
Universidad Galileo
Introducción
El dataset de Anscombe sirve para ejemplificar la importancia de graficar los datos.
Anscombre usó este dataset para demostrar que las estadísticas puntuales no son suficientes para describir la data.
Esto es una cita.
Preparación de la data para la gráfica
anscomb_tidy <-
rbind(
data_frame(x = anscombe$x1, y = anscombe$y1, tag = "q1"),
data_frame(x = anscombe$x2, y = anscombe$y2, tag = "q2"),
data_frame(x = anscombe$x3, y = anscombe$y3, tag = "q3"),
data_frame(x = anscombe$x4, y = anscombe$y4, tag = "q4"))
Plot
anscomb_tidy %>%
ggplot(aes(x,y)) +
geom_point() +
geom_point() +
facet_wrap(~tag,ncol = 2)

Conclusiones
- Las gráficas todas tienen las mismas medias.
- Todas tienen la misma desviación estandar.
- Es importante graficar siempre la data.
- Los valores atipicos afectan mucho la media, poco la mediana.
LS0tDQp0aXRsZTogIkRhdGFzZXQgZGUgQW5zY29tYmUiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyIGxpYnJlcmlhcywgZWNobz1GQUxTRX0NCmxpYnJhcnkoZHBseXIpDQpsaWJyYXJ5KGdncGxvdDIpDQpgYGANCg0KIVtdKGdhbGlsZW8ucG5nKQ0KDQoNCltVbml2ZXJzaWRhZCBHYWxpbGVvXSh3d3cuZ2FsaWxlby5lZHUpDQoNCiMgSW50cm9kdWNjacOzbg0KRWwgZGF0YXNldCBkZSAqQW5zY29tYmUqIHNpcnZlIHBhcmEgZWplbXBsaWZpY2FyIGxhIGltcG9ydGFuY2lhIGRlICoqZ3JhZmljYXIqKiBsb3MgZGF0b3MuDQoNCkFuc2NvbWJyZSB1c8OzIGVzdGUgZGF0YXNldCBwYXJhIGRlbW9zdHJhciBxdWUgbGFzIGVzdGFkw61zdGljYXMgcHVudHVhbGVzIG5vIHNvbiBzdWZpY2llbnRlcyBwYXJhIGRlc2NyaWJpciBsYSBkYXRhLg0KDQogICAgRXN0byBlcyB1bmEgY2l0YS4NCg0KIyMgRGVzY3JpcGNpw7NuIGRlbCBEYXRhc2V0DQoNCmBgYHtyIGV4cGxvcmFjaW9uLCBlY2hvID0gRkFMU0V9DQpoZWFkKGFuc2NvbWJlKQ0KYGBgDQoNCg0KIyMgVGFibGEgZGUgbWVkaWFzIGRlbCBjdWFydGV0byBkZSBhbnNjb21iZQ0KDQp8ICoqZXN0YWRpc3RpY28qKiB8ICR4XzEkIHwgJHhfMiQgfCAkeF8zJCB8ICR4XzQkIHwNCnwgOi0tLS0tLS0tLS0tOiB8IDotLS0tLTogfCA6LS0tLTogfCA6LS0tLS06IHwgOi0tLS0tOiB8DQp8IE1lZGlhcyAgICAgIHxgciBtZWFuKGFuc2NvbWJlJHgxKWB8YHIgbWVhbihhbnNjb21iZSR4MilgfGByIG1lYW4oYW5zY29tYmUkeDMpYHxgciBtZWFuKGFuc2NvbWJlJHg0KWB8DQp8IERlc3ZpYWNpb24gICAgICAgfGByIHNkKGFuc2NvbWJlJHgxKWB8YHIgc2QoYW5zY29tYmUkeDIpYHxgciBzZChhbnNjb21iZSR4MylgfGByIHNkKGFuc2NvbWJlJHg0KWB8DQp8IE1lZGlhbmFzICAgICAgIHxgciBtZWRpYW4oYW5zY29tYmUkeDEpYHxgciBtZWRpYW4oYW5zY29tYmUkeDIpYHxgciBtZWRpYW4oYW5zY29tYmUkeDMpYHxgciBtZWRpYW4oYW5zY29tYmUkeDQpYHwNCg0KfCAqKmVzdGFkaXN0aWNvKiogfCAkeV8xJCB8ICR5XzIkIHwgJHlfMyQgfCAkeV80JCB8DQp8IDotLS0tLS0tLS0tLTogfCA6LS0tLS06IHwgOi0tLS06IHwgOi0tLS0tOiB8IDotLS0tLTogfA0KfCBNZWRpYXMgICAgICB8YHIgbWVhbihhbnNjb21iZSR5MSlgfGByIG1lYW4oYW5zY29tYmUkeTIpYHxgciBtZWFuKGFuc2NvbWJlJHkzKWB8YHIgbWVhbihhbnNjb21iZSR5NClgfA0KfCBEZXN2aWFjaW9uICAgICAgIHxgciBzZChhbnNjb21iZSR5MSlgfGByIHNkKGFuc2NvbWJlJHkyKWB8YHIgc2QoYW5zY29tYmUkeTMpYHxgciBzZChhbnNjb21iZSR5NClgfA0KfCBNZWRpYW5hcyAgICAgICB8YHIgbWVkaWFuKGFuc2NvbWJlJHkxKWB8YHIgbWVkaWFuKGFuc2NvbWJlJHkyKWB8YHIgbWVkaWFuKGFuc2NvbWJlJHkzKWB8YHIgbWVkaWFuKGFuc2NvbWJlJHk0KWB8DQoNCg0KIyMgUHJlcGFyYWNpw7NuIGRlIGxhIGRhdGEgcGFyYSBsYSBncsOhZmljYQ0KDQpgYGB7cn0NCmFuc2NvbWJfdGlkeSA8LQ0KcmJpbmQoDQpkYXRhX2ZyYW1lKHggPSBhbnNjb21iZSR4MSwgeSA9IGFuc2NvbWJlJHkxLCB0YWcgPSAicTEiKSwNCmRhdGFfZnJhbWUoeCA9IGFuc2NvbWJlJHgyLCB5ID0gYW5zY29tYmUkeTIsIHRhZyA9ICJxMiIpLA0KZGF0YV9mcmFtZSh4ID0gYW5zY29tYmUkeDMsIHkgPSBhbnNjb21iZSR5MywgdGFnID0gInEzIiksDQpkYXRhX2ZyYW1lKHggPSBhbnNjb21iZSR4NCwgeSA9IGFuc2NvbWJlJHk0LCB0YWcgPSAicTQiKSkNCg0KYGBgDQogDQoNCg0KDQojIyMgUGxvdA0KDQpgYGB7cn0NCmFuc2NvbWJfdGlkeSAlPiUgDQogIGdncGxvdChhZXMoeCx5KSkgKyANCiAgZ2VvbV9wb2ludCgpICsNCiAgZ2VvbV9wb2ludCgpICsNCiAgZmFjZXRfd3JhcCh+dGFnLG5jb2wgPSAyKQ0KYGBgDQoNCiMgQ29uY2x1c2lvbmVzDQoNCjEuIExhcyBncsOhZmljYXMgdG9kYXMgdGllbmVuIGxhcyBtaXNtYXMgbWVkaWFzLg0KMi4gVG9kYXMgdGllbmVuIGxhIG1pc21hIGRlc3ZpYWNpw7NuIGVzdGFuZGFyLg0KDQoqIEVzIGltcG9ydGFudGUgZ3JhZmljYXIgc2llbXByZSBsYSBkYXRhLg0KKiBMb3MgdmFsb3JlcyBhdGlwaWNvcyBhZmVjdGFuIG11Y2hvIGxhIG1lZGlhLCBwb2NvIGxhIG1lZGlhbmEuDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg0KDQoNCg==