of the “house” brand and 40+11x−23y units of the “name” brand.

\[R (x, y) = x(81 - 21x + 17y) + y(40 + 11x - 23y)\] \[R (x, y) = -21x^2 + 81x + 28xy + 40y - 23y^2\]

x <- 2.3
y <- 4.1
-21 * x^2 + 81 * x + 28 * x * y + 40 * y - 23 * y^2
## [1] 116.62
  1. A company has a plant in Los Angeles and a plant in Denver. The firm is committed to produce a total of 96 units of a product each week. The total weekly cost is given by C(x, y)= 1/6x2+1/6y2+7x+25y+700, where x is the number of units produced in Los Angeles and y is the number of units produced in Denver. How many units should be produced in each plant to minimize the total weekly cost?

x + y = 96 so we substitute y = 96 − x

C(x, y) gives us x2 − 50 ∗ x + 4636

x = 75 which means that y = 21

  1. Evaluate the double integral on the given region. Write your answer in exact form without decimals

\[e^(8x+3y) = e^(8*x)+e^(3*y)\] \[(e^12-e^6)(e^32-e^16)/24\]

Nicholas Schettini

12/8/2018