The objectives of this problem set is to orient you to a number of activities in R. And to conduct a thoughtful exercise in appreciating the importance of data visualization. For each question create a code chunk or text response that completes/answers the activity or question requested. Finally, upon completion name your final output .html file as: YourName_ANLY512-Section-Year-Semester.html and upload it to the “Problem Set 2” assignmenet on Moodle.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.data <- anscombe
fBasics() package!)mean(data$x1)
## [1] 9
mean(data$x2)
## [1] 9
mean(data$x3)
## [1] 9
mean(data$x4)
## [1] 9
var(data$x1)
## [1] 11
var(data$x2)
## [1] 11
var(data$x3)
## [1] 11
var(data$x4)
## [1] 11
mean(data$y1)
## [1] 7.500909
mean(data$y2)
## [1] 7.500909
mean(data$y3)
## [1] 7.5
mean(data$y4)
## [1] 7.500909
var(data$y1)
## [1] 4.127269
var(data$y2)
## [1] 4.127629
var(data$y3)
## [1] 4.12262
var(data$y4)
## [1] 4.123249
library("fBasics")
## Loading required package: timeDate
## Loading required package: timeSeries
correlationTest(data$x1, data$y1)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Tue Dec 4 20:59:14 2018
correlationTest(data$x2, data$y2)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Tue Dec 4 20:59:14 2018
correlationTest(data$x3, data$y3)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Tue Dec 4 20:59:14 2018
correlationTest(data$x4, data$y4)
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Tue Dec 4 20:59:14 2018
plot(data$x1, data$y1, main = "Scater Plot - x1,y1")
plot(data$x2, data$y2, main = "Scater Plot - x2,y2")
plot(data$x3, data$y3, main = "Scater Plot - x3,y3")
plot(data$x4, data$y4, main = "Scater Plot - x4,y4")
par(mfrow= c(2,2))
plot(data$x1, data$y1, main = "Scater Plot - x1,y1", pch = 20)
plot(data$x2, data$y2, main = "Scater Plot - x2,y2", pch = 20)
plot(data$x3, data$y3, main = "Scater Plot - x3,y3", pch = 20)
plot(data$x4, data$y4, main = "Scater Plot - x4,y4", pch = 20)
lm() function.fit1 <- lm(data$y1 ~ data$x1)
summary(fit1)
##
## Call:
## lm(formula = data$y1 ~ data$x1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## data$x1 0.5001 0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
fit2 <- lm(data$y2 ~ data$x2)
summary(fit2)
##
## Call:
## lm(formula = data$y2 ~ data$x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## data$x2 0.500 0.118 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
fit3 <- lm(data$y3 ~ data$x3)
summary(fit3)
##
## Call:
## lm(formula = data$y3 ~ data$x3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025 1.1245 2.670 0.02562 *
## data$x3 0.4997 0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
fit4 <- lm(data$y4 ~ data$x4)
summary(fit4)
##
## Call:
## lm(formula = data$y4 ~ data$x4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017 1.1239 2.671 0.02559 *
## data$x4 0.4999 0.1178 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
par(mfrow= c(2,2))
plot(data$x1, data$y1, main = "Scater Plot - x1,y1", pch = 20)
abline(fit1, col = "blue")
plot(data$x2, data$y2, main = "Scater Plot - x2,y2", pch = 20)
abline(fit2, col = "blue")
plot(data$x3, data$y3, main = "Scater Plot - x3,y3", pch = 20)
abline(fit3, col = "blue")
plot(data$x4, data$y4, main = "Scater Plot - x4,y4", pch = 20)
abline(fit4, col = "blue")
anova(fit1)
Analysis of Variance Table
Response: data\(y1 Df Sum Sq Mean Sq F value Pr(>F) data\)x1 1 27.510 27.5100 17.99 0.00217 ** Residuals 9 13.763 1.5292
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit2)
Analysis of Variance Table
Response: data\(y2 Df Sum Sq Mean Sq F value Pr(>F) data\)x2 1 27.500 27.5000 17.966 0.002179 ** Residuals 9 13.776 1.5307
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit3)
Analysis of Variance Table
Response: data\(y3 Df Sum Sq Mean Sq F value Pr(>F) data\)x3 1 27.470 27.4700 17.972 0.002176 ** Residuals 9 13.756 1.5285
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1
anova(fit4)
Analysis of Variance Table
Response: data\(y4 Df Sum Sq Mean Sq F value Pr(>F) data\)x4 1 27.490 27.4900 18.003 0.002165 ** Residuals 9 13.742 1.5269
— Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ‘’ 1