https://docs.google.com/spreadsheets/d/15uE5Eo79JzMGZO6IsjZmjmF_zBx12jvuR-DjgJNby0c/edit?usp=sharing
## Sheet successfully identified: "JVM - Class 9 SA1 Scores"
## Accessing worksheet titled '9 COMBINED'.
## Parsed with column specification:
## cols(
## `S No` = col_integer(),
## Name = col_character(),
## `CT-1_MTH` = col_double(),
## `CT-1_SCI` = col_double(),
## HYE_MTH = col_double(),
## HYE_SCI = col_double(),
## Avanti = col_character(),
## Absent = col_logical()
## )
## # A tibble: 10 x 8
## `S No` Name `CT-1_MTH` `CT-1_SCI` HYE_MTH HYE_SCI Avanti Absent
## <int> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <lgl>
## 1 1 Abhishek Ma… 26 28 35.5 53 y FALSE
## 2 2 Aishwarya G… 37 32 53 64 y FALSE
## 3 3 Aman B 14 11 24 22 <NA> FALSE
## 4 4 Anjali Kuma… 24.5 27 29.5 43 <NA> FALSE
## 5 5 Anjali Pai 35 31 49.5 54 <NA> FALSE
## 6 6 Archita Sri… 21 24 29 32 <NA> FALSE
## 7 7 Aviral Chan… 37 31 65.5 63 y FALSE
## 8 8 Chulika Par… 33 35 70 64 <NA> FALSE
## 9 9 Dhiraj Chou… 5 19 12 28 <NA> FALSE
## 10 10 G Prashanth 34.5 33 64 58 <NA> FALSE
## # A tibble: 10 x 8
## `S No` Name `CT-1_MTH` `CT-1_SCI` HYE_MTH HYE_SCI Avanti Absent
## <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 1 Abhishek Ma… 26 28 35.5 53 1 FALSE
## 2 2 Aishwarya G… 37 32 53 64 1 FALSE
## 3 3 Aman B 14 11 24 22 0 FALSE
## 4 4 Anjali Kuma… 24.5 27 29.5 43 0 FALSE
## 5 5 Anjali Pai 35 31 49.5 54 0 FALSE
## 6 6 Archita Sri… 21 24 29 32 0 FALSE
## 7 7 Aviral Chan… 37 31 65.5 63 1 FALSE
## 8 8 Chulika Par… 33 35 70 64 0 FALSE
## 9 9 Dhiraj Chou… 5 19 12 28 0 FALSE
## 10 10 G Prashanth 34.5 33 64 58 0 FALSE
1 => Avanti student ; 0 => Not an Avanti student
## # A tibble: 2 x 2
## `as.factor(Avanti)` count
## <fct> <int>
## 1 0 131
## 2 1 39
Looks similar for both groups
Avanti kids in the middle
(area under the plot integrates to 1) More Non-Avanti students in the higher and lower end for Maths
Avanti students slightly ahead in Science
Avanti kids ahead in Science baseline too
Avanti kids seem to be doing better in Maths initially
Scores of 3 Avanti kids fell drastically in the HY exams, while 1 kid improved
Fewer outliers in science
## # A tibble: 6 x 8
## `S No` Name `CT-1_MTH` `CT-1_SCI` HYE_MTH HYE_SCI Avanti Absent
## <int> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <lgl>
## 1 1 Abhishek Mah… 63 67 41 67 1 FALSE
## 2 2 Aishwarya Gi… 92 78 64 82 1 FALSE
## 3 3 Aman B 31 19 26 24 0 FALSE
## 4 4 Anjali Kumar… 59 64 34 53 0 FALSE
## 5 5 Anjali Pai 87 75 60 68 0 FALSE
## 6 6 Archita Sriv… 49 56 33 38 0 FALSE
We are modelling the Half Yearly Exam Scores using CT-1 scores and the binary variable Avanti (1/0)
## (Intercept) `CT-1_MTH` as.factor(Avanti)1
## 1.1676126 0.7491484 -4.0307705
Coefficient for the Avanti variable is -ve, indicating Avanti students doing worse
## (Intercept) `CT-1_SCI` as.factor(Avanti)1
## -2.9218286 0.9256939 1.7654543
+ve Coefficient indicating Avanti kids doing better in Science !
Labelling students as UP/DOWN if their actual score is +/- 5% as compared to the predicted score by linear model. If |delta| < 5% then SAME.
## # A tibble: 2 x 5
## # Groups: Avanti [2]
## Avanti DOWN SAME UP NET_perc_UP
## <dbl> <int> <int> <int> <dbl>
## 1 0 62 15 54 -6
## 2 1 16 8 15 -3
Net percetage UP is slightly better for Avanti kids in Maths !!
## # A tibble: 2 x 5
## # Groups: Avanti [2]
## Avanti DOWN SAME UP NET_perc_UP
## <dbl> <int> <int> <int> <dbl>
## 1 0 57 22 52 -4
## 2 1 16 5 18 5
Net Percentage UP movement is clearly better for Avanti kids in Science !!