First 10 Games 17/18 Secondary Market

datA
                  Seatgeek  StubHub Ticketmaster    Vivid    Other
Total Sold         7368.82 43126.82      5990.50 19785.18 51560.12
Average Price        31.09    42.03        85.58    61.07    41.51
Percent of Market     0.06     0.34         0.05     0.15     0.40

Rest of Games 17/18 Secondary Market

dat <-  read.csv("C:/Users/jcowden/OneDrive - LA Clippers/Desktop/dat14.csv")
dat <- dat[complete.cases(dat),]

seatgeek <- subset(dat, dat$Market == "Seatgeek")
stubhub <-  subset(dat,dat$Market == "StubHub")
ticketmaster  <- subset(dat,dat$Market == "Ticketmaster")
vivid <-  subset(dat,dat$Market == "Vivid Seats")
other <- subset(dat,dat$Market == "Other")

datU <- data.frame(
  s.geek = round(sum(seatgeek$PerTix),2),
  stub.hub = round(sum(stubhub$PerTix),3),
  ticket.master = round(sum(ticketmaster$PerTix),2),
  vivid = round(sum(vivid$PerTix),2),
  other = round(sum(other$PerTix),2)
)

datZ <- data.frame(
  s.geek = round(sum(seatgeek$PerTix)/sum(dat$PerTix),2),
  stub.hub = round(sum(stubhub$PerTix)/sum(dat$PerTix),2),
  ticket.master = round(sum(ticketmaster$PerTix)/sum(dat$PerTix),2),
  vivid = round(sum(vivid$PerTix)/sum(dat$PerTix),2),
  other = round(sum(other$PerTix)/sum(dat$PerTix),2)
)
datB <- data.frame(
  s.geek = mean(seatgeek$PerTix),
  stub.hub = mean(stubhub$PerTix),
  ticket.master = mean(ticketmaster$PerTix),
  vivid = mean(vivid$PerTix),
  other = mean(other$PerTix)
  
)

datA <- rbind(datU,round(datB,2), datZ)
row.names(datA) <- c("Total Sold","Average Price", "Percent of Market")
colnames(datA) <- c("Seatgeek", "StubHub", "Ticketmaster", "Vivid", "Other")
datA
                  Seatgeek   StubHub Ticketmaster    Vivid     Other
Total Sold        33261.31 129080.76     23182.00 60968.41 162612.52
Average Price        39.64     49.32        69.20    64.38     42.75
Percent of Market     0.08      0.32         0.06     0.15      0.40

Our Data

dat2 <-  read.csv("C:/Users/jcowden/OneDrive - LA Clippers/Desktop/ourData.csv")
dat2 <- dat2[,c(1,21,25,27,28,31,36)]
dat2 <- as.data.frame(dat2)


 x=str_split_fixed(dat2$Event, pattern = "-",4)
x = as.data.frame(x)
x <- x[,4]

dat3 <- cbind(dat2,x)
dat2 <- dat3[,-2]
colnames(dat2) <- c("Account", "Section","Row", "Seat", "Price.Level", "PerTix", "Date")
dat2$PerTix <- as.numeric(as.character(dat2$PerTix))
## Warning: NAs introduced by coercion
dat2 <- dat2[complete.cases(dat2),]
x <- dat2 %>% group_by(dat2$Section) %>% summarise(round(mean(PerTix),2))
x <- as.data.frame(x)
x <- as.data.table(x)
colnames(x) <- c("Section", "Average Per Tix")


y <- dat2 %>% group_by(dat2$Price.Level) %>% summarise(round(mean(PerTix),2))
y <- as.data.frame(y)
y <- as.data.table(y)
colnames(y) <- c("Price Level", "Average Per Tix")

x[order(-x$`Average Per Tix`),]
    Section Average Per Tix
 1:   116CT         1306.77
 2:   106CT         1298.48
 3:   112CT          940.02
 4:   110CT          881.34
 5:   102CT          699.24
 6:   111CT          682.24
 7:   119CT          679.68
 8:   101CT          644.34
 9:   107CT          485.66
10:   115CT          356.50
11:     101          206.35
12:     111          204.46
13:     119          183.87
14:    PR13          177.32
15:     102          175.46
16:     110          168.28
17:     112          166.53
18:     PR4          156.45
19:     109          136.02
20:     103          131.76
21:     PR6          125.50
22:     105          124.56
23:     113          123.75
24:     PR1          117.93
25:     114          107.62
26:     104          106.33
27:     108          105.13
28:     118          104.92
29:     117          102.05
30:     106           98.34
31:     115           97.92
32:     107           97.28
33:     116           93.15
34:    PR11           82.16
35:     210           77.88
36:     PR9           77.86
37:     PR3           76.20
38:     PR2           75.26
39:     214           74.53
40:     205           74.07
41:    PR17           73.97
42:    PR12           73.79
43:     PR8           72.97
44:     207           72.94
45:    PR10           72.64
46:     219           72.07
47:    PR16           71.63
48:    PR18           70.71
49:     PR7           68.42
50:     217           67.73
51:     208           67.42
52:     215           67.08
53:     216           64.84
54:     218           64.32
55:     209           62.24
56:     206           59.83
57:     301           47.90
58:     318           45.76
59:     329           44.90
60:     331           42.23
61:     316           41.91
62:     323           40.59
63:     330           40.39
64:     303           39.87
65:     320           39.27
66:     324           38.41
67:     333           38.22
68:     319           37.85
69:     302           37.67
70:     334           37.49
71:     327           37.30
72:     317           36.94
73:     307           36.28
74:     315           36.25
75:     321           35.72
76:     328           34.75
77:     325           34.70
78:     306           34.09
79:     314           33.57
80:     326           33.30
81:     332           32.95
82:     322           32.73
83:     311           32.41
84:     304           31.87
85:     305           31.87
86:     308           30.69
87:     309           30.69
88:     313           30.53
89:     310           29.86
90:     312           29.45
    Section Average Per Tix
y[order(-y$`Average Per Tix`),]
                Price Level Average Per Tix
 1:          A1 - Courtside         2403.94
 2:          C1 - Courtside         1823.38
 3:          F1 - Courtside          913.01
 4:          G1 - Courtside          757.97
 5:          E1 - Courtside          608.62
 6:          J1 - Courtside          504.50
 7:          I1 - Courtside          322.13
 8:          K1 - Courtside          264.41
 9:        M1 - Loge Center          216.92
10:        O1 - Loge Center          215.99
11:        T1 - Loge Center          215.04
12:        P1 - Loge Center          201.91
13:          H1 - Courtside          201.73
14: V1 - Loge Inside Corner          198.14
15:        Q1 - Loge Center          192.02
16:        N1 - Loge Center          184.11
17:        S1 - Loge Center          177.31
18:          L1 - Courtside          170.51
19:        R1 - Loge Center          168.01
20:        W1 - Loge Center          167.68
21:            X2 - Premier          160.37
22:        G2 - Loge Corner          145.07
23:      D2 - Loge Baseline          142.99
24: B2 - Loge Inside Corner          142.68
25: H2 - Loge Inside Corner          137.53
26:        U1 - Loge Center          130.90
27:        J2 - Loge Corner          124.51
28:        O2 - Loge Corner          123.32
29:        E2 - Loge Corner          121.74
30:        Z1 - Loge Center          117.14
31:        N2 - Loge Corner          115.10
32:        I2 - Loge Corner          113.15
33:               K2 - Loge          112.79
34:        M2 - Loge Corner          105.15
35:      V2 - Loge Baseline          103.28
36: Y1 - Loge Inside Corner          102.40
37: A2 - Loge Inside Corner          101.00
38:          D1 - Courtside          100.00
39:               L2 - Loge           99.68
40: X1 - Loge Inside Corner           99.33
41:        Q2 - Loge Corner           99.08
42:               F2 - Loge           98.72
43:     U2  - Loge Baseline           94.19
44:        C2 - Loge Corner           93.79
45:      Y2 - Loge Baseline           86.83
46:      A3 - Loge Baseline           84.20
47:        P2 - Loge Corner           83.21
48:      T2 - Loge Baseline           80.13
49:      S2 - Loge Baseline           77.19
50:          D3 - Mid Level           74.13
51:            W2 - Premier           73.75
52:      R2 - Loge Baseline           72.85
53:          B3 - Mid Level           69.90
54:          G3 - Mid Level           69.33
55:         Z2  - Mid Level           63.17
56:          F3 - Mid Level           55.14
57:      J3 - Balcony Level           46.73
58:      H3 - Balcony Level           45.98
59:      M3 - Balcony Level           39.95
60:      E3 - Balcony Level           39.57
61:      L3 - Balcony Level           38.91
62:      O3 - Balcony Level           38.71
63:      C3 - Balcony Level           37.68
64:      K3 - Balcony Level           36.33
65:      I3 - Balcony Level           35.66
66:      P3 - Balcony Level           35.59
67:      N3 - Balcony Level           35.03
68:      Q3 - Balcony Level           34.85
                Price Level Average Per Tix