A Markov model predicts the probability that a user will transition from point A to point B based on steps that a user takes through a website. The sequence of these contents are determined by the Markov order, which range from [0,4]. A Markov model representation of the customer buying or conversion process might look something like the following
The outcome of a Markov model is binary; a customer either converts or does not (NULL).
Build the simple heuristic models (First Click/first_touch, Last Click/last_touch and Linear Attribution/linear_touch):
## channel_name first_touch_conversions first_touch_value
## 1 eta 3164 11909.4762
## 2 iota 4606 19597.2613
## 3 alpha 6308 19121.2724
## 4 beta 2831 12235.5917
## 5 theta 1606 6652.3493
## 6 lambda 902 3735.6022
## 7 kappa 74 305.7432
## 8 zeta 27 103.0040
## 9 epsilon 99 412.3012
## 10 gamma 165 718.9780
## 11 delta 1 6.1190
## 12 mi 2 5.2730
## last_touch_conversions last_touch_value linear_touch_conversions
## 1 4167 16754.2038 3539.951157
## 2 3355 13487.9743 3857.096221
## 3 8447 28414.2143 7574.718594
## 4 989 3850.0210 2083.500145
## 5 653 2799.0920 1022.801394
## 6 1207 5249.9500 1035.257572
## 7 230 1069.3843 137.964078
## 8 107 453.2608 136.551540
## 9 531 2202.6123 272.170438
## 10 92 506.0140 121.041639
## 11 5 10.9720 1.725000
## 12 2 5.2730 2.222222
## linear_touch_value
## 1 13783.497051
## 2 15988.988995
## 3 24524.709569
## 4 8954.266717
## 5 4295.743619
## 6 4430.316169
## 7 599.747786
## 8 539.528763
## 9 1106.270065
## 10 569.417358
## 11 4.404050
## 12 6.081444
## channel_name total_conversion total_conversion_value
## 1 eta 0 0
## 2 iota 0 0
## 3 alpha 0 0
## 4 beta 0 0
## 5 theta 0 0
## 6 lambda 0 0
## 7 kappa 0 0
## 8 zeta 0 0
## 9 epsilon 0 0
## 10 gamma 0 0
## 11 delta 0 0
## 12 mi 0 0
4 types of data modelling are put together to compare and contrasts
Ggplot2 are use to graph the outcomes
## Warning in `[<-.factor`(`*tmp*`, ri, value = c(19121.2723557988,
## 12235.5917443553, : invalid factor level, NA generated