This recipe will conduct an experiment on the ecdat dataset. The experiment will attempt to investigate the Prices of Personal Computers from the Computers dataset.
x <- read.csv("~/Desktop/Computers.csv")
x
## price speed hd ram screen ads trend
## 1 1499 -1 -1 -1 -1 -1 -1
## 2 1795 -1 -1 -1 -1 -1 -1
## 3 1595 -1 -1 -1 1 -1 -1
## 4 1849 -1 -1 1 -1 -1 -1
## 5 3295 -1 1 1 -1 -1 -1
## 6 3695 1 1 1 -1 -1 -1
## 7 1720 -1 -1 -1 -1 -1 -1
## 8 1995 1 -1 -1 -1 -1 -1
## 9 2225 1 -1 1 -1 -1 -1
## 10 2575 1 -1 -1 1 -1 -1
## 11 2195 -1 -1 1 1 -1 -1
## 12 2605 1 -1 1 -1 -1 -1
## 13 2045 1 -1 -1 -1 -1 -1
## 14 2295 -1 -1 1 -1 -1 -1
## 15 2699 1 -1 1 -1 -1 -1
## 16 2225 1 -1 -1 -1 -1 -1
## 17 1595 -1 -1 -1 -1 -1 -1
## 18 2325 -1 -1 -1 1 -1 -1
## 19 2095 -1 -1 -1 1 -1 -1
## 20 4395 1 1 1 -1 -1 -1
## 21 1695 -1 -1 -1 -1 -1 -1
## 22 2795 1 -1 -1 -1 -1 -1
## 23 2895 -1 1 1 -1 -1 -1
## 24 2875 1 -1 -1 1 -1 -1
## 25 4195 1 1 1 -1 -1 -1
## 26 1290 -1 -1 -1 -1 -1 -1
## 27 1975 -1 -1 -1 -1 -1 -1
## 28 3995 -1 1 1 -1 -1 -1
## 29 3095 -1 1 1 -1 -1 -1
## 30 3244 1 -1 1 -1 -1 -1
## 31 1920 -1 -1 -1 -1 -1 -1
## 32 1995 -1 -1 -1 -1 -1 -1
## 33 2595 -1 -1 1 1 -1 -1
## 34 2475 1 -1 -1 1 -1 -1
## 35 1999 -1 -1 -1 -1 -1 -1
## 36 2675 1 -1 -1 1 -1 -1
## 37 2325 1 -1 1 -1 -1 -1
## 38 3795 1 1 1 -1 -1 -1
## 39 2405 1 -1 1 -1 -1 -1
## 40 2425 1 -1 1 -1 -1 -1
## 41 2895 1 -1 1 -1 -1 -1
## 42 3895 1 1 1 1 -1 -1
## 43 2499 -1 -1 1 -1 -1 -1
## 44 2255 -1 -1 1 -1 -1 -1
## 45 3495 1 1 1 -1 -1 -1
## 46 2695 -1 -1 1 -1 -1 -1
## 47 2195 -1 -1 -1 -1 -1 -1
## 48 1749 -1 -1 -1 -1 -1 -1
## 49 2399 1 -1 -1 -1 -1 -1
## 50 1995 -1 -1 -1 -1 -1 -1
## 51 2499 -1 -1 -1 -1 -1 -1
## 52 2395 -1 -1 -1 -1 -1 -1
## 53 2995 1 1 1 1 -1 -1
## 54 2190 -1 -1 -1 -1 -1 -1
## 55 2199 -1 -1 1 -1 -1 -1
## 56 2125 1 -1 -1 -1 -1 -1
## 57 2045 1 -1 -1 -1 -1 -1
## 58 3075 1 -1 -1 1 -1 -1
## 59 2945 1 -1 1 1 -1 -1
## 60 1945 1 -1 -1 -1 -1 -1
## 61 3990 1 1 1 1 -1 -1
## 62 1795 -1 -1 -1 1 -1 -1
## 63 2495 -1 -1 1 1 -1 -1
## 64 2220 -1 -1 -1 -1 -1 -1
## 65 2195 1 -1 -1 -1 -1 -1
## 66 1495 -1 -1 -1 -1 -1 -1
## 67 2325 1 -1 -1 -1 -1 -1
## 68 1499 -1 -1 -1 -1 -1 -1
## 69 2199 -1 -1 -1 -1 -1 -1
## 70 3095 1 -1 1 -1 -1 -1
## 71 4020 1 1 1 -1 -1 -1
## 72 2725 -1 -1 -1 1 -1 -1
## 73 1695 -1 -1 -1 -1 -1 -1
## 74 3044 1 -1 1 -1 -1 -1
## 75 2999 1 -1 -1 -1 -1 -1
## 76 2844 -1 -1 1 -1 -1 -1
## 77 1975 -1 -1 1 -1 -1 -1
## 78 3220 1 1 1 1 -1 -1
## 79 2595 1 -1 -1 -1 -1 -1
## 80 1629 -1 -1 1 -1 -1 -1
## 81 3399 1 -1 -1 1 -1 -1
## 82 2495 -1 -1 1 -1 -1 -1
## 83 2990 1 -1 1 1 -1 -1
## 84 2720 -1 -1 1 1 -1 -1
## 85 2595 -1 -1 1 -1 -1 -1
## 86 1999 -1 -1 1 -1 -1 -1
## 87 2075 -1 -1 1 -1 -1 -1
## 88 1795 -1 -1 -1 -1 -1 -1
## 89 1395 -1 -1 -1 -1 -1 -1
## 90 3490 1 1 1 -1 -1 -1
## 91 2975 1 -1 -1 1 -1 -1
## 92 2145 1 -1 -1 -1 -1 -1
## 93 2420 -1 -1 1 1 -1 -1
## 94 2505 1 -1 1 -1 -1 -1
## 95 2995 1 1 1 -1 -1 -1
## 96 1495 -1 -1 -1 -1 -1 -1
## 97 1999 -1 -1 -1 -1 -1 -1
## 98 1920 -1 -1 -1 -1 -1 -1
## 99 2595 -1 1 1 -1 -1 -1
## 100 1695 -1 -1 -1 -1 -1 -1
## 101 1995 -1 -1 -1 -1 -1 -1
## 102 2195 -1 -1 1 -1 -1 -1
## 103 1795 1 -1 -1 -1 -1 -1
## 104 2999 1 1 -1 1 -1 -1
## 105 1395 -1 -1 -1 -1 -1 -1
## 106 2995 1 -1 1 1 -1 -1
## 107 2699 1 -1 1 -1 -1 -1
## 108 1720 -1 -1 -1 -1 -1 -1
## 109 2045 1 -1 -1 -1 -1 -1
## 110 2145 1 -1 -1 -1 -1 -1
## 111 2995 1 1 1 1 -1 -1
## 112 2095 -1 -1 -1 -1 -1 -1
## 113 3895 1 1 1 -1 -1 -1
## 114 2895 1 1 1 -1 -1 -1
## 115 1499 -1 -1 -1 -1 -1 -1
## 116 3165 1 -1 -1 1 -1 -1
## 117 2525 1 -1 -1 1 -1 -1
## 118 2325 1 -1 1 -1 -1 -1
## 119 2499 -1 -1 -1 -1 -1 -1
## 120 2799 -1 -1 -1 -1 -1 -1
## 121 1795 -1 -1 -1 -1 -1 -1
## 122 2199 -1 -1 -1 -1 -1 -1
## 123 2355 1 -1 1 -1 -1 -1
## 124 3220 1 1 1 1 -1 -1
## 125 2420 -1 -1 1 1 -1 -1
## 126 2544 -1 -1 1 -1 -1 -1
## 127 2945 1 -1 -1 1 -1 -1
## 128 2295 -1 -1 1 -1 -1 -1
## 129 1495 -1 -1 -1 -1 -1 -1
## 130 2065 1 -1 -1 -1 -1 -1
## 131 2295 1 -1 -1 -1 -1 -1
## 132 1799 -1 -1 -1 -1 -1 -1
## 133 2220 -1 -1 -1 -1 -1 -1
## 134 2075 1 -1 -1 -1 -1 -1
## 135 1749 -1 -1 -1 -1 -1 -1
## 136 2195 -1 -1 1 -1 -1 -1
## 137 2255 1 -1 1 -1 -1 -1
## 138 2395 -1 -1 -1 1 -1 -1
## 139 2720 -1 -1 1 1 -1 -1
## 140 2195 1 -1 -1 -1 -1 -1
## 141 2225 -1 -1 1 -1 -1 -1
## 142 4020 1 1 1 -1 -1 -1
## 143 2475 1 -1 1 -1 -1 -1
## 144 1975 1 -1 -1 -1 -1 -1
## 145 3995 1 1 1 -1 -1 -1
## 146 2595 1 -1 1 -1 -1 -1
## 147 2295 1 -1 -1 -1 -1 -1
## 148 2199 -1 -1 -1 -1 -1 -1
## 149 1975 -1 -1 1 -1 -1 -1
## 150 3895 1 1 1 1 -1 -1
## 151 2095 -1 -1 -1 1 -1 -1
## 152 2225 -1 -1 1 1 -1 -1
## 153 3599 1 1 1 -1 -1 -1
## 154 2075 -1 -1 1 -1 -1 -1
## 155 2499 -1 -1 1 -1 -1 -1
## 156 2575 1 -1 1 1 -1 -1
## 157 2999 1 -1 -1 -1 -1 -1
## 158 2195 -1 -1 1 1 -1 -1
## 159 3065 1 -1 -1 1 -1 -1
## 160 3399 1 -1 -1 1 -1 -1
## 161 1995 -1 -1 -1 -1 -1 -1
## 162 1595 -1 -1 -1 1 -1 -1
## 163 2645 1 -1 -1 1 -1 -1
## 164 2345 1 -1 1 -1 -1 -1
## 165 2795 -1 1 1 -1 -1 -1
## 166 1895 -1 -1 -1 -1 -1 -1
## 167 2495 1 -1 1 -1 -1 -1
## 168 2599 1 -1 -1 -1 -1 -1
## 169 1595 -1 -1 -1 -1 -1 -1
## 170 1999 -1 -1 1 -1 -1 -1
## 171 2425 1 -1 1 -1 -1 -1
## 172 2495 -1 -1 1 1 -1 -1
## 173 1795 -1 -1 -1 1 -1 -1
## 174 2744 1 -1 1 -1 -1 -1
## 175 3795 -1 1 1 -1 -1 -1
## 176 2745 1 -1 -1 1 -1 -1
## 177 2399 1 -1 -1 -1 -1 -1
## 178 2645 -1 -1 1 1 -1 -1
## 179 1945 -1 -1 -1 -1 -1 -1
## 180 1695 1 -1 -1 -1 -1 -1
## 181 2195 1 -1 -1 -1 -1 -1
## 182 2815 -1 -1 -1 1 -1 -1
## 183 1899 -1 -1 -1 -1 -1 -1
## 184 2644 1 -1 1 -1 -1 -1
## 185 3795 1 1 1 -1 -1 -1
## 186 2395 -1 -1 1 -1 -1 -1
## 187 1695 -1 -1 -1 -1 -1 -1
## 188 2575 1 -1 1 -1 -1 -1
## 189 2695 -1 1 1 -1 -1 -1
## 190 2999 1 -1 1 1 -1 -1
## 191 1899 -1 -1 -1 -1 -1 -1
## 192 2499 1 -1 -1 -1 -1 -1
## 193 1999 -1 -1 1 -1 -1 -1
## 194 2055 1 -1 -1 -1 -1 -1
## 195 2065 1 -1 -1 -1 -1 -1
## 196 2055 -1 -1 1 -1 -1 -1
## 197 2099 -1 -1 -1 -1 -1 -1
## 198 1995 -1 -1 -1 -1 -1 -1
## 199 2220 -1 -1 -1 -1 -1 -1
## 200 3220 1 1 1 1 -1 -1
## 201 3995 1 1 1 -1 -1 -1
## 202 2785 -1 -1 1 1 -1 -1
## 203 2475 1 -1 1 1 -1 -1
## 204 1499 -1 -1 -1 -1 -1 -1
## 205 1595 -1 -1 -1 -1 -1 -1
## 206 2099 1 -1 -1 -1 -1 -1
## 207 2885 1 -1 1 1 -1 -1
## 208 3795 -1 1 1 -1 -1 -1
## 209 2295 1 -1 -1 -1 -1 -1
## 210 3895 1 1 1 1 -1 -1
## 211 2395 -1 -1 1 -1 -1 -1
## 212 3135 1 -1 1 1 -1 -1
## 213 2420 -1 -1 1 1 -1 -1
## 214 2125 1 -1 -1 -1 -1 -1
## 215 2985 1 -1 1 1 -1 -1
## 216 1395 -1 -1 -1 -1 -1 -1
## 217 2295 -1 -1 1 -1 -1 -1
## 218 2095 -1 -1 -1 -1 -1 -1
## 219 2795 -1 1 1 -1 -1 -1
## 220 1945 -1 -1 -1 -1 -1 -1
## 221 2635 -1 -1 1 1 -1 -1
## 222 2695 1 -1 1 1 -1 -1
## 223 2199 1 -1 1 -1 -1 -1
## 224 3895 1 1 1 -1 -1 -1
## 225 2599 1 -1 1 -1 -1 -1
## 226 2745 1 -1 1 -1 -1 -1
## 227 1920 -1 -1 -1 -1 -1 -1
## 228 2895 1 1 1 -1 -1 -1
## 229 2199 -1 -1 -1 -1 -1 -1
## 230 2915 1 -1 1 1 -1 -1
## 231 1999 -1 -1 1 -1 -1 -1
## 232 2720 -1 -1 1 1 -1 -1
## 233 1999 -1 -1 -1 -1 -1 -1
## 234 2195 -1 -1 1 1 -1 -1
## 235 2195 -1 -1 1 -1 -1 -1
## 236 2295 1 -1 -1 -1 -1 -1
## 237 1595 -1 -1 -1 1 -1 -1
## 238 1695 -1 -1 -1 -1 -1 -1
## 239 1495 -1 -1 -1 -1 -1 -1
## 240 3795 1 1 1 -1 -1 -1
## 241 1699 -1 -1 -1 -1 -1 -1
## 242 1895 -1 -1 -1 -1 -1 -1
## 243 2335 1 -1 1 -1 -1 -1
## 244 2495 1 -1 1 -1 -1 -1
## 245 2575 1 -1 1 -1 -1 -1
## 246 2495 -1 -1 1 1 -1 -1
## 247 3299 1 -1 1 1 -1 -1
## 248 2699 1 -1 1 -1 -1 -1
## 249 1695 1 -1 -1 -1 -1 -1
## 250 2999 1 -1 -1 -1 -1 -1
## 251 2399 1 -1 1 -1 -1 -1
## 252 1499 -1 -1 -1 -1 -1 -1
## 253 2395 -1 -1 1 -1 -1 -1
## 254 1720 -1 -1 -1 -1 -1 -1
## 255 1495 -1 -1 -1 -1 -1 -1
## 256 2399 1 -1 -1 -1 -1 -1
## 257 3035 1 -1 1 1 -1 -1
## 258 2449 -1 -1 -1 -1 -1 -1
## 259 1775 -1 -1 -1 -1 -1 -1
## 260 2599 -1 -1 1 1 -1 -1
## 261 2995 1 1 1 1 -1 -1
## 262 2345 -1 -1 1 1 -1 -1
## 263 2535 -1 -1 1 1 -1 -1
## 264 2345 1 -1 1 -1 -1 -1
## 265 1899 1 -1 -1 -1 -1 -1
## 266 2195 1 -1 -1 -1 -1 -1
## 267 2645 1 -1 1 -1 -1 -1
## 268 2785 1 -1 1 1 -1 -1
## 269 2799 1 -1 1 1 -1 -1
## 270 2999 1 1 -1 1 -1 -1
## 271 2095 -1 -1 -1 1 -1 -1
## 272 4020 1 1 1 -1 -1 -1
## 273 2595 1 -1 1 1 -1 -1
## 274 2695 -1 1 1 -1 -1 -1
## 275 2195 -1 -1 1 1 -1 -1
## 276 2995 1 1 1 -1 -1 -1
## 277 2195 1 -1 -1 -1 -1 -1
## 278 2399 -1 -1 1 -1 -1 -1
## 279 2405 1 -1 1 -1 -1 -1
## 280 1795 1 -1 -1 -1 -1 -1
## 281 2225 -1 -1 1 -1 -1 -1
## 282 1995 -1 -1 -1 -1 -1 -1
## 283 2299 1 -1 -1 -1 -1 -1
## 284 1795 -1 -1 -1 1 -1 -1
## 285 2545 1 -1 1 1 -1 -1
## 286 2595 1 -1 1 -1 -1 -1
## 287 1399 -1 -1 -1 -1 -1 -1
## 288 2475 1 -1 1 -1 -1 -1
## 289 2595 -1 1 1 -1 -1 -1
## 290 1695 1 -1 -1 -1 -1 -1
## 291 3995 1 1 1 -1 -1 -1
## 292 2999 1 -1 -1 1 -1 -1
## 293 2495 1 -1 1 -1 -1 -1
## 294 2455 1 -1 1 -1 -1 -1
## 295 2299 1 -1 -1 -1 -1 -1
## 296 2690 -1 1 1 -1 -1 -1
## 297 2155 -1 -1 1 -1 -1 -1
## 298 2890 -1 1 1 -1 -1 -1
## 299 1899 -1 -1 -1 -1 -1 -1
## 300 1595 -1 -1 -1 -1 -1 -1
## 301 1990 -1 -1 -1 -1 -1 -1
## 302 1895 -1 -1 -1 -1 -1 -1
## 303 1895 -1 -1 -1 -1 -1 -1
## 304 2799 1 -1 1 1 -1 -1
## 305 2590 1 -1 1 -1 -1 -1
## 306 1499 -1 -1 -1 -1 -1 -1
## 307 2955 1 -1 1 1 -1 -1
## 308 2285 1 -1 1 -1 -1 -1
## 309 2475 1 -1 1 1 -1 -1
## 310 3795 -1 1 1 -1 -1 -1
## 311 1999 -1 -1 1 -1 -1 -1
## 312 2599 1 -1 1 -1 -1 -1
## 313 2895 1 1 1 -1 -1 -1
## 314 3895 1 1 1 -1 -1 -1
## 315 2695 1 -1 1 -1 -1 -1
## 316 1995 1 -1 -1 -1 -1 -1
## 317 2399 1 -1 -1 -1 -1 -1
## 318 2605 -1 -1 1 1 -1 -1
## 319 2335 1 -1 1 -1 -1 -1
## 320 2195 1 -1 -1 -1 -1 -1
## 321 2425 1 -1 1 1 -1 -1
## 322 2995 1 1 1 -1 -1 -1
## 323 2599 -1 -1 1 1 -1 -1
## 324 2390 -1 -1 1 -1 -1 -1
## 325 1690 -1 -1 -1 -1 -1 -1
## 326 1495 -1 -1 -1 -1 -1 -1
## 327 2395 -1 -1 1 -1 -1 -1
## 328 2099 -1 -1 -1 -1 -1 -1
## 329 3090 1 1 1 -1 -1 -1
## 330 2599 -1 -1 -1 1 -1 -1
## 331 1999 -1 -1 -1 -1 -1 -1
## 332 2195 1 -1 -1 -1 -1 -1
## 333 2190 -1 -1 -1 -1 -1 -1
## 334 2025 1 -1 -1 -1 -1 -1
## 335 1699 -1 -1 -1 -1 -1 -1
## 336 2790 -1 1 1 -1 -1 -1
## 337 1795 -1 -1 -1 -1 -1 -1
## 338 2990 1 1 1 -1 -1 -1
## 339 2905 1 -1 1 1 -1 -1
## 340 2825 -1 -1 1 1 -1 -1
## 341 2390 1 -1 -1 -1 -1 -1
## 342 2699 1 -1 1 -1 -1 -1
## 343 2995 1 1 1 1 -1 -1
## 344 1590 -1 -1 -1 -1 -1 -1
## 345 2345 -1 -1 1 1 -1 -1
## 346 2199 1 -1 1 -1 -1 -1
## 347 2290 1 -1 -1 -1 -1 -1
## 348 2595 1 -1 1 1 -1 -1
## 349 2515 -1 -1 1 1 -1 -1
## 350 2145 1 -1 -1 -1 -1 -1
## 351 2405 1 -1 1 -1 -1 -1
## 352 2525 1 -1 1 -1 -1 -1
## 353 2595 1 -1 1 1 -1 -1
## 354 2090 -1 -1 -1 -1 -1 -1
## 355 2075 1 -1 -1 -1 -1 -1
## 356 2799 1 -1 -1 1 -1 -1
## 357 3299 1 -1 1 1 -1 -1
## 358 2645 1 -1 1 1 -1 -1
## 359 3125 1 -1 1 1 -1 -1
## 360 2295 -1 -1 1 -1 -1 -1
## 361 1775 -1 -1 -1 -1 -1 -1
## 362 2095 -1 -1 -1 -1 -1 -1
## 363 2155 1 -1 1 -1 -1 -1
## 364 3075 1 -1 1 1 -1 -1
## 365 2815 1 -1 1 1 -1 -1
## 366 1599 -1 -1 -1 -1 -1 -1
## 367 2099 -1 -1 -1 -1 -1 -1
## 368 2645 1 -1 1 1 -1 -1
## 369 1795 1 -1 -1 -1 -1 -1
## 370 2035 -1 -1 1 -1 -1 -1
## 371 2490 -1 -1 1 -1 -1 -1
## 372 3225 1 -1 -1 1 -1 -1
## 373 2690 1 -1 1 -1 -1 -1
## 374 2195 -1 -1 1 -1 -1 -1
## 375 1890 1 -1 -1 -1 -1 -1
## 376 1995 -1 -1 -1 -1 -1 -1
## 377 2695 -1 1 1 -1 -1 -1
## 378 2595 -1 1 1 -1 -1 -1
## 379 1595 -1 -1 -1 -1 -1 -1
## 380 1490 -1 -1 -1 -1 -1 -1
## 381 2125 -1 -1 1 1 -1 -1
## 382 2399 1 -1 1 -1 -1 -1
## 383 2795 -1 1 1 -1 -1 -1
## 384 2290 -1 -1 1 -1 -1 -1
## 385 2395 -1 -1 1 -1 -1 -1
## 386 2399 -1 -1 1 -1 -1 -1
## 387 1790 1 -1 -1 -1 -1 -1
## 388 2099 1 -1 -1 -1 -1 -1
## 389 1395 -1 -1 -1 -1 -1 -1
## 390 1895 1 -1 -1 -1 -1 -1
## 391 2295 1 -1 -1 -1 -1 -1
## 392 2595 1 -1 1 -1 -1 -1
## 393 1899 1 -1 -1 -1 -1 -1
## 394 1399 -1 -1 -1 -1 -1 -1
## 395 2999 1 -1 -1 -1 -1 -1
## 396 2999 1 -1 1 1 -1 -1
## 397 2449 -1 -1 -1 -1 -1 -1
## 398 1795 -1 -1 -1 -1 -1 1
## 399 1899 -1 -1 -1 -1 -1 1
## 400 2395 -1 1 1 -1 -1 1
## 401 2399 1 1 1 -1 -1 1
## 402 1595 -1 -1 -1 -1 -1 1
## 403 2490 -1 1 1 -1 -1 1
## 404 2995 1 1 1 -1 -1 1
## 405 2890 -1 1 1 -1 -1 1
## 406 2190 -1 -1 -1 1 -1 1
## 407 2399 1 -1 1 -1 -1 1
## 408 2285 1 -1 1 -1 -1 1
## 409 2590 -1 1 1 1 -1 1
## 410 2795 -1 1 1 -1 -1 1
## 411 1495 -1 -1 -1 -1 -1 1
## 412 2075 1 -1 -1 -1 -1 1
## 413 2090 -1 -1 -1 1 -1 1
## 414 2195 -1 -1 1 1 -1 1
## 415 3999 1 1 1 1 -1 1
## 416 1699 -1 -1 -1 -1 -1 1
## 417 1995 -1 -1 1 -1 -1 1
## 418 1690 -1 -1 -1 -1 -1 1
## 419 3495 -1 1 1 -1 -1 1
## 420 2195 1 -1 -1 -1 -1 1
## 421 3090 1 1 1 -1 -1 1
## 422 2690 -1 1 1 -1 -1 1
## 423 1895 -1 -1 -1 -1 -1 1
## 424 2495 1 -1 1 1 -1 1
## 425 2405 1 -1 1 -1 -1 1
## 426 1595 -1 -1 -1 -1 -1 1
## 427 2890 -1 1 1 1 -1 1
## 428 2390 -1 1 1 -1 -1 1
## 429 1690 -1 -1 -1 1 -1 1
## 430 2295 -1 1 1 -1 -1 1
## 431 2790 -1 1 1 -1 -1 1
## 432 2695 -1 1 1 -1 -1 1
## 433 2595 -1 1 1 -1 -1 1
## 434 1995 -1 -1 -1 -1 -1 1
## 435 2049 -1 1 -1 -1 -1 1
## 436 1399 -1 -1 -1 -1 -1 1
## 437 2805 -1 -1 1 1 -1 1
## 438 2019 -1 -1 -1 -1 -1 1
## 439 3055 1 -1 1 1 -1 1
## 440 2990 1 1 1 -1 -1 1
## 441 2605 -1 -1 1 1 -1 1
## 442 2125 -1 -1 1 1 -1 1
## 443 1490 -1 -1 -1 -1 -1 1
## 444 1699 -1 -1 -1 -1 -1 1
## 445 2495 -1 1 1 -1 -1 1
## 446 2599 -1 -1 1 1 -1 1
## 447 2220 -1 -1 1 -1 -1 1
## 448 1590 -1 -1 -1 1 -1 1
## 449 1499 -1 -1 -1 -1 -1 1
## 450 2625 1 -1 1 1 -1 1
## 451 1395 -1 -1 -1 -1 -1 1
## 452 2395 -1 -1 1 -1 -1 1
## 453 2420 -1 -1 1 1 -1 1
## 454 2425 1 -1 1 1 -1 1
## 455 2515 -1 -1 1 1 -1 1
## 456 2375 1 -1 1 1 -1 1
## 457 3105 1 -1 1 1 -1 1
## 458 2390 1 -1 -1 1 -1 1
## 459 2905 1 -1 1 1 -1 1
## 460 2690 -1 1 1 1 -1 1
## 461 2695 1 -1 1 -1 -1 1
## 462 1790 1 -1 -1 -1 -1 1
## 463 3495 1 1 1 -1 -1 1
## 464 2790 -1 1 1 1 -1 1
## 465 1790 1 -1 -1 1 -1 1
## 466 1795 1 -1 -1 -1 -1 1
## 467 2995 1 1 1 1 -1 1
## 468 1995 1 -1 -1 -1 -1 1
## 469 2599 1 1 1 -1 -1 1
## 470 3720 1 1 1 -1 -1 1
## 471 2155 -1 -1 1 -1 -1 1
## 472 1599 -1 -1 -1 -1 -1 1
## 473 2525 1 -1 1 -1 -1 1
## 474 2299 -1 1 1 -1 -1 1
## 475 1895 -1 -1 -1 -1 -1 1
## 476 1490 -1 -1 -1 1 -1 1
## 477 2035 -1 -1 1 -1 -1 1
## 478 1720 -1 -1 -1 -1 -1 1
## 479 2595 1 -1 1 1 -1 1
## 480 2290 1 -1 -1 1 -1 1
## 481 2455 1 -1 1 1 -1 1
## 482 1695 1 -1 -1 -1 -1 1
## 483 2249 1 -1 -1 -1 -1 1
## 484 1999 1 -1 -1 -1 -1 1
## 485 2455 1 -1 1 -1 -1 1
## 486 2595 1 1 1 -1 -1 1
## 487 2859 1 -1 -1 1 -1 1
## 488 2599 1 1 -1 1 -1 1
## 489 2855 1 -1 1 1 -1 1
## 490 2790 1 1 1 -1 -1 1
## 491 3990 1 1 1 -1 -1 1
## 492 3595 1 1 1 -1 -1 1
## 493 2195 1 -1 -1 -1 -1 1
## 494 3599 1 1 1 -1 -1 1
## 495 2690 1 1 1 1 -1 1
## 496 1999 -1 -1 1 -1 -1 1
## 497 2990 1 1 1 1 -1 1
## 498 1890 1 -1 -1 -1 -1 1
## 499 2190 -1 -1 -1 -1 -1 1
## 500 2720 1 -1 1 1 -1 1
## 501 2145 1 -1 -1 -1 -1 1
## 502 2295 1 -1 -1 -1 -1 1
## 503 1990 -1 -1 -1 1 -1 1
## 504 2695 1 1 1 -1 -1 1
## 505 3149 1 -1 1 -1 -1 1
## 506 1775 -1 -1 -1 -1 -1 1
## 507 2490 -1 1 1 1 -1 1
## 508 3599 -1 1 1 1 -1 1
## 509 2690 1 1 1 -1 -1 1
## 510 3195 1 1 1 1 -1 1
## 511 3695 1 1 1 -1 -1 1
## 512 2645 1 -1 1 1 -1 1
## 513 3090 1 1 1 1 -1 1
## 514 1890 1 -1 -1 1 -1 1
## 515 1999 -1 -1 -1 -1 -1 1
## 516 2935 1 -1 1 1 -1 1
## 517 1990 -1 -1 -1 -1 -1 1
## 518 2290 1 -1 -1 -1 -1 1
## 519 2390 1 -1 -1 -1 -1 1
## 520 2025 1 -1 -1 -1 -1 1
## 521 2095 -1 -1 -1 -1 -1 1
## 522 2590 -1 1 1 -1 -1 1
## 523 1499 -1 -1 -1 -1 -1 1
## 524 2325 -1 -1 1 1 -1 1
## 525 2099 1 -1 -1 -1 -1 1
## 526 2999 1 -1 1 1 -1 1
## 527 2790 1 1 1 1 -1 1
## 528 1590 -1 -1 -1 -1 -1 1
## 529 2499 1 -1 -1 -1 -1 1
## 530 2575 1 -1 1 1 -1 1
## 531 2390 -1 1 1 1 -1 1
## 532 1495 -1 -1 -1 -1 -1 1
## 533 2895 1 1 1 -1 -1 1
## 534 2335 1 -1 1 -1 -1 1
## 535 2090 -1 -1 -1 -1 -1 1
## 536 2815 1 -1 1 1 -1 1
## 537 2195 1 -1 -1 -1 1 1
## 538 1899 -1 -1 -1 -1 1 1
## 539 3599 1 1 1 -1 1 1
## 540 2095 -1 -1 -1 -1 1 1
## 541 2690 -1 1 1 1 1 1
## 542 2795 1 -1 1 1 1 1
## 543 2799 -1 -1 -1 -1 1 1
## 544 2698 1 -1 1 -1 1 1
## 545 2390 -1 1 1 -1 1 1
## 546 2695 1 1 1 -1 1 1
## 547 2095 -1 -1 -1 -1 1 1
## 548 2599 1 1 1 1 1 1
## 549 1825 1 -1 -1 -1 1 1
## 550 1790 1 -1 -1 1 1 1
## 551 2720 1 1 1 -1 1 1
## 552 1295 -1 -1 -1 -1 1 1
## 553 2990 1 1 1 -1 1 1
## 554 1890 1 -1 -1 1 1 1
## 555 2595 -1 1 1 -1 1 1
## 556 1490 -1 -1 -1 -1 1 1
## 557 2075 1 -1 1 -1 1 1
## 558 3699 -1 1 1 1 1 1
## 559 2690 -1 1 1 -1 1 1
## 560 2245 1 -1 -1 1 1 1
## 561 3999 1 1 1 1 1 1
## 562 2195 1 -1 -1 -1 1 1
## 563 2999 1 -1 -1 -1 1 1
## 564 1895 -1 -1 1 -1 1 1
## 565 2295 1 -1 1 1 1 1
## 566 2190 -1 -1 -1 -1 1 1
## 567 1690 -1 -1 -1 -1 1 1
## 568 1390 -1 -1 -1 1 1 1
## 569 1890 -1 -1 -1 -1 1 1
## 570 2290 -1 1 1 -1 1 1
## 571 1720 -1 -1 -1 -1 1 1
## 572 2325 1 -1 1 1 1 1
## 573 1699 -1 -1 -1 -1 1 1
## 574 2045 1 -1 -1 1 1 1
## 575 2299 1 -1 -1 -1 1 1
## 576 2755 1 -1 1 1 1 1
## 577 2145 1 -1 -1 -1 1 1
## 578 3090 1 1 1 -1 1 1
## 579 2790 1 1 1 -1 1 1
## 580 2099 -1 -1 -1 -1 1 1
## 581 1998 1 -1 -1 -1 1 1
## 582 2590 -1 1 1 -1 1 1
## 583 3365 1 1 1 1 1 1
## 584 2545 1 -1 1 1 1 1
## 585 3265 -1 1 1 1 1 1
## 586 2250 1 -1 -1 -1 1 1
## 587 2890 -1 1 1 -1 1 1
## 588 1599 -1 -1 -1 -1 1 1
## 589 1825 -1 -1 -1 1 1 1
## 590 2125 1 -1 -1 1 1 1
## 591 2245 -1 -1 1 1 1 1
## 592 1945 -1 -1 -1 1 1 1
## 593 2890 -1 1 1 1 1 1
## 594 1599 1 -1 -1 -1 1 1
## 595 2295 1 -1 -1 -1 1 1
## 596 1520 -1 -1 -1 -1 1 1
## 597 2745 -1 1 1 -1 1 1
## 598 2899 1 1 1 1 1 1
## 599 2390 1 -1 -1 -1 1 1
## 600 1675 -1 -1 -1 -1 1 1
## 601 3149 1 -1 1 -1 1 1
## 602 2590 -1 1 1 -1 1 1
## 603 1999 1 -1 -1 -1 1 1
## 604 2590 -1 1 1 1 1 1
## 605 1449 -1 -1 -1 -1 1 1
## 606 1490 -1 -1 -1 1 1 1
## 607 2299 1 -1 1 -1 1 1
## 608 1595 -1 -1 -1 -1 1 1
## 609 2495 -1 -1 1 1 1 1
## 610 1890 1 -1 -1 -1 1 1
## 611 2995 1 1 1 -1 1 1
## 612 3609 1 1 -1 1 1 1
## 613 2790 1 1 1 1 1 1
## 614 2295 -1 1 1 -1 1 1
## 615 1799 -1 -1 -1 -1 1 1
## 616 3990 1 1 1 -1 1 1
## 617 2999 1 -1 -1 1 1 1
## 618 2275 -1 -1 1 1 1 1
## 619 2290 1 -1 -1 1 1 1
## 620 1499 -1 -1 -1 -1 1 1
## 621 2555 1 -1 1 1 1 1
## 622 2025 1 -1 -1 -1 1 1
## 623 2299 -1 1 1 -1 1 1
## 624 1975 -1 -1 1 -1 1 1
## 625 2109 -1 -1 -1 -1 1 1
## 626 3595 1 1 1 1 1 1
## 627 2595 1 1 1 1 1 1
## 628 2395 1 -1 -1 -1 1 1
## 629 1899 -1 -1 -1 -1 1 1
## 630 2120 -1 -1 1 -1 1 1
## 631 1790 1 -1 -1 -1 1 1
## 632 1899 -1 -1 -1 -1 1 1
## 633 1990 -1 -1 -1 -1 1 1
## 634 1399 -1 -1 -1 -1 1 1
## 635 1898 -1 -1 -1 -1 1 1
## 636 1725 -1 -1 -1 -1 1 1
## 637 2595 1 -1 1 1 1 1
## 638 1499 -1 -1 -1 -1 1 1
## 639 1990 -1 -1 -1 1 1 1
## 640 2595 1 1 1 -1 1 1
## 641 1395 -1 -1 -1 1 1 1
## 642 2675 -1 -1 1 1 1 1
## 643 1899 -1 -1 -1 -1 1 1
## 644 2990 1 1 1 1 1 1
## 645 1925 1 -1 -1 1 1 1
## 646 4098 -1 1 1 1 1 1
## 647 2895 1 1 1 -1 1 1
## 648 2495 1 1 1 -1 1 1
## 649 1995 -1 -1 1 1 1 1
## 650 1595 -1 -1 -1 1 1 1
## 651 2195 -1 1 1 -1 1 1
## 652 2399 1 1 1 -1 1 1
## 653 2390 -1 1 1 1 1 1
## 654 2690 1 1 1 -1 1 1
## 655 1690 -1 -1 -1 1 1 1
## 656 2398 -1 -1 1 -1 1 1
## 657 2775 1 -1 1 1 1 1
## 658 1395 -1 -1 -1 -1 1 1
## 659 2520 1 -1 1 1 1 1
## 660 2125 1 -1 1 1 1 1
## 661 4398 1 1 1 1 1 1
## 662 2290 1 -1 -1 -1 1 1
## 663 2489 1 -1 1 1 1 1
## 664 2190 -1 -1 -1 1 1 1
## 665 2599 -1 -1 -1 1 1 1
## 666 3789 1 1 1 1 1 1
## 667 2699 -1 1 1 1 1 1
## 668 2799 1 -1 -1 1 1 1
## 669 2499 1 -1 -1 -1 1 1
## 670 2049 -1 1 -1 -1 1 1
## 671 2575 1 -1 1 1 1 1
## 672 2999 1 1 1 1 1 1
## 673 3495 1 1 1 -1 1 1
## 674 2995 1 1 1 1 1 1
## 675 2275 1 -1 1 -1 1 1
## 676 2590 -1 1 1 1 1 1
## 677 2975 1 -1 1 1 1 1
## 678 1950 -1 -1 -1 -1 1 1
## 679 2599 1 1 1 -1 1 1
## 680 1695 1 -1 -1 -1 1 1
## 681 2455 -1 -1 1 1 1 1
## 682 1495 -1 -1 -1 -1 1 1
## 683 2290 -1 1 1 1 1 1
## 684 3720 1 1 1 -1 1 1
## 685 1795 1 -1 -1 -1 1 1
## 686 2495 -1 1 1 -1 1 1
## 687 3565 1 1 1 1 1 1
## 688 2845 1 1 1 -1 1 1
## 689 2025 -1 -1 1 1 1 1
## 690 3045 1 1 1 -1 1 1
## 691 2299 1 -1 -1 -1 1 1
## 692 2345 1 -1 1 1 1 1
## 693 2390 1 -1 -1 1 1 1
## 694 2795 -1 1 1 -1 1 1
## 695 1390 -1 -1 -1 -1 1 1
## 696 1749 -1 -1 -1 -1 1 1
## 697 2690 1 1 1 1 1 1
## 698 1579 -1 -1 -1 -1 1 1
## 699 3098 -1 1 1 1 1 1
## 700 1295 -1 -1 -1 -1 1 1
## 701 1945 1 -1 -1 -1 1 1
## 702 2099 -1 -1 -1 -1 1 1
## 703 1999 -1 -1 1 -1 1 1
## 704 3090 1 1 1 1 1 1
## 705 1890 -1 -1 -1 1 1 1
## 706 1895 -1 -1 -1 -1 1 1
## 707 3398 1 1 1 1 1 1
## 708 1845 -1 -1 -1 -1 1 1
## 709 1795 -1 -1 -1 -1 1 1
## 710 2050 1 -1 -1 -1 1 1
## 711 2495 -1 1 1 -1 1 1
## 712 2375 1 -1 1 1 1 1
## 713 1690 -1 -1 -1 1 1 1
## 714 3299 1 1 1 1 1 1
## 715 1995 1 -1 -1 -1 1 1
## 716 1495 -1 -1 -1 -1 1 1
## 717 2999 1 1 1 1 1 1
## 718 3599 -1 1 1 1 1 1
## 719 3295 1 1 1 -1 1 1
## 720 3999 1 1 1 1 1 1
## 721 3025 -1 1 1 -1 1 1
## 722 1890 -1 -1 -1 1 1 1
## 723 2648 1 -1 1 -1 1 1
## 724 2295 1 -1 -1 -1 1 1
## 725 2199 1 1 -1 -1 1 1
## 726 2090 1 -1 -1 -1 1 1
## 727 2075 -1 -1 1 1 1 1
## 728 2744 -1 1 1 -1 1 1
## 729 2425 -1 1 1 -1 1 1
## 730 1749 -1 -1 -1 -1 1 1
## 731 1899 -1 -1 -1 -1 1 1
## 732 1520 -1 -1 -1 -1 1 1
## 733 1795 -1 -1 1 -1 1 1
## 734 1879 1 -1 -1 1 1 1
## 735 1590 -1 -1 -1 1 1 1
## 736 1890 -1 -1 -1 -1 1 1
## 737 1720 -1 -1 -1 -1 1 1
## 738 1845 -1 -1 1 1 1 1
## 739 2495 -1 1 1 -1 1 1
## 740 3099 1 1 1 1 1 1
## 741 2990 1 1 1 -1 1 1
## 742 2144 1 -1 -1 -1 1 1
## 743 1890 -1 -1 -1 1 1 1
## 744 1975 -1 -1 1 -1 1 1
## 745 1945 -1 -1 -1 -1 1 1
## 746 4248 1 1 1 1 1 1
## 747 2244 -1 1 1 -1 1 1
## 748 2044 -1 -1 -1 -1 1 1
## 749 1690 -1 -1 -1 -1 1 1
## 750 2844 1 1 1 -1 1 1
## 751 1749 -1 -1 -1 -1 1 1
## 752 2395 -1 1 1 1 1 1
## 753 1890 -1 -1 -1 -1 1 1
## 754 2694 -1 1 1 -1 1 1
## 755 2465 -1 -1 1 1 1 1
## 756 1999 -1 -1 1 -1 1 1
## 757 1599 -1 -1 -1 -1 1 1
## 758 2745 1 -1 1 1 1 1
## 759 1595 -1 -1 -1 -1 1 1
## 760 1999 -1 -1 -1 -1 1 1
## 761 1939 1 -1 -1 -1 1 1
## 762 1590 -1 -1 -1 -1 1 1
## 763 1695 -1 -1 -1 -1 1 1
## 764 3048 -1 1 1 1 1 1
## 765 1599 -1 -1 -1 -1 1 1
## 766 2144 1 -1 -1 -1 1 1
## 767 2744 -1 1 1 -1 1 1
## 768 1399 -1 -1 -1 -1 1 1
## 769 2015 1 -1 -1 -1 1 1
## 770 2799 1 1 1 1 1 1
## 771 2095 -1 1 1 -1 1 1
## 772 2544 1 -1 -1 -1 1 1
## 773 3948 -1 1 1 1 1 1
## 774 2690 -1 1 1 1 1 1
## 775 2699 -1 1 1 1 1 1
## 776 2490 -1 1 1 -1 1 1
## 777 2244 -1 -1 -1 -1 1 1
## 778 1399 -1 -1 -1 -1 1 1
## 779 2795 -1 1 1 -1 1 1
## 780 3595 1 1 1 -1 1 1
## 781 2045 -1 -1 -1 1 1 1
## 782 2290 1 -1 -1 1 1 1
## 783 3090 1 1 1 1 1 1
## 784 2644 -1 1 1 -1 1 1
## 785 2348 -1 -1 1 -1 1 1
## 786 2120 -1 -1 1 -1 1 1
## 787 2494 1 -1 -1 -1 1 1
## 788 2394 -1 1 1 -1 1 1
## 789 1845 1 -1 -1 -1 1 1
## 790 3044 1 1 1 -1 1 1
## 791 2195 1 -1 -1 -1 1 1
## 792 2995 1 1 1 1 1 1
## 793 1829 -1 -1 -1 -1 1 1
## 794 2845 1 1 1 1 1 1
## 795 1395 -1 -1 -1 -1 1 1
## 796 3495 -1 1 1 -1 1 1
## 797 2890 -1 1 1 -1 1 1
## 798 2344 -1 -1 -1 -1 1 1
## 799 2944 -1 1 1 -1 1 1
## 800 2290 -1 1 1 1 1 1
## 801 2799 -1 -1 -1 -1 1 1
## 802 2895 1 1 1 -1 1 1
## 803 2599 1 -1 -1 -1 1 1
## 804 3499 1 1 1 1 1 1
## 805 1509 1 -1 -1 -1 1 1
## 806 2399 1 1 1 -1 1 1
## 807 2290 1 -1 -1 -1 1 1
## 808 2544 -1 1 1 -1 1 1
## 809 2295 1 -1 1 1 1 1
## 810 1579 -1 -1 -1 -1 1 1
## 811 2495 1 1 1 -1 1 1
## 812 1944 -1 -1 -1 -1 1 1
## 813 1769 1 -1 -1 -1 1 1
## 814 3094 1 1 1 -1 1 1
## 815 1849 -1 -1 -1 -1 1 1
## 816 1744 -1 -1 -1 -1 1 1
## 817 2744 1 1 1 -1 1 1
## 818 1848 -1 -1 -1 -1 1 1
## 819 1644 -1 -1 -1 -1 1 1
## 820 2344 1 -1 -1 -1 1 1
## 821 2694 1 1 1 -1 1 1
## 822 2495 1 1 1 -1 1 1
## 823 2945 1 -1 1 1 1 1
## 824 2395 1 1 1 1 1 1
## 825 2590 -1 1 1 1 1 1
## 826 1795 -1 -1 -1 -1 1 1
## 827 1559 1 -1 -1 -1 1 1
## 828 2444 1 -1 -1 -1 1 1
## 829 1794 -1 -1 -1 -1 1 1
## 830 3348 1 1 1 1 1 1
## 831 2999 1 1 1 1 1 1
## 832 2294 -1 -1 -1 -1 1 1
## 833 2095 -1 -1 -1 -1 1 1
## 834 1995 -1 -1 1 1 1 1
## 835 1769 -1 -1 -1 1 1 1
## 836 2059 1 -1 -1 -1 1 1
## 837 2990 1 1 1 1 1 1
## 838 2290 -1 1 1 -1 1 1
## 839 1299 -1 -1 -1 -1 1 1
## 840 2399 1 -1 1 1 1 1
## 841 3789 1 1 1 1 1 1
## 842 2325 1 -1 1 1 1 1
## 843 3495 1 1 1 -1 1 1
## 844 2644 -1 1 1 -1 1 1
## 845 2644 1 1 1 -1 1 1
## 846 1694 -1 -1 -1 -1 1 1
## 847 1990 -1 -1 -1 -1 1 1
## 848 2225 1 -1 -1 -1 1 1
## 849 1295 -1 -1 -1 -1 1 1
## 850 2144 -1 -1 -1 -1 1 1
## 851 1499 -1 -1 -1 -1 1 1
## 852 2294 -1 1 1 -1 1 1
## 853 3695 1 1 1 -1 1 1
## 854 2099 -1 -1 -1 -1 1 1
## 855 2794 -1 1 1 -1 1 1
## 856 2590 1 1 1 1 1 1
## 857 1795 -1 -1 -1 -1 1 1
## 858 1539 -1 -1 -1 -1 1 1
## 859 2090 1 -1 -1 1 1 1
## 860 2344 -1 1 1 -1 1 1
## 861 2195 -1 1 1 -1 1 1
## 862 1879 1 -1 -1 -1 1 1
## 863 1975 1 -1 -1 -1 1 1
## 864 2390 1 -1 -1 1 1 1
## 865 3720 1 1 1 -1 1 1
## 866 1895 1 -1 -1 -1 1 1
## 867 1999 1 -1 -1 1 1 1
## 868 2595 1 1 1 -1 1 1
## 869 2620 1 1 1 1 1 1
## 870 2344 -1 1 1 -1 1 1
## 871 1990 1 -1 -1 -1 1 1
## 872 2094 1 -1 -1 -1 1 1
## 873 1945 -1 1 1 1 1 1
## 874 2190 -1 -1 -1 1 1 1
## 875 2299 1 -1 -1 -1 1 1
## 876 2444 -1 1 1 -1 1 1
## 877 2175 1 -1 1 1 1 1
## 878 2044 -1 -1 -1 -1 1 1
## 879 2244 1 -1 -1 -1 1 1
## 880 2125 1 -1 1 1 1 1
## 881 2845 1 -1 1 -1 1 1
## 882 3899 1 1 1 1 1 1
## 883 1649 1 -1 -1 -1 1 1
## 884 2595 1 1 1 1 1 1
## 885 3144 1 1 1 -1 1 1
## 886 1999 -1 -1 -1 -1 1 1
## 887 2899 1 -1 -1 -1 1 1
## 888 3090 1 1 1 -1 1 1
## 889 2094 -1 -1 -1 -1 1 1
## 890 1895 -1 -1 -1 -1 1 1
## 891 2999 1 1 1 1 1 1
## 892 2994 -1 1 1 -1 1 1
## 893 1495 -1 -1 -1 -1 1 1
## 894 1395 -1 -1 -1 1 1 1
## 895 2675 1 1 1 1 1 1
## 896 2394 1 -1 -1 -1 1 1
## 897 2590 -1 1 1 -1 1 1
## 898 2690 -1 1 1 -1 1 1
## 899 1990 -1 -1 -1 1 1 1
## 900 2190 -1 1 1 1 1 1
## 901 3895 1 1 1 -1 1 1
## 902 2999 1 1 1 1 1 1
## 903 2890 -1 1 1 1 1 1
## 904 1799 -1 -1 -1 -1 1 1
## 905 2794 1 1 1 -1 1 1
## 906 1899 -1 -1 -1 -1 1 1
## 907 2190 -1 -1 -1 -1 1 1
## 908 1399 -1 -1 -1 -1 1 1
## 909 2844 -1 1 1 -1 1 1
## 910 1559 -1 -1 -1 -1 1 1
## 911 2995 1 1 1 -1 1 1
## 912 2325 1 -1 -1 1 1 1
## 913 1599 1 -1 -1 -1 1 1
## 914 2299 1 -1 1 -1 1 1
## 915 1865 -1 -1 -1 -1 1 1
## 916 1990 1 -1 -1 1 1 1
## 917 1994 -1 -1 -1 -1 1 1
## 918 2109 -1 -1 -1 -1 1 1
## 919 1948 1 -1 -1 -1 1 1
## 920 1575 -1 -1 -1 -1 1 1
## 921 2690 1 1 1 -1 1 1
## 922 1449 -1 -1 -1 -1 1 1
## 923 2690 1 1 1 1 1 1
## 924 1695 -1 -1 1 -1 1 1
## 925 2145 1 -1 -1 -1 1 1
## 926 2044 -1 -1 -1 -1 1 1
## 927 1895 -1 -1 1 1 1 1
## 928 2015 -1 -1 1 1 1 1
## 929 2490 -1 1 1 1 1 1
## 930 1844 -1 -1 -1 -1 1 1
## 931 1049 -1 -1 -1 -1 1 1
## 932 2595 -1 1 1 -1 1 1
## 933 2390 1 -1 -1 -1 1 1
## 934 1799 -1 -1 -1 -1 1 1
## 935 1744 -1 -1 -1 -1 1 1
## 936 2565 -1 1 1 1 1 1
## 937 2744 1 1 1 -1 1 1
## 938 2799 1 1 1 1 1 1
## 939 1994 -1 -1 -1 -1 1 1
## 940 1495 -1 -1 -1 -1 1 1
## 941 2045 -1 -1 1 1 1 1
## 942 3194 1 1 1 -1 1 1
## 943 1499 -1 -1 -1 -1 1 1
## 944 2194 1 -1 -1 -1 1 1
## 945 3609 1 1 -1 1 1 1
## 946 2190 -1 1 1 -1 1 1
## 947 1745 -1 -1 -1 -1 1 1
## 948 2590 1 1 1 -1 1 1
## 949 1639 1 -1 -1 -1 1 1
## 950 2044 1 -1 -1 -1 1 1
## 951 3244 1 1 1 -1 1 1
## 952 3595 1 1 1 1 1 1
## 953 1595 -1 -1 -1 1 1 1
## 954 2444 1 -1 -1 -1 1 1
## 955 3144 1 1 1 -1 1 1
## 956 2395 -1 1 1 -1 1 1
## 957 1944 -1 -1 -1 -1 1 1
## 958 2594 -1 1 1 -1 1 1
## 959 1895 -1 -1 1 -1 1 1
## 960 3044 -1 1 1 -1 1 1
## 961 2225 1 1 1 1 1 1
## 962 1495 -1 -1 -1 -1 1 1
## 963 2799 1 1 1 1 1 1
## 964 1544 -1 -1 -1 -1 1 1
## 965 2344 -1 1 1 -1 1 1
## 966 2794 -1 1 1 -1 1 1
## 967 1399 -1 -1 -1 -1 1 1
## 968 2295 1 -1 -1 -1 1 1
## 969 2195 1 -1 -1 -1 1 1
## 970 2594 1 1 1 -1 1 1
## 971 3299 1 1 1 1 1 1
## 972 2194 -1 1 1 -1 1 1
## 973 3499 1 1 1 1 1 1
## 974 2090 -1 -1 -1 -1 1 1
## 975 2695 1 1 -1 -1 1 1
## 976 2644 1 1 1 -1 1 1
## 977 1695 -1 -1 -1 -1 1 1
## 978 2095 1 -1 -1 -1 1 1
## 979 1594 -1 -1 -1 -1 1 1
## 980 1845 1 -1 -1 -1 1 1
## 981 2044 1 -1 -1 -1 1 1
## 982 4295 -1 1 1 -1 1 1
## 983 2795 -1 1 1 -1 1 1
## 984 2045 -1 -1 1 1 1 1
## 985 2544 -1 1 1 -1 1 1
## 986 2399 1 1 1 -1 1 1
## 987 2225 1 -1 -1 -1 1 1
## 988 1470 -1 -1 -1 -1 1 1
## 989 1575 -1 -1 -1 -1 1 1
## 990 2394 1 -1 -1 -1 1 1
## 991 1795 1 -1 -1 -1 1 1
## 992 1599 1 -1 -1 -1 1 1
## 993 1299 -1 -1 -1 -1 1 1
## 994 4494 -1 1 1 -1 1 1
## 995 2744 -1 1 1 -1 1 1
## 996 2444 -1 1 1 -1 1 1
## 997 2090 -1 1 1 1 1 1
## 998 2290 1 -1 -1 -1 1 1
## 999 2469 1 1 1 1 1 1
## 1000 1495 -1 -1 -1 -1 1 1
The data being examined has 1000 observations of 7 variables.
head(x)
## price speed hd ram screen ads trend
## 1 1499 -1 -1 -1 -1 -1 -1
## 2 1795 -1 -1 -1 -1 -1 -1
## 3 1595 -1 -1 -1 1 -1 -1
## 4 1849 -1 -1 1 -1 -1 -1
## 5 3295 -1 1 1 -1 -1 -1
## 6 3695 1 1 1 -1 -1 -1
tail(x)
## price speed hd ram screen ads trend
## 995 2744 -1 1 1 -1 1 1
## 996 2444 -1 1 1 -1 1 1
## 997 2090 -1 1 1 1 1 1
## 998 2290 1 -1 -1 -1 1 1
## 999 2469 1 1 1 1 1 1
## 1000 1495 -1 -1 -1 -1 1 1
summary(x)
## price speed hd ram
## Min. :1049 Min. :-1.000 Min. :-1.00 Min. :-1.000
## 1st Qu.:1975 1st Qu.:-1.000 1st Qu.:-1.00 1st Qu.:-1.000
## Median :2325 Median :-1.000 Median :-1.00 Median : 1.000
## Mean :2382 Mean :-0.028 Mean :-0.43 Mean : 0.046
## 3rd Qu.:2699 3rd Qu.: 1.000 3rd Qu.: 1.00 3rd Qu.: 1.000
## Max. :4494 Max. : 1.000 Max. : 1.00 Max. : 1.000
## screen ads trend
## Min. :-1.0 Min. :-1.000 Min. :-1.000
## 1st Qu.:-1.0 1st Qu.:-1.000 1st Qu.:-1.000
## Median :-1.0 Median :-1.000 Median : 1.000
## Mean :-0.4 Mean :-0.072 Mean : 0.206
## 3rd Qu.: 1.0 3rd Qu.: 1.000 3rd Qu.: 1.000
## Max. : 1.0 Max. : 1.000 Max. : 1.000
str(x)
## 'data.frame': 1000 obs. of 7 variables:
## $ price : int 1499 1795 1595 1849 3295 3695 1720 1995 2225 2575 ...
## $ speed : int -1 -1 -1 -1 -1 1 -1 1 1 1 ...
## $ hd : int -1 -1 -1 -1 1 1 -1 -1 -1 -1 ...
## $ ram : int -1 -1 -1 1 1 1 -1 -1 1 -1 ...
## $ screen: int -1 -1 1 -1 -1 -1 -1 -1 -1 1 ...
## $ ads : int -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
## $ trend : int -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ...
If a variable can take on any value between its minimum value and its maximum value, it is called a continuous variable; otherwise, it is called a discrete variable. The continuous variable in this dataset is price. ### Response variables A response variable is defined as the outcome of a study. It is a variable you would be interested in predicting or forecasting. It is often called a dependent variable or predicted variable. In this instance, a response variable is price. ### The Data: How is it organized and what does it look like? The data is organized initially into a 7 column table: The columns are titled as follows: price, speed, hd, ram, screen, ads, trend. Data in the columns are binary integers.The integers were assigned a 1 if it was greater than the column average and a -1 if the cell was less than the column average.
require(FrF2)
## Loading required package: FrF2
## Loading required package: DoE.base
## Loading required package: grid
## Loading required package: conf.design
##
## Attaching package: 'DoE.base'
##
## The following objects are masked from 'package:stats':
##
## aov, lm
##
## The following object is masked from 'package:graphics':
##
## plot.design
This data comes from a cross-section from 1993-1995. Since this is the only information available in regards to background information about the data collection, it is entirely possible that this data might not be completely randomized or the experiment had a completely randomized design. # 2. (Experimental) Design ### How will the experiment be organized and conducted to test the hypothesis? In order to conduct this experiment, I will conduct an analysis of covariance (ANOVA). After ANOVA has been performed, resampling methods will be implemented to determine their effect on the outcome of the ANOVA test. In this experimental data analysis I will use a fractional factorial design to select 32 out of the total 64 experimental runs to perform data analysis on. I will do this using the R package “FrF2”. Before that I will perform data analysis on the full factorial design to compare to the results of the fractional factorial design.
### What is the rationale for this design? This dataframe in this recipe contains a single factor with multiple levels. Therefore, an ANOVA is the appropriate test to be performed. The resampling techniques performed are conducted due to the fact that ANOVA makes the assumption that all data is normally distributed. While it is possible for this distribution to occur, rarely is any data completely normal. ### Randomize: What is the Randomization Scheme? The experiment was based on observations and therefore was not randomized. ### Replicate: Are there replicates and/or repeated measures? There are no replicates, but repeated measures do occur between the factors and levels. ### Block: Did you use blocking in the design? No blocking was performed in this design. # 3. Statistical Analysis ##Exploratory Data Analysis: Graphics and Decriptive Summary First I must define all six factors as factors up for analysis.
x$speed=as.factor(x$speed)
x$hd=as.factor(x$hd)
x$ram=as.factor(x$ram)
x$screen=as.factor(x$screen)
x$ads=as.factor(x$ads)
x$trend=as.factor(x$trend)
Next, I create boxplots to attempt to identify any patterns in the data.
par(mfrow=c(3,2))
plot(x$price~x$speed, xlab="Clock Speed (MHz)", ylab="Price ($)")
plot(x$price~x$hd, xlab="Size of hard drive in MB", ylab="Price ($)")
plot(x$price~x$ram, xlab="Size of Ram in MB", ylab="Price ($)")
plot(x$price~x$screen, xlab="Size of Screen (inches)", ylab="Price ($)")
plot(x$price~x$ads, xlab="Number of price listings for each month", ylab="Price ($)")
plot(x$price~x$trend, xlab="Time trend from Jan 1993 - Nov 1995", ylab="Price ($)")
##ANOVA Testing An analysis of variance (ANOVA) will be used to determine the statistical significance between the individual pricing means. If the null hypothesis is accepted, it can be assumed that there is no variation in price due to the variation of factors. If the null hypothesis is rejected, it can be assumed that the variation of price can be attributed to the variation of factors.
modelx = lm(price~speed+hd+ram+screen+ads+trend, data=x)
anova(modelx)
## Analysis of Variance Table
##
## Response: price
## Df Sum Sq Mean Sq F value Pr(>F)
## speed 1 6.64e+07 6.64e+07 535.2 < 2e-16 ***
## hd 1 1.22e+08 1.22e+08 987.1 < 2e-16 ***
## ram 1 3.03e+07 3.03e+07 244.1 < 2e-16 ***
## screen 1 4.80e+06 4.80e+06 38.7 7.3e-10 ***
## ads 1 7.47e+06 7.47e+06 60.2 2.1e-14 ***
## trend 1 3.41e+06 3.41e+06 27.5 2.0e-07 ***
## Residuals 993 1.23e+08 1.24e+05
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
The results of the ANOVA show that in the full factorial experiment all factors have statistically insignificant effects on the resulting material strength that can likely be attributed to something other than randomization. Thus we reject the null hypothesis which states that a factor does not have an effect on the response variable for those factors. Furthermore we fail to reject this null hypothesis for the factors. ##Fractional Factorial Design The next step is to construct a matrix for a 2^(6-1) experimental design, which equates to one half (32/64) fractional factorial experimental design. I am most interested in observing the main and interaction effects of this factor.
Design2=FrF2(32,nfactors=6, estimable=formula("~speed+hd+ram+screen+ads+trend+screen:(speed+hd+ram+screen+ads+trend)"),factor.names=c("speed", "hd", "ram", "screen", "ads", "trend"), res4=TRUE, clear=FALSE)
Design2
## speed hd ram screen ads trend
## 1 1 -1 -1 -1 1 -1
## 2 -1 -1 -1 1 -1 1
## 3 1 1 1 1 1 1
## 4 1 1 1 -1 1 -1
## 5 1 -1 1 1 -1 1
## 6 1 1 -1 -1 1 1
## 7 -1 -1 1 1 -1 -1
## 8 1 -1 -1 -1 -1 1
## 9 -1 -1 1 1 1 1
## 10 -1 1 -1 -1 1 -1
## 11 1 1 -1 1 -1 1
## 12 -1 1 -1 1 -1 -1
## 13 1 -1 -1 1 1 1
## 14 -1 -1 -1 -1 1 1
## 15 -1 -1 1 -1 1 -1
## 16 -1 1 -1 -1 -1 1
## 17 -1 1 1 -1 1 1
## 18 1 1 1 -1 -1 1
## 19 -1 1 1 1 1 -1
## 20 1 -1 1 1 1 -1
## 21 -1 -1 -1 1 1 -1
## 22 1 -1 1 -1 -1 -1
## 23 -1 -1 -1 -1 -1 -1
## 24 1 1 1 1 -1 -1
## 25 -1 -1 1 -1 -1 1
## 26 1 -1 -1 1 -1 -1
## 27 -1 1 -1 1 1 1
## 28 1 1 -1 1 1 -1
## 29 -1 1 1 1 -1 1
## 30 1 1 -1 -1 -1 -1
## 31 -1 1 1 -1 -1 -1
## 32 1 -1 1 -1 1 1
## class=design, type= FrF2.estimable
aliasprint(Design2)
## $legend
## [1] A=speed B=hd C=ram D=screen E=ads F=trend
##
## [[2]]
## [1] no aliasing among main effects and 2fis
Next I create a brand new dataset which only uses the selected experimental runs from the fractional factorial design that I created previously.
Observations=merge(Design2,x,by=c("speed", "hd", "ram", "screen", "ads", "trend"), all=FALSE)
print(Observations)
## speed hd ram screen ads trend price
## 1 -1 -1 -1 -1 -1 -1 1945
## 2 -1 -1 -1 -1 -1 -1 1595
## 3 -1 -1 -1 -1 -1 -1 1595
## 4 -1 -1 -1 -1 -1 -1 1495
## 5 -1 -1 -1 -1 -1 -1 1395
## 6 -1 -1 -1 -1 -1 -1 1999
## 7 -1 -1 -1 -1 -1 -1 1895
## 8 -1 -1 -1 -1 -1 -1 1920
## 9 -1 -1 -1 -1 -1 -1 1499
## 10 -1 -1 -1 -1 -1 -1 2799
## 11 -1 -1 -1 -1 -1 -1 2190
## 12 -1 -1 -1 -1 -1 -1 2095
## 13 -1 -1 -1 -1 -1 -1 1495
## 14 -1 -1 -1 -1 -1 -1 1595
## 15 -1 -1 -1 -1 -1 -1 1499
## 16 -1 -1 -1 -1 -1 -1 2099
## 17 -1 -1 -1 -1 -1 -1 1749
## 18 -1 -1 -1 -1 -1 -1 2199
## 19 -1 -1 -1 -1 -1 -1 1395
## 20 -1 -1 -1 -1 -1 -1 2220
## 21 -1 -1 -1 -1 -1 -1 1995
## 22 -1 -1 -1 -1 -1 -1 1699
## 23 -1 -1 -1 -1 -1 -1 2099
## 24 -1 -1 -1 -1 -1 -1 1749
## 25 -1 -1 -1 -1 -1 -1 1499
## 26 -1 -1 -1 -1 -1 -1 2449
## 27 -1 -1 -1 -1 -1 -1 1699
## 28 -1 -1 -1 -1 -1 -1 2449
## 29 -1 -1 -1 -1 -1 -1 1995
## 30 -1 -1 -1 -1 -1 -1 1695
## 31 -1 -1 -1 -1 -1 -1 1895
## 32 -1 -1 -1 -1 -1 -1 2220
## 33 -1 -1 -1 -1 -1 -1 2190
## 34 -1 -1 -1 -1 -1 -1 2499
## 35 -1 -1 -1 -1 -1 -1 1720
## 36 -1 -1 -1 -1 -1 -1 1720
## 37 -1 -1 -1 -1 -1 -1 1975
## 38 -1 -1 -1 -1 -1 -1 1999
## 39 -1 -1 -1 -1 -1 -1 1899
## 40 -1 -1 -1 -1 -1 -1 1775
## 41 -1 -1 -1 -1 -1 -1 1945
## 42 -1 -1 -1 -1 -1 -1 1695
## 43 -1 -1 -1 -1 -1 -1 1895
## 44 -1 -1 -1 -1 -1 -1 1595
## 45 -1 -1 -1 -1 -1 -1 1695
## 46 -1 -1 -1 -1 -1 -1 1995
## 47 -1 -1 -1 -1 -1 -1 2220
## 48 -1 -1 -1 -1 -1 -1 2499
## 49 -1 -1 -1 -1 -1 -1 1775
## 50 -1 -1 -1 -1 -1 -1 1795
## 51 -1 -1 -1 -1 -1 -1 1895
## 52 -1 -1 -1 -1 -1 -1 1795
## 53 -1 -1 -1 -1 -1 -1 1599
## 54 -1 -1 -1 -1 -1 -1 1899
## 55 -1 -1 -1 -1 -1 -1 2195
## 56 -1 -1 -1 -1 -1 -1 1995
## 57 -1 -1 -1 -1 -1 -1 1990
## 58 -1 -1 -1 -1 -1 -1 1795
## 59 -1 -1 -1 -1 -1 -1 1899
## 60 -1 -1 -1 -1 -1 -1 1495
## 61 -1 -1 -1 -1 -1 -1 1995
## 62 -1 -1 -1 -1 -1 -1 2395
## 63 -1 -1 -1 -1 -1 -1 1290
## 64 -1 -1 -1 -1 -1 -1 1995
## 65 -1 -1 -1 -1 -1 -1 1795
## 66 -1 -1 -1 -1 -1 -1 1495
## 67 -1 -1 -1 -1 -1 -1 2095
## 68 -1 -1 -1 -1 -1 -1 1490
## 69 -1 -1 -1 -1 -1 -1 1399
## 70 -1 -1 -1 -1 -1 -1 2090
## 71 -1 -1 -1 -1 -1 -1 1399
## 72 -1 -1 -1 -1 -1 -1 1999
## 73 -1 -1 -1 -1 -1 -1 1499
## 74 -1 -1 -1 -1 -1 -1 1499
## 75 -1 -1 -1 -1 -1 -1 1495
## 76 -1 -1 -1 -1 -1 -1 1799
## 77 -1 -1 -1 -1 -1 -1 1395
## 78 -1 -1 -1 -1 -1 -1 2199
## 79 -1 -1 -1 -1 -1 -1 2199
## 80 -1 -1 -1 -1 -1 -1 1690
## 81 -1 -1 -1 -1 -1 -1 1999
## 82 -1 -1 -1 -1 -1 -1 1920
## 83 -1 -1 -1 -1 -1 -1 2099
## 84 -1 -1 -1 -1 -1 -1 2199
## 85 -1 -1 -1 -1 -1 -1 1720
## 86 -1 -1 -1 -1 -1 -1 1495
## 87 -1 -1 -1 -1 -1 -1 1695
## 88 -1 -1 -1 -1 -1 -1 1920
## 89 -1 -1 -1 -1 -1 -1 1395
## 90 -1 -1 -1 -1 -1 -1 1995
## 91 -1 -1 -1 -1 -1 -1 2095
## 92 -1 -1 -1 -1 -1 -1 1499
## 93 -1 -1 -1 -1 -1 -1 1595
## 94 -1 -1 -1 -1 -1 -1 1590
## 95 -1 -1 -1 -1 -1 -1 1695
## 96 -1 -1 -1 -1 1 1 1994
## 97 -1 -1 -1 -1 1 1 1295
## 98 -1 -1 -1 -1 1 1 1399
## 99 -1 -1 -1 -1 1 1 1575
## 100 -1 -1 -1 -1 1 1 1579
## 101 -1 -1 -1 -1 1 1 1395
## 102 -1 -1 -1 -1 1 1 1699
## 103 -1 -1 -1 -1 1 1 1449
## 104 -1 -1 -1 -1 1 1 1849
## 105 -1 -1 -1 -1 1 1 1799
## 106 -1 -1 -1 -1 1 1 1644
## 107 -1 -1 -1 -1 1 1 1495
## 108 -1 -1 -1 -1 1 1 1990
## 109 -1 -1 -1 -1 1 1 1990
## 110 -1 -1 -1 -1 1 1 1890
## 111 -1 -1 -1 -1 1 1 1720
## 112 -1 -1 -1 -1 1 1 1749
## 113 -1 -1 -1 -1 1 1 1520
## 114 -1 -1 -1 -1 1 1 1694
## 115 -1 -1 -1 -1 1 1 1720
## 116 -1 -1 -1 -1 1 1 1579
## 117 -1 -1 -1 -1 1 1 1848
## 118 -1 -1 -1 -1 1 1 1399
## 119 -1 -1 -1 -1 1 1 2144
## 120 -1 -1 -1 -1 1 1 1950
## 121 -1 -1 -1 -1 1 1 2095
## 122 -1 -1 -1 -1 1 1 1595
## 123 -1 -1 -1 -1 1 1 2090
## 124 -1 -1 -1 -1 1 1 1895
## 125 -1 -1 -1 -1 1 1 1795
## 126 -1 -1 -1 -1 1 1 1795
## 127 -1 -1 -1 -1 1 1 1899
## 128 -1 -1 -1 -1 1 1 1749
## 129 -1 -1 -1 -1 1 1 1899
## 130 -1 -1 -1 -1 1 1 1295
## 131 -1 -1 -1 -1 1 1 1865
## 132 -1 -1 -1 -1 1 1 1399
## 133 -1 -1 -1 -1 1 1 1049
## 134 -1 -1 -1 -1 1 1 1520
## 135 -1 -1 -1 -1 1 1 1599
## 136 -1 -1 -1 -1 1 1 1490
## 137 -1 -1 -1 -1 1 1 1999
## 138 -1 -1 -1 -1 1 1 1695
## 139 -1 -1 -1 -1 1 1 1599
## 140 -1 -1 -1 -1 1 1 1690
## 141 -1 -1 -1 -1 1 1 1695
## 142 -1 -1 -1 -1 1 1 1599
## 143 -1 -1 -1 -1 1 1 1399
## 144 -1 -1 -1 -1 1 1 2044
## 145 -1 -1 -1 -1 1 1 1495
## 146 -1 -1 -1 -1 1 1 1690
## 147 -1 -1 -1 -1 1 1 1844
## 148 -1 -1 -1 -1 1 1 1895
## 149 -1 -1 -1 -1 1 1 1499
## 150 -1 -1 -1 -1 1 1 1944
## 151 -1 -1 -1 -1 1 1 2109
## 152 -1 -1 -1 -1 1 1 1744
## 153 -1 -1 -1 -1 1 1 1495
## 154 -1 -1 -1 -1 1 1 2244
## 155 -1 -1 -1 -1 1 1 1749
## 156 -1 -1 -1 -1 1 1 1399
## 157 -1 -1 -1 -1 1 1 1594
## 158 -1 -1 -1 -1 1 1 1829
## 159 -1 -1 -1 -1 1 1 1499
## 160 -1 -1 -1 -1 1 1 2099
## 161 -1 -1 -1 -1 1 1 1499
## 162 -1 -1 -1 -1 1 1 1799
## 163 -1 -1 -1 -1 1 1 1745
## 164 -1 -1 -1 -1 1 1 1299
## 165 -1 -1 -1 -1 1 1 2099
## 166 -1 -1 -1 -1 1 1 2095
## 167 -1 -1 -1 -1 1 1 1559
## 168 -1 -1 -1 -1 1 1 1795
## 169 -1 -1 -1 -1 1 1 2294
## 170 -1 -1 -1 -1 1 1 1890
## 171 -1 -1 -1 -1 1 1 1744
## 172 -1 -1 -1 -1 1 1 1994
## 173 -1 -1 -1 -1 1 1 2094
## 174 -1 -1 -1 -1 1 1 1725
## 175 -1 -1 -1 -1 1 1 2109
## 176 -1 -1 -1 -1 1 1 2044
## 177 -1 -1 -1 -1 1 1 1899
## 178 -1 -1 -1 -1 1 1 1470
## 179 -1 -1 -1 -1 1 1 1799
## 180 -1 -1 -1 -1 1 1 1544
## 181 -1 -1 -1 -1 1 1 1590
## 182 -1 -1 -1 -1 1 1 1899
## 183 -1 -1 -1 -1 1 1 1999
## 184 -1 -1 -1 -1 1 1 1899
## 185 -1 -1 -1 -1 1 1 2095
## 186 -1 -1 -1 -1 1 1 1295
## 187 -1 -1 -1 -1 1 1 2190
## 188 -1 -1 -1 -1 1 1 1395
## 189 -1 -1 -1 -1 1 1 1495
## 190 -1 -1 -1 -1 1 1 2799
## 191 -1 -1 -1 -1 1 1 2190
## 192 -1 -1 -1 -1 1 1 1499
## 193 -1 -1 -1 -1 1 1 1575
## 194 -1 -1 -1 -1 1 1 1845
## 195 -1 -1 -1 -1 1 1 1390
## 196 -1 -1 -1 -1 1 1 1539
## 197 -1 -1 -1 -1 1 1 1945
## 198 -1 -1 -1 -1 1 1 2799
## 199 -1 -1 -1 -1 1 1 1898
## 200 -1 -1 -1 -1 1 1 2099
## 201 -1 -1 -1 -1 1 1 1299
## 202 -1 -1 -1 -1 1 1 2344
## 203 -1 -1 -1 -1 1 1 1675
## 204 -1 -1 -1 -1 1 1 1495
## 205 -1 -1 -1 -1 1 1 1890
## 206 -1 -1 -1 -1 1 1 1495
## 207 -1 -1 -1 -1 1 1 1899
## 208 -1 -1 -1 -1 1 1 1794
## 209 -1 -1 -1 -1 1 1 2044
## 210 -1 -1 -1 -1 1 1 1449
## 211 -1 -1 -1 -1 1 1 1944
## 212 -1 -1 -1 -1 1 1 1595
## 213 -1 -1 -1 1 -1 1 2190
## 214 -1 -1 -1 1 -1 1 1690
## 215 -1 -1 -1 1 -1 1 1990
## 216 -1 -1 -1 1 -1 1 1490
## 217 -1 -1 -1 1 -1 1 2090
## 218 -1 -1 -1 1 -1 1 1590
## 219 -1 -1 1 -1 -1 1 2035
## 220 -1 -1 1 -1 -1 1 1999
## 221 -1 -1 1 -1 -1 1 2220
## 222 -1 -1 1 -1 -1 1 2155
## 223 -1 -1 1 -1 -1 1 2395
## 224 -1 -1 1 -1 -1 1 1995
## 225 -1 -1 1 1 -1 -1 2345
## 226 -1 -1 1 1 -1 -1 2495
## 227 -1 -1 1 1 -1 -1 2720
## 228 -1 -1 1 1 -1 -1 2599
## 229 -1 -1 1 1 -1 -1 2495
## 230 -1 -1 1 1 -1 -1 2420
## 231 -1 -1 1 1 -1 -1 2785
## 232 -1 -1 1 1 -1 -1 2605
## 233 -1 -1 1 1 -1 -1 2125
## 234 -1 -1 1 1 -1 -1 2825
## 235 -1 -1 1 1 -1 -1 2420
## 236 -1 -1 1 1 -1 -1 2515
## 237 -1 -1 1 1 -1 -1 2420
## 238 -1 -1 1 1 -1 -1 2345
## 239 -1 -1 1 1 -1 -1 2720
## 240 -1 -1 1 1 -1 -1 2635
## 241 -1 -1 1 1 -1 -1 2645
## 242 -1 -1 1 1 -1 -1 2720
## 243 -1 -1 1 1 -1 -1 2195
## 244 -1 -1 1 1 -1 -1 2595
## 245 -1 -1 1 1 -1 -1 2495
## 246 -1 -1 1 1 -1 -1 2195
## 247 -1 -1 1 1 -1 -1 2195
## 248 -1 -1 1 1 -1 -1 2599
## 249 -1 -1 1 1 -1 -1 2195
## 250 -1 -1 1 1 -1 -1 2225
## 251 -1 -1 1 1 -1 -1 2535
## 252 -1 -1 1 1 1 1 2025
## 253 -1 -1 1 1 1 1 1995
## 254 -1 -1 1 1 1 1 2245
## 255 -1 -1 1 1 1 1 2495
## 256 -1 -1 1 1 1 1 2075
## 257 -1 -1 1 1 1 1 1895
## 258 -1 -1 1 1 1 1 2465
## 259 -1 -1 1 1 1 1 2045
## 260 -1 -1 1 1 1 1 2045
## 261 -1 -1 1 1 1 1 1995
## 262 -1 -1 1 1 1 1 2015
## 263 -1 -1 1 1 1 1 2675
## 264 -1 -1 1 1 1 1 2275
## 265 -1 -1 1 1 1 1 1845
## 266 -1 -1 1 1 1 1 2455
## 267 -1 1 -1 -1 -1 1 2049
## 268 -1 1 1 -1 -1 -1 2595
## 269 -1 1 1 -1 -1 -1 3095
## 270 -1 1 1 -1 -1 -1 2895
## 271 -1 1 1 -1 -1 -1 3795
## 272 -1 1 1 -1 -1 -1 2695
## 273 -1 1 1 -1 -1 -1 2690
## 274 -1 1 1 -1 -1 -1 2595
## 275 -1 1 1 -1 -1 -1 2890
## 276 -1 1 1 -1 -1 -1 3295
## 277 -1 1 1 -1 -1 -1 3995
## 278 -1 1 1 -1 -1 -1 2695
## 279 -1 1 1 -1 -1 -1 2695
## 280 -1 1 1 -1 -1 -1 2795
## 281 -1 1 1 -1 -1 -1 3795
## 282 -1 1 1 -1 -1 -1 2795
## 283 -1 1 1 -1 -1 -1 2790
## 284 -1 1 1 -1 -1 -1 2595
## 285 -1 1 1 -1 -1 -1 2795
## 286 -1 1 1 -1 -1 -1 3795
## 287 -1 1 1 -1 1 1 2444
## 288 -1 1 1 -1 1 1 3495
## 289 -1 1 1 -1 1 1 2744
## 290 -1 1 1 -1 1 1 2795
## 291 -1 1 1 -1 1 1 2095
## 292 -1 1 1 -1 1 1 2195
## 293 -1 1 1 -1 1 1 2590
## 294 -1 1 1 -1 1 1 2694
## 295 -1 1 1 -1 1 1 2744
## 296 -1 1 1 -1 1 1 2495
## 297 -1 1 1 -1 1 1 2195
## 298 -1 1 1 -1 1 1 2744
## 299 -1 1 1 -1 1 1 2544
## 300 -1 1 1 -1 1 1 2425
## 301 -1 1 1 -1 1 1 2890
## 302 -1 1 1 -1 1 1 2795
## 303 -1 1 1 -1 1 1 2495
## 304 -1 1 1 -1 1 1 2590
## 305 -1 1 1 -1 1 1 2544
## 306 -1 1 1 -1 1 1 2794
## 307 -1 1 1 -1 1 1 2290
## 308 -1 1 1 -1 1 1 2690
## 309 -1 1 1 -1 1 1 2495
## 310 -1 1 1 -1 1 1 2395
## 311 -1 1 1 -1 1 1 2994
## 312 -1 1 1 -1 1 1 4295
## 313 -1 1 1 -1 1 1 2644
## 314 -1 1 1 -1 1 1 2295
## 315 -1 1 1 -1 1 1 2394
## 316 -1 1 1 -1 1 1 2190
## 317 -1 1 1 -1 1 1 2390
## 318 -1 1 1 -1 1 1 2794
## 319 -1 1 1 -1 1 1 2795
## 320 -1 1 1 -1 1 1 2344
## 321 -1 1 1 -1 1 1 2344
## 322 -1 1 1 -1 1 1 2294
## 323 -1 1 1 -1 1 1 2490
## 324 -1 1 1 -1 1 1 2444
## 325 -1 1 1 -1 1 1 2344
## 326 -1 1 1 -1 1 1 3025
## 327 -1 1 1 -1 1 1 2690
## 328 -1 1 1 -1 1 1 2745
## 329 -1 1 1 -1 1 1 2944
## 330 -1 1 1 -1 1 1 4494
## 331 -1 1 1 -1 1 1 2194
## 332 -1 1 1 -1 1 1 2299
## 333 -1 1 1 -1 1 1 2590
## 334 -1 1 1 -1 1 1 2290
## 335 -1 1 1 -1 1 1 2844
## 336 -1 1 1 -1 1 1 2244
## 337 -1 1 1 -1 1 1 2595
## 338 -1 1 1 -1 1 1 2890
## 339 -1 1 1 -1 1 1 2594
## 340 -1 1 1 -1 1 1 2595
## 341 -1 1 1 -1 1 1 2644
## 342 -1 1 1 -1 1 1 3044
## 343 -1 1 1 1 -1 1 2490
## 344 -1 1 1 1 -1 1 2390
## 345 -1 1 1 1 -1 1 2790
## 346 -1 1 1 1 -1 1 2590
## 347 -1 1 1 1 -1 1 2890
## 348 -1 1 1 1 -1 1 2690
## 349 -1 1 1 1 -1 1 3599
## 350 1 -1 -1 -1 -1 1 2099
## 351 1 -1 -1 -1 -1 1 2499
## 352 1 -1 -1 -1 -1 1 1695
## 353 1 -1 -1 -1 -1 1 2295
## 354 1 -1 -1 -1 -1 1 2025
## 355 1 -1 -1 -1 -1 1 1995
## 356 1 -1 -1 -1 -1 1 2195
## 357 1 -1 -1 -1 -1 1 1999
## 358 1 -1 -1 -1 -1 1 2290
## 359 1 -1 -1 -1 -1 1 2145
## 360 1 -1 -1 -1 -1 1 2195
## 361 1 -1 -1 -1 -1 1 1790
## 362 1 -1 -1 -1 -1 1 2249
## 363 1 -1 -1 -1 -1 1 1795
## 364 1 -1 -1 -1 -1 1 2390
## 365 1 -1 -1 -1 -1 1 1890
## 366 1 -1 -1 -1 -1 1 2075
## 367 1 -1 -1 1 -1 -1 2525
## 368 1 -1 -1 1 -1 -1 2799
## 369 1 -1 -1 1 -1 -1 3065
## 370 1 -1 -1 1 -1 -1 3225
## 371 1 -1 -1 1 -1 -1 2645
## 372 1 -1 -1 1 -1 -1 3075
## 373 1 -1 -1 1 -1 -1 2745
## 374 1 -1 -1 1 -1 -1 3399
## 375 1 -1 -1 1 -1 -1 2575
## 376 1 -1 -1 1 -1 -1 2945
## 377 1 -1 -1 1 -1 -1 2475
## 378 1 -1 -1 1 -1 -1 3165
## 379 1 -1 -1 1 -1 -1 2975
## 380 1 -1 -1 1 -1 -1 2875
## 381 1 -1 -1 1 -1 -1 2999
## 382 1 -1 -1 1 -1 -1 2675
## 383 1 -1 -1 1 -1 -1 3399
## 384 1 -1 -1 1 1 1 2290
## 385 1 -1 -1 1 1 1 1925
## 386 1 -1 -1 1 1 1 1790
## 387 1 -1 -1 1 1 1 2325
## 388 1 -1 -1 1 1 1 1990
## 389 1 -1 -1 1 1 1 2390
## 390 1 -1 -1 1 1 1 1999
## 391 1 -1 -1 1 1 1 2390
## 392 1 -1 -1 1 1 1 2090
## 393 1 -1 -1 1 1 1 2125
## 394 1 -1 -1 1 1 1 1890
## 395 1 -1 -1 1 1 1 2045
## 396 1 -1 -1 1 1 1 1879
## 397 1 -1 -1 1 1 1 2799
## 398 1 -1 -1 1 1 1 2290
## 399 1 -1 -1 1 1 1 2999
## 400 1 -1 -1 1 1 1 2245
## 401 1 -1 1 -1 -1 -1 2405
## 402 1 -1 1 -1 -1 -1 2575
## 403 1 -1 1 -1 -1 -1 2495
## 404 1 -1 1 -1 -1 -1 2455
## 405 1 -1 1 -1 -1 -1 2575
## 406 1 -1 1 -1 -1 -1 3095
## 407 1 -1 1 -1 -1 -1 2505
## 408 1 -1 1 -1 -1 -1 2255
## 409 1 -1 1 -1 -1 -1 2595
## 410 1 -1 1 -1 -1 -1 2155
## 411 1 -1 1 -1 -1 -1 2345
## 412 1 -1 1 -1 -1 -1 2425
## 413 1 -1 1 -1 -1 -1 2285
## 414 1 -1 1 -1 -1 -1 2699
## 415 1 -1 1 -1 -1 -1 2325
## 416 1 -1 1 -1 -1 -1 2699
## 417 1 -1 1 -1 -1 -1 2895
## 418 1 -1 1 -1 -1 -1 2405
## 419 1 -1 1 -1 -1 -1 2745
## 420 1 -1 1 -1 -1 -1 2645
## 421 1 -1 1 -1 -1 -1 2605
## 422 1 -1 1 -1 -1 -1 2335
## 423 1 -1 1 -1 -1 -1 2599
## 424 1 -1 1 -1 -1 -1 2405
## 425 1 -1 1 -1 -1 -1 2355
## 426 1 -1 1 -1 -1 -1 2699
## 427 1 -1 1 -1 -1 -1 2399
## 428 1 -1 1 -1 -1 -1 2425
## 429 1 -1 1 -1 -1 -1 2325
## 430 1 -1 1 -1 -1 -1 2335
## 431 1 -1 1 -1 -1 -1 2495
## 432 1 -1 1 -1 -1 -1 2590
## 433 1 -1 1 -1 -1 -1 2744
## 434 1 -1 1 -1 -1 -1 2595
## 435 1 -1 1 -1 -1 -1 2699
## 436 1 -1 1 -1 -1 -1 2475
## 437 1 -1 1 -1 -1 -1 2595
## 438 1 -1 1 -1 -1 -1 2495
## 439 1 -1 1 -1 -1 -1 2690
## 440 1 -1 1 -1 -1 -1 2599
## 441 1 -1 1 -1 -1 -1 3244
## 442 1 -1 1 -1 -1 -1 2644
## 443 1 -1 1 -1 -1 -1 2225
## 444 1 -1 1 -1 -1 -1 2695
## 445 1 -1 1 -1 -1 -1 2399
## 446 1 -1 1 -1 -1 -1 2199
## 447 1 -1 1 -1 -1 -1 2345
## 448 1 -1 1 -1 -1 -1 2475
## 449 1 -1 1 -1 -1 -1 2525
## 450 1 -1 1 -1 -1 -1 3044
## 451 1 -1 1 -1 -1 -1 2199
## 452 1 -1 1 -1 1 1 2845
## 453 1 -1 1 -1 1 1 3149
## 454 1 -1 1 -1 1 1 2698
## 455 1 -1 1 -1 1 1 2299
## 456 1 -1 1 -1 1 1 2275
## 457 1 -1 1 -1 1 1 2299
## 458 1 -1 1 -1 1 1 2648
## 459 1 -1 1 -1 1 1 2075
## 460 1 -1 1 1 -1 1 2645
## 461 1 -1 1 1 -1 1 2375
## 462 1 -1 1 1 -1 1 2935
## 463 1 -1 1 1 -1 1 3105
## 464 1 -1 1 1 -1 1 2720
## 465 1 -1 1 1 -1 1 2425
## 466 1 -1 1 1 -1 1 3055
## 467 1 -1 1 1 -1 1 2575
## 468 1 -1 1 1 -1 1 2495
## 469 1 -1 1 1 -1 1 2815
## 470 1 -1 1 1 -1 1 2905
## 471 1 -1 1 1 -1 1 2625
## 472 1 -1 1 1 -1 1 2999
## 473 1 -1 1 1 -1 1 2595
## 474 1 -1 1 1 -1 1 2455
## 475 1 -1 1 1 -1 1 2855
## 476 1 1 -1 -1 1 1 2199
## 477 1 1 -1 -1 1 1 2695
## 478 1 1 -1 1 -1 1 2599
## 479 1 1 1 -1 -1 1 3695
## 480 1 1 1 -1 -1 1 3720
## 481 1 1 1 -1 -1 1 3599
## 482 1 1 1 -1 -1 1 2995
## 483 1 1 1 -1 -1 1 2690
## 484 1 1 1 -1 -1 1 2595
## 485 1 1 1 -1 -1 1 2990
## 486 1 1 1 -1 -1 1 3595
## 487 1 1 1 -1 -1 1 2599
## 488 1 1 1 -1 -1 1 2399
## 489 1 1 1 -1 -1 1 2790
## 490 1 1 1 -1 -1 1 3990
## 491 1 1 1 -1 -1 1 3090
## 492 1 1 1 -1 -1 1 2895
## 493 1 1 1 -1 -1 1 3495
## 494 1 1 1 -1 -1 1 2695
## 495 1 1 1 1 -1 -1 3220
## 496 1 1 1 1 -1 -1 3990
## 497 1 1 1 1 -1 -1 2995
## 498 1 1 1 1 -1 -1 2995
## 499 1 1 1 1 -1 -1 2995
## 500 1 1 1 1 -1 -1 2995
## 501 1 1 1 1 -1 -1 3895
## 502 1 1 1 1 -1 -1 3220
## 503 1 1 1 1 -1 -1 3220
## 504 1 1 1 1 -1 -1 3895
## 505 1 1 1 1 -1 -1 3895
## 506 1 1 1 1 1 1 2845
## 507 1 1 1 1 1 1 3365
## 508 1 1 1 1 1 1 4248
## 509 1 1 1 1 1 1 2395
## 510 1 1 1 1 1 1 3090
## 511 1 1 1 1 1 1 2799
## 512 1 1 1 1 1 1 2799
## 513 1 1 1 1 1 1 3099
## 514 1 1 1 1 1 1 3299
## 515 1 1 1 1 1 1 3499
## 516 1 1 1 1 1 1 3999
## 517 1 1 1 1 1 1 2999
## 518 1 1 1 1 1 1 3565
## 519 1 1 1 1 1 1 2999
## 520 1 1 1 1 1 1 3595
## 521 1 1 1 1 1 1 2595
## 522 1 1 1 1 1 1 3348
## 523 1 1 1 1 1 1 2690
## 524 1 1 1 1 1 1 2675
## 525 1 1 1 1 1 1 2595
## 526 1 1 1 1 1 1 2799
## 527 1 1 1 1 1 1 3090
## 528 1 1 1 1 1 1 2995
## 529 1 1 1 1 1 1 2990
## 530 1 1 1 1 1 1 2990
## 531 1 1 1 1 1 1 3899
## 532 1 1 1 1 1 1 2999
## 533 1 1 1 1 1 1 2999
## 534 1 1 1 1 1 1 2690
## 535 1 1 1 1 1 1 3789
## 536 1 1 1 1 1 1 2999
## 537 1 1 1 1 1 1 2790
## 538 1 1 1 1 1 1 2599
## 539 1 1 1 1 1 1 2899
## 540 1 1 1 1 1 1 2469
## 541 1 1 1 1 1 1 2620
## 542 1 1 1 1 1 1 4398
## 543 1 1 1 1 1 1 3398
## 544 1 1 1 1 1 1 3999
## 545 1 1 1 1 1 1 3299
## 546 1 1 1 1 1 1 3595
## 547 1 1 1 1 1 1 2995
## 548 1 1 1 1 1 1 3499
## 549 1 1 1 1 1 1 3789
## 550 1 1 1 1 1 1 2590
## 551 1 1 1 1 1 1 2225
I must repeat the ANOVA method on the new dataset which will test the main effects of each factor as well as the interaction effects of Screen with all other factors.
modelb=lm(price~screen*speed+screen*hd+screen*ram+screen*ads+screen*trend, data=Observations)
anova(modelb)
## Analysis of Variance Table
##
## Response: price
## Df Sum Sq Mean Sq F value Pr(>F)
## screen 1 35753593 35753593 300.63 < 2e-16 ***
## speed 1 28803414 28803414 242.19 < 2e-16 ***
## hd 1 56903596 56903596 478.47 < 2e-16 ***
## ram 1 9787140 9787140 82.29 < 2e-16 ***
## ads 1 3322755 3322755 27.94 1.8e-07 ***
## trend 1 1331195 1331195 11.19 0.00088 ***
## screen:speed 1 300371 300371 2.53 0.11260
## screen:hd 1 1266770 1266770 10.65 0.00117 **
## screen:ram 1 25192 25192 0.21 0.64553
## screen:ads 1 1173403 1173403 9.87 0.00178 **
## screen:trend 1 666454 666454 5.60 0.01827 *
## Residuals 539 64102662 118929
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Again, we can see that most of the factors and the interaction effects are not significant. The only interaction that seems to show significance is the screen:ram interaction with a p-value of 0.646. Every other value falls below the 0.05 alpha value. ##Shapiro-Wilk Here I use the Shapiro-Wilk normality test to determine if the response variable is normally distributed.
shapiro.test(Observations$price)
##
## Shapiro-Wilk normality test
##
## data: Observations$price
## W = 0.9682, p-value = 1.494e-09
The null of a Shapiro-Wilk test states that the data presented is normally distributed. Unfortunately, the p-value is less than an alpha of 0.05, and therefore, we must reject the null hypothesis. This suggests, instead, that the price of personal computers data is not normally distributed. ##Diagnostics/Model Adequacy Checking Quantile-Quantile (Q-Q) plots are graphs used to verify the distributional assumption for a set of data. Based on the theoretical distribution, the expected value for each datum is determined. If the data values in a set follow the theoretical distribution, then they will appear as a straight line on a Q-Q plot. When an anova is performed, it is done so with the assumption that the test statistic follows a normal distribution. Visualization of a Q-Q plot will further confirm if that assumption is correct for the anova tests that were performed.
qqnorm(residuals(modelb))
qqline(residuals(modelb))
plot(fitted(modelb),residuals(modelb))
A Residuals vs. Fits Plot is a common graph used in residual analysis. It is a scatter plot of residuals as a function of fitted values, or the estimated responses. These plots are used to identify linearity, outliers, and error variances.