In this post, I will show why LGM was not suitable for modeling our data.

Data preprocessing

library(dplyr)
library(lavaan)
library(semPlot)
library(data.table)
#library(apaTables)
library(psych)
table<-as.matrix(describe(data))
table<-table[-c(1),c(3,4,12,13)]
library(knitr)
kable(print(table, digits=2))
##                mean      sd kurtosis      se
## Antisaccade    0.75   0.143   -0.611  0.0113
## StroopPerf     0.95   0.066   12.920  0.0050
## SSRTavg     -280.07  99.543    1.403  8.3831
## LetMem         0.72   0.136    0.379  0.0103
## KeepTrack      0.79   0.090   -0.707  0.0070
## SpatialBack    0.84   0.101   -0.507  0.0085
## NumLett     -399.56 195.024    3.172 14.9139
## ColShape    -318.26 159.535    1.957 12.0597
## CatSwitch   -245.36 135.915    0.368 10.3037
## FR1            0.63   0.071    0.338  0.0054
## FR2            0.67   0.083    0.054  0.0063
## FR3            0.68   0.088    0.161  0.0067
## FR4            0.70   0.098   -0.221  0.0074
## SD1            0.67   0.129   -1.131  0.0098
## SD2            0.77   0.138   -0.327  0.0105
## SD3            0.78   0.124    0.528  0.0094
## SD4            0.79   0.131    1.303  0.0099
mean sd kurtosis se
Antisaccade 0.7507246 0.1434301 -0.6112679 0.0113039
StroopPerf 0.9491435 0.0664097 12.9195476 0.0050058
SSRTavg -280.0650482 99.5432562 1.4029271 8.3830544
LetMem 0.7161578 0.1360090 0.3785893 0.0102813
KeepTrack 0.7909182 0.0899232 -0.7068257 0.0069585
SpatialBack 0.8445645 0.1013671 -0.5070834 0.0084767
NumLett -399.5594896 195.0239674 3.1722474 14.9138555
ColShape -318.2554522 159.5351990 1.9574696 12.0597275
CatSwitch -245.3623021 135.9154801 0.3684109 10.3037260
FR1 0.6330925 0.0708614 0.3380205 0.0053875
FR2 0.6715318 0.0828865 0.0543777 0.0063017
FR3 0.6838873 0.0883038 0.1607651 0.0067136
FR4 0.6955425 0.0978952 -0.2209053 0.0074428
SD1 0.6663589 0.1290260 -1.1305562 0.0098097
SD2 0.7679913 0.1379110 -0.3267983 0.0104852
SD3 0.7845376 0.1238585 0.5275628 0.0094168
SD4 0.7895954 0.1307547 1.3029919 0.0099411
#convert Subj variable from numeric to factor
data$Subj<-as.factor(data$Subj)
#Standardize all columns in the data, except for Subj and category blocks
data[,c(2:10)]<-scale(data[,c(2:10)])
head(data)

Measurement model looking at whether SD and FR fits linear model

Latent Growth Model for SD category

Bad fit indices

sdcat<-'
i=~1*SD1+1*SD2+1*SD3+1*SD4
s=~0*SD1+1*SD2+2*SD3+3*SD4
'
sdcatfit <- growth(sdcat, data, missing='ml')
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   86 128 175
summary(sdcatfit, fit.measures=T, standardized=T, rsquare=T)
## lavaan 0.6-3 ended normally after 74 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                          9
## 
##                                                   Used       Total
##   Number of observations                           173         176
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     115.897
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              553.253
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.797
##   Tucker-Lewis Index (TLI)                       0.757
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                649.064
##   Loglikelihood unrestricted model (H1)        707.012
## 
##   Number of free parameters                          9
##   Akaike (AIC)                               -1280.127
##   Bayesian (BIC)                             -1251.748
##   Sample-size adjusted Bayesian (BIC)        -1280.247
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.358
##   90 Percent Confidence Interval          0.303  0.416
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.169
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Observed information based on                Hessian
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   i =~                                                                  
##     SD1               1.000                               0.110    0.731
##     SD2               1.000                               0.110    0.845
##     SD3               1.000                               0.110    0.897
##     SD4               1.000                               0.110    0.825
##   s =~                                                                  
##     SD1               0.000                               0.000    0.000
##     SD2               1.000                               0.023    0.178
##     SD3               2.000                               0.047    0.378
##     SD4               3.000                               0.070    0.522
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   i ~~                                                                  
##     s                -0.000    0.001   -0.577    0.564   -0.113   -0.113
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SD1               0.000                               0.000    0.000
##    .SD2               0.000                               0.000    0.000
##    .SD3               0.000                               0.000    0.000
##    .SD4               0.000                               0.000    0.000
##     i                 0.717    0.011   64.760    0.000    6.505    6.505
##     s                 0.028    0.004    7.498    0.000    1.223    1.223
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .SD1               0.011    0.002    6.157    0.000    0.011    0.465
##    .SD2               0.005    0.001    6.553    0.000    0.005    0.289
##    .SD3               0.002    0.000    4.644    0.000    0.002    0.129
##    .SD4               0.003    0.001    3.524    0.000    0.003    0.143
##     i                 0.012    0.002    6.283    0.000    1.000    1.000
##     s                 0.001    0.000    2.502    0.012    1.000    1.000
## 
## R-Square:
##                    Estimate
##     SD1               0.535
##     SD2               0.711
##     SD3               0.871
##     SD4               0.857

Latent Growth Model for FR category

Not so bad, but not optimal model fit because of RMSEA

frcat<-'
i=~1*FR1+1*FR2+1*FR3+1*FR4
s=~0*FR1+1*FR2+2*FR3+3*FR4
'
frcatfit <- growth(frcat, data, missing='ml')
## Warning in lav_data_full(data = data, group = group, cluster = cluster, : lavaan WARNING: some cases are empty and will be ignored:
##   91 116 133
summary(frcatfit, fit.measures=T, standardized=T, rsquare=T)
## lavaan 0.6-3 ended normally after 88 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                          9
## 
##                                                   Used       Total
##   Number of observations                           173         176
##   Number of missing patterns                         1
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                      18.535
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.002
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              287.656
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.952
##   Tucker-Lewis Index (TLI)                       0.942
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)                865.310
##   Loglikelihood unrestricted model (H1)        874.577
## 
##   Number of free parameters                          9
##   Akaike (AIC)                               -1712.619
##   Bayesian (BIC)                             -1684.240
##   Sample-size adjusted Bayesian (BIC)        -1712.739
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.125
##   90 Percent Confidence Interval          0.068  0.188
##   P-value RMSEA <= 0.05                          0.019
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.066
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Observed information based on                Hessian
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   i =~                                                                  
##     FR1               1.000                               0.053    0.729
##     FR2               1.000                               0.053    0.668
##     FR3               1.000                               0.053    0.610
##     FR4               1.000                               0.053    0.536
##   s =~                                                                  
##     FR1               0.000                               0.000    0.000
##     FR2               1.000                               0.023    0.287
##     FR3               2.000                               0.046    0.525
##     FR4               3.000                               0.069    0.692
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   i ~~                                                                  
##     s                 0.000    0.000    0.222    0.824    0.039    0.039
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .FR1               0.000                               0.000    0.000
##    .FR2               0.000                               0.000    0.000
##    .FR3               0.000                               0.000    0.000
##    .FR4               0.000                               0.000    0.000
##     i                 0.641    0.005  120.318    0.000   12.034   12.034
##     s                 0.020    0.002    8.080    0.000    0.864    0.864
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .FR1               0.003    0.001    4.750    0.000    0.003    0.469
##    .FR2               0.003    0.000    7.444    0.000    0.003    0.456
##    .FR3               0.002    0.000    6.409    0.000    0.002    0.328
##    .FR4               0.002    0.001    3.399    0.001    0.002    0.204
##     i                 0.003    0.001    5.156    0.000    1.000    1.000
##     s                 0.001    0.000    3.848    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     FR1               0.531
##     FR2               0.544
##     FR3               0.672
##     FR4               0.796

Structural Model where EF predict i and s of SD

Same as seen in measurement model, not good fit. i and s are both significant, and both EF components siginificantly prefict i of FR learning, but neither significantly predict s.

sdmodel<- '
Inhibit=~StroopPerf+SSRTavg+Antisaccade+KeepTrack+SpatialBack+LetMem
Shift=~ NumLett+ColShape+CatSwitch
i~Inhibit+Shift
s~Inhibit+Shift

i=~1*SD1+1*SD2+1*SD3+1*SD4
s=~0*SD1+1*SD2+2*SD3+3*SD4
'

sdfit <- growth(sdmodel, data, missing='ml')
summary(sdfit, fit.measures=T, standardized=T, rsquare=T)
## lavaan 0.6-3 ended normally after 124 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         34
## 
##   Number of observations                           176
##   Number of missing patterns                        20
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     181.922
##   Degrees of freedom                                70
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              818.597
##   Degrees of freedom                                78
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.849
##   Tucker-Lewis Index (TLI)                       0.832
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1351.049
##   Loglikelihood unrestricted model (H1)      -1260.088
## 
##   Number of free parameters                         34
##   Akaike (AIC)                                2770.098
##   Bayesian (BIC)                              2877.895
##   Sample-size adjusted Bayesian (BIC)         2770.225
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.095
##   90 Percent Confidence Interval          0.078  0.112
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.080
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Observed information based on                Hessian
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit =~                                                            
##     StroopPerf        1.000                               0.209    0.210
##     SSRTavg           0.762    0.576    1.322    0.186    0.160    0.160
##     Antisaccade       3.103    1.385    2.240    0.025    0.650    0.652
##     KeepTrack         1.694    0.840    2.016    0.044    0.355    0.356
##     SpatialBack       2.764    1.256    2.201    0.028    0.579    0.574
##     LetMem            0.865    0.579    1.493    0.135    0.181    0.182
##   Shift =~                                                              
##     NumLett           1.000                               0.756    0.757
##     ColShape          0.949    0.148    6.394    0.000    0.717    0.720
##     CatSwitch         0.691    0.131    5.287    0.000    0.523    0.524
##   i =~                                                                  
##     SD1               1.000                               0.111    0.736
##     SD2               1.000                               0.111    0.850
##     SD3               1.000                               0.111    0.897
##     SD4               1.000                               0.111    0.832
##   s =~                                                                  
##     SD1               0.000                               0.000    0.000
##     SD2               1.000                               0.024    0.185
##     SD3               2.000                               0.048    0.390
##     SD4               3.000                               0.072    0.543
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   i ~                                                                   
##     Inhibit           0.449    0.220    2.036    0.042    0.850    0.850
##     Shift            -0.058    0.030   -1.950    0.051   -0.397   -0.397
##   s ~                                                                   
##     Inhibit          -0.001    0.029   -0.038    0.970   -0.009   -0.009
##     Shift            -0.001    0.007   -0.150    0.881   -0.035   -0.035
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit ~~                                                            
##     Shift             0.096    0.045    2.146    0.032    0.604    0.604
##  .i ~~                                                                  
##    .s                -0.000    0.001   -0.637    0.524   -0.171   -0.171
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.000                               0.000    0.000
##    .SSRTavg           0.000                               0.000    0.000
##    .Antisaccade       0.000                               0.000    0.000
##    .KeepTrack         0.000                               0.000    0.000
##    .SpatialBack       0.000                               0.000    0.000
##    .LetMem            0.000                               0.000    0.000
##    .NumLett           0.000                               0.000    0.000
##    .ColShape          0.000                               0.000    0.000
##    .CatSwitch         0.000                               0.000    0.000
##    .SD1               0.000                               0.000    0.000
##    .SD2               0.000                               0.000    0.000
##    .SD3               0.000                               0.000    0.000
##    .SD4               0.000                               0.000    0.000
##     Inhibit          -0.013    0.022   -0.591    0.555   -0.062   -0.062
##     Shift            -0.007    0.067   -0.111    0.911   -0.010   -0.010
##    .i                 0.722    0.012   61.966    0.000    6.530    6.530
##    .s                 0.028    0.004    7.377    0.000    1.172    1.172
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.950    0.104    9.178    0.000    0.950    0.956
##    .SSRTavg           0.968    0.117    8.296    0.000    0.968    0.974
##    .Antisaccade       0.571    0.099    5.782    0.000    0.571    0.575
##    .KeepTrack         0.869    0.102    8.525    0.000    0.869    0.874
##    .SpatialBack       0.683    0.104    6.600    0.000    0.683    0.671
##    .LetMem            0.961    0.105    9.191    0.000    0.961    0.967
##    .NumLett           0.424    0.091    4.666    0.000    0.424    0.426
##    .ColShape          0.479    0.087    5.486    0.000    0.479    0.482
##    .CatSwitch         0.722    0.090    7.984    0.000    0.722    0.725
##    .SD1               0.010    0.002    6.141    0.000    0.010    0.459
##    .SD2               0.005    0.001    6.507    0.000    0.005    0.286
##    .SD3               0.002    0.000    4.909    0.000    0.002    0.138
##    .SD4               0.002    0.001    3.256    0.001    0.002    0.134
##     Inhibit           0.044    0.038    1.164    0.244    1.000    1.000
##     Shift             0.571    0.125    4.554    0.000    1.000    1.000
##    .i                 0.006    0.002    2.964    0.003    0.528    0.528
##    .s                 0.001    0.000    2.666    0.008    0.998    0.998
## 
## R-Square:
##                    Estimate
##     StroopPerf        0.044
##     SSRTavg           0.026
##     Antisaccade       0.425
##     KeepTrack         0.126
##     SpatialBack       0.329
##     LetMem            0.033
##     NumLett           0.574
##     ColShape          0.518
##     CatSwitch         0.275
##     SD1               0.541
##     SD2               0.714
##     SD3               0.862
##     SD4               0.866
##     i                 0.472
##     s                 0.002

Structural Model where EF predict i and s of FR

Actually the fit is good here. i and s are both significant, but neither of the EF components siginificantly prefict FR learning

frmodel<- '
Inhibit=~StroopPerf+SSRTavg+Antisaccade+KeepTrack+SpatialBack+LetMem
Shift=~ NumLett+ColShape+CatSwitch
i~Inhibit+Shift
s~Inhibit+Shift

i=~1*FR1+1*FR2+1*FR3+1*FR4
s=~0*FR1+1*FR2+2*FR3+3*FR4
'

frfit <- growth(frmodel, data, missing='ml')
summary(frfit, fit.measures=T, standardized=T, rsquare=T)
## lavaan 0.6-3 ended normally after 160 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         34
## 
##   Number of observations                           176
##   Number of missing patterns                        20
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                      85.250
##   Degrees of freedom                                70
##   P-value (Chi-square)                           0.104
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic              540.364
##   Degrees of freedom                                78
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.967
##   Tucker-Lewis Index (TLI)                       0.963
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1141.466
##   Loglikelihood unrestricted model (H1)      -1098.841
## 
##   Number of free parameters                         34
##   Akaike (AIC)                                2350.931
##   Bayesian (BIC)                              2458.728
##   Sample-size adjusted Bayesian (BIC)         2351.058
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.035
##   90 Percent Confidence Interval          0.000  0.059
##   P-value RMSEA <= 0.05                          0.831
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.064
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Observed information based on                Hessian
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit =~                                                            
##     StroopPerf        1.000                               0.188    0.188
##     SSRTavg           1.146    0.791    1.448    0.148    0.215    0.216
##     Antisaccade       3.586    1.878    1.910    0.056    0.673    0.673
##     KeepTrack         1.900    1.083    1.755    0.079    0.356    0.357
##     SpatialBack       2.739    1.469    1.865    0.062    0.514    0.512
##     LetMem            1.242    0.817    1.520    0.128    0.233    0.234
##   Shift =~                                                              
##     NumLett           1.000                               0.761    0.763
##     ColShape          0.944    0.149    6.353    0.000    0.719    0.721
##     CatSwitch         0.676    0.128    5.294    0.000    0.515    0.516
##   i =~                                                                  
##     FR1               1.000                               0.054    0.740
##     FR2               1.000                               0.054    0.671
##     FR3               1.000                               0.054    0.612
##     FR4               1.000                               0.054    0.544
##   s =~                                                                  
##     FR1               0.000                               0.000    0.000
##     FR2               1.000                               0.023    0.294
##     FR3               2.000                               0.047    0.535
##     FR4               3.000                               0.070    0.713
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   i ~                                                                   
##     Inhibit           0.134    0.088    1.510    0.131    0.466    0.466
##     Shift            -0.003    0.013   -0.246    0.806   -0.046   -0.046
##   s ~                                                                   
##     Inhibit           0.034    0.031    1.091    0.275    0.273    0.273
##     Shift            -0.003    0.006   -0.441    0.659   -0.086   -0.086
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit ~~                                                            
##     Shift             0.087    0.047    1.862    0.063    0.610    0.610
##  .i ~~                                                                  
##    .s                -0.000    0.000   -0.528    0.597   -0.104   -0.104
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.000                               0.000    0.000
##    .SSRTavg           0.000                               0.000    0.000
##    .Antisaccade       0.000                               0.000    0.000
##    .KeepTrack         0.000                               0.000    0.000
##    .SpatialBack       0.000                               0.000    0.000
##    .LetMem            0.000                               0.000    0.000
##    .NumLett           0.000                               0.000    0.000
##    .ColShape          0.000                               0.000    0.000
##    .CatSwitch         0.000                               0.000    0.000
##    .FR1               0.000                               0.000    0.000
##    .FR2               0.000                               0.000    0.000
##    .FR3               0.000                               0.000    0.000
##    .FR4               0.000                               0.000    0.000
##     Inhibit          -0.009    0.019   -0.440    0.660   -0.046   -0.046
##     Shift            -0.008    0.067   -0.122    0.903   -0.011   -0.011
##    .i                 0.642    0.005  120.947    0.000   11.947   11.947
##    .s                 0.020    0.002    8.173    0.000    0.857    0.857
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.959    0.105    9.171    0.000    0.959    0.965
##    .SSRTavg           0.946    0.116    8.125    0.000    0.946    0.953
##    .Antisaccade       0.546    0.111    4.910    0.000    0.546    0.547
##    .KeepTrack         0.869    0.104    8.339    0.000    0.869    0.872
##    .SpatialBack       0.742    0.108    6.872    0.000    0.742    0.738
##    .LetMem            0.940    0.104    9.029    0.000    0.940    0.945
##    .NumLett           0.417    0.091    4.582    0.000    0.417    0.419
##    .ColShape          0.477    0.088    5.432    0.000    0.477    0.480
##    .CatSwitch         0.730    0.090    8.098    0.000    0.730    0.734
##    .FR1               0.002    0.001    4.620    0.000    0.002    0.452
##    .FR2               0.003    0.000    7.497    0.000    0.003    0.460
##    .FR3               0.003    0.000    6.523    0.000    0.003    0.334
##    .FR4               0.002    0.001    3.161    0.002    0.002    0.189
##     Inhibit           0.035    0.036    0.991    0.322    1.000    1.000
##     Shift             0.580    0.127    4.579    0.000    1.000    1.000
##    .i                 0.002    0.001    4.212    0.000    0.806    0.806
##    .s                 0.001    0.000    3.810    0.000    0.947    0.947
## 
## R-Square:
##                    Estimate
##     StroopPerf        0.035
##     SSRTavg           0.047
##     Antisaccade       0.453
##     KeepTrack         0.128
##     SpatialBack       0.262
##     LetMem            0.055
##     NumLett           0.581
##     ColShape          0.520
##     CatSwitch         0.266
##     FR1               0.548
##     FR2               0.540
##     FR3               0.666
##     FR4               0.811
##     i                 0.194
##     s                 0.053

Structural Model where EF predict both SD and FR

With equality constraints for i and s across categories

equalmodel<- '
Inhibit=~StroopPerf+SSRTavg+Antisaccade+KeepTrack+SpatialBack+LetMem
Shift=~ NumLett+ColShape+CatSwitch
NRD_i~d1*Inhibit+d2*Shift
NRD_s~d3*Inhibit+d4*Shift

NRD_i=~1*FR1+1*FR2+1*FR3+1*FR4
NRD_s=~0*FR1+1*FR2+2*FR3+3*FR4

RD_i~d1*Inhibit+d2*Shift
RD_s~d3*Inhibit+d4*Shift

RD_i=~1*SD1+1*SD2+1*SD3+1*SD4
RD_s=~0*SD1+1*SD2+2*SD3+3*SD4
'

equalfit <- growth(equalmodel, data, missing='ml')
summary(equalfit, fit.measures=T, standardized=T, rsquare=T)
## lavaan 0.6-3 ended normally after 306 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         51
##   Number of equality constraints                     4
## 
##   Number of observations                           176
##   Number of missing patterns                        21
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     265.381
##   Degrees of freedom                               123
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             1191.672
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.865
##   Tucker-Lewis Index (TLI)                       0.851
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -475.492
##   Loglikelihood unrestricted model (H1)       -342.802
## 
##   Number of free parameters                         47
##   Akaike (AIC)                                1044.985
##   Bayesian (BIC)                              1193.997
##   Sample-size adjusted Bayesian (BIC)         1045.160
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.081
##   90 Percent Confidence Interval          0.068  0.094
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.084
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Observed information based on                Hessian
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit =~                                                            
##     StroopPerf        1.000                               0.207    0.207
##     SSRTavg           1.116    0.690    1.617    0.106    0.230    0.231
##     Antisaccade       3.167    1.479    2.141    0.032    0.654    0.655
##     KeepTrack         1.601    0.848    1.887    0.059    0.331    0.331
##     SpatialBack       2.634    1.246    2.115    0.034    0.544    0.542
##     LetMem            1.038    0.656    1.581    0.114    0.214    0.215
##   Shift =~                                                              
##     NumLett           1.000                               0.758    0.759
##     ColShape          0.950    0.151    6.297    0.000    0.720    0.723
##     CatSwitch         0.682    0.129    5.276    0.000    0.517    0.519
##   NRD_i =~                                                              
##     FR1               1.000                               0.057    0.767
##     FR2               1.000                               0.057    0.693
##     FR3               1.000                               0.057    0.634
##     FR4               1.000                               0.057    0.572
##   NRD_s =~                                                              
##     FR1               0.000                               0.000    0.000
##     FR2               1.000                               0.024    0.293
##     FR3               2.000                               0.048    0.536
##     FR4               3.000                               0.072    0.725
##   RD_i =~                                                               
##     SD1               1.000                               0.105    0.718
##     SD2               1.000                               0.105    0.830
##     SD3               1.000                               0.105    0.881
##     SD4               1.000                               0.105    0.807
##   RD_s =~                                                               
##     SD1               0.000                               0.000    0.000
##     SD2               1.000                               0.024    0.191
##     SD3               2.000                               0.048    0.405
##     SD4               3.000                               0.072    0.556
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NRD_i ~                                                               
##     Inhibit   (d1)    0.186    0.097    1.910    0.056    0.678    0.678
##     Shift     (d2)   -0.013    0.014   -0.942    0.346   -0.171   -0.171
##   NRD_s ~                                                               
##     Inhibit   (d3)    0.021    0.021    1.016    0.309    0.181    0.181
##     Shift     (d4)   -0.002    0.005   -0.531    0.595   -0.077   -0.077
##   RD_i ~                                                                
##     Inhibit   (d1)    0.186    0.097    1.910    0.056    0.367    0.367
##     Shift     (d2)   -0.013    0.014   -0.942    0.346   -0.093   -0.093
##   RD_s ~                                                                
##     Inhibit   (d3)    0.021    0.021    1.016    0.309    0.180    0.180
##     Shift     (d4)   -0.002    0.005   -0.531    0.595   -0.077   -0.077
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit ~~                                                            
##     Shift             0.094    0.045    2.066    0.039    0.599    0.599
##  .NRD_i ~~                                                              
##    .NRD_s            -0.000    0.000   -0.744    0.457   -0.150   -0.150
##    .RD_i              0.001    0.001    0.815    0.415    0.135    0.135
##    .RD_s              0.000    0.000    0.077    0.939    0.015    0.015
##  .NRD_s ~~                                                              
##    .RD_i              0.000    0.000    1.004    0.316    0.136    0.136
##    .RD_s             -0.000    0.000   -0.486    0.627   -0.084   -0.084
##  .RD_i ~~                                                               
##    .RD_s             -0.000    0.000   -0.842    0.400   -0.177   -0.177
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.000                               0.000    0.000
##    .SSRTavg           0.000                               0.000    0.000
##    .Antisaccade       0.000                               0.000    0.000
##    .KeepTrack         0.000                               0.000    0.000
##    .SpatialBack       0.000                               0.000    0.000
##    .LetMem            0.000                               0.000    0.000
##    .NumLett           0.000                               0.000    0.000
##    .ColShape          0.000                               0.000    0.000
##    .CatSwitch         0.000                               0.000    0.000
##    .FR1               0.000                               0.000    0.000
##    .FR2               0.000                               0.000    0.000
##    .FR3               0.000                               0.000    0.000
##    .FR4               0.000                               0.000    0.000
##    .SD1               0.000                               0.000    0.000
##    .SD2               0.000                               0.000    0.000
##    .SD3               0.000                               0.000    0.000
##    .SD4               0.000                               0.000    0.000
##     Inhibit          -0.011    0.022   -0.509    0.611   -0.053   -0.053
##     Shift            -0.008    0.067   -0.120    0.904   -0.011   -0.011
##    .NRD_i             0.643    0.006  115.885    0.000   11.337   11.337
##    .NRD_s             0.020    0.002    8.167    0.000    0.839    0.839
##    .RD_i              0.718    0.011   66.426    0.000    6.863    6.863
##    .RD_s              0.029    0.004    7.533    0.000    1.197    1.197
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.952    0.104    9.157    0.000    0.952    0.957
##    .SSRTavg           0.939    0.115    8.136    0.000    0.939    0.946
##    .Antisaccade       0.568    0.104    5.461    0.000    0.568    0.570
##    .KeepTrack         0.886    0.104    8.502    0.000    0.886    0.890
##    .SpatialBack       0.710    0.104    6.801    0.000    0.710    0.706
##    .LetMem            0.948    0.104    9.103    0.000    0.948    0.954
##    .NumLett           0.422    0.092    4.599    0.000    0.422    0.424
##    .ColShape          0.474    0.088    5.362    0.000    0.474    0.478
##    .CatSwitch         0.727    0.090    8.060    0.000    0.727    0.731
##    .FR1               0.002    0.001    4.428    0.000    0.002    0.412
##    .FR2               0.003    0.000    7.517    0.000    0.003    0.448
##    .FR3               0.003    0.000    6.582    0.000    0.003    0.333
##    .FR4               0.002    0.001    2.940    0.003    0.002    0.175
##    .SD1               0.010    0.002    6.082    0.000    0.010    0.484
##    .SD2               0.005    0.001    6.596    0.000    0.005    0.313
##    .SD3               0.002    0.000    4.796    0.000    0.002    0.144
##    .SD4               0.002    0.001    3.367    0.001    0.002    0.147
##     Inhibit           0.043    0.038    1.122    0.262    1.000    1.000
##     Shift             0.575    0.127    4.530    0.000    1.000    1.000
##    .NRD_i             0.002    0.001    3.565    0.000    0.650    0.650
##    .NRD_s             0.001    0.000    4.053    0.000    0.978    0.978
##    .RD_i              0.010    0.002    5.393    0.000    0.897    0.897
##    .RD_s              0.001    0.000    2.614    0.009    0.978    0.978
## 
## R-Square:
##                    Estimate
##     StroopPerf        0.043
##     SSRTavg           0.054
##     Antisaccade       0.430
##     KeepTrack         0.110
##     SpatialBack       0.294
##     LetMem            0.046
##     NumLett           0.576
##     ColShape          0.522
##     CatSwitch         0.269
##     FR1               0.588
##     FR2               0.552
##     FR3               0.667
##     FR4               0.825
##     SD1               0.516
##     SD2               0.687
##     SD3               0.856
##     SD4               0.853
##     NRD_i             0.350
##     NRD_s             0.022
##     RD_i              0.103
##     RD_s              0.022

unconstrained

allmodel<- '
Inhibit=~StroopPerf+SSRTavg+Antisaccade+KeepTrack+SpatialBack+LetMem
Shift=~ NumLett+ColShape+CatSwitch
NRD_i~Inhibit+Shift
NRD_s~Inhibit+Shift

NRD_i=~1*FR1+1*FR2+1*FR3+1*FR4
NRD_s=~0*FR1+1*FR2+2*FR3+3*FR4

RD_i~Inhibit+Shift
RD_s~Inhibit+Shift

RD_i=~1*SD1+1*SD2+1*SD3+1*SD4
RD_s=~0*SD1+1*SD2+2*SD3+3*SD4
'

allfit <- growth(allmodel, data, missing='ml')
summary(allfit, fit.measures=T, standardized=T, rsquare=T)
## lavaan 0.6-3 ended normally after 299 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         51
## 
##   Number of observations                           176
##   Number of missing patterns                        21
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     251.297
##   Degrees of freedom                               119
##   P-value (Chi-square)                           0.000
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             1191.672
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.875
##   Tucker-Lewis Index (TLI)                       0.857
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -468.450
##   Loglikelihood unrestricted model (H1)       -342.802
## 
##   Number of free parameters                         51
##   Akaike (AIC)                                1038.900
##   Bayesian (BIC)                              1200.595
##   Sample-size adjusted Bayesian (BIC)         1039.090
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.079
##   90 Percent Confidence Interval          0.066  0.093
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Observed information based on                Hessian
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit =~                                                            
##     StroopPerf        1.000                               0.220    0.221
##     SSRTavg           0.884    0.575    1.537    0.124    0.195    0.195
##     Antisaccade       2.965    1.256    2.361    0.018    0.653    0.655
##     KeepTrack         1.481    0.729    2.031    0.042    0.326    0.327
##     SpatialBack       2.588    1.116    2.319    0.020    0.570    0.567
##     LetMem            0.858    0.545    1.573    0.116    0.189    0.189
##   Shift =~                                                              
##     NumLett           1.000                               0.756    0.758
##     ColShape          0.953    0.151    6.329    0.000    0.721    0.723
##     CatSwitch         0.684    0.130    5.272    0.000    0.517    0.519
##   NRD_i =~                                                              
##     FR1               1.000                               0.054    0.751
##     FR2               1.000                               0.054    0.674
##     FR3               1.000                               0.054    0.614
##     FR4               1.000                               0.054    0.550
##   NRD_s =~                                                              
##     FR1               0.000                               0.000    0.000
##     FR2               1.000                               0.024    0.298
##     FR3               2.000                               0.048    0.543
##     FR4               3.000                               0.072    0.730
##   RD_i =~                                                               
##     SD1               1.000                               0.111    0.737
##     SD2               1.000                               0.111    0.849
##     SD3               1.000                               0.111    0.896
##     SD4               1.000                               0.111    0.831
##   RD_s =~                                                               
##     SD1               0.000                               0.000    0.000
##     SD2               1.000                               0.024    0.184
##     SD3               2.000                               0.048    0.389
##     SD4               3.000                               0.072    0.542
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NRD_i ~                                                               
##     Inhibit           0.117    0.067    1.749    0.080    0.476    0.476
##     Shift            -0.003    0.013   -0.248    0.804   -0.044   -0.044
##   NRD_s ~                                                               
##     Inhibit           0.025    0.024    1.046    0.296    0.232    0.232
##     Shift            -0.002    0.006   -0.322    0.747   -0.060   -0.060
##   RD_i ~                                                                
##     Inhibit           0.420    0.196    2.142    0.032    0.836    0.836
##     Shift            -0.054    0.029   -1.866    0.062   -0.369   -0.369
##   RD_s ~                                                                
##     Inhibit          -0.001    0.027   -0.029    0.977   -0.007   -0.007
##     Shift            -0.001    0.007   -0.163    0.871   -0.037   -0.037
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit ~~                                                            
##     Shift             0.099    0.044    2.236    0.025    0.593    0.593
##  .NRD_i ~~                                                              
##    .NRD_s            -0.000    0.000   -0.644    0.520   -0.123   -0.123
##    .RD_i              0.000    0.001    0.639    0.523    0.127    0.127
##    .RD_s              0.000    0.000    0.224    0.823    0.040    0.040
##  .NRD_s ~~                                                              
##    .RD_i              0.000    0.000    0.482    0.630    0.088    0.088
##    .RD_s             -0.000    0.000   -0.381    0.703   -0.066   -0.066
##  .RD_i ~~                                                               
##    .RD_s             -0.000    0.001   -0.634    0.526   -0.169   -0.169
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.000                               0.000    0.000
##    .SSRTavg           0.000                               0.000    0.000
##    .Antisaccade       0.000                               0.000    0.000
##    .KeepTrack         0.000                               0.000    0.000
##    .SpatialBack       0.000                               0.000    0.000
##    .LetMem            0.000                               0.000    0.000
##    .NumLett           0.000                               0.000    0.000
##    .ColShape          0.000                               0.000    0.000
##    .CatSwitch         0.000                               0.000    0.000
##    .FR1               0.000                               0.000    0.000
##    .FR2               0.000                               0.000    0.000
##    .FR3               0.000                               0.000    0.000
##    .FR4               0.000                               0.000    0.000
##    .SD1               0.000                               0.000    0.000
##    .SD2               0.000                               0.000    0.000
##    .SD3               0.000                               0.000    0.000
##    .SD4               0.000                               0.000    0.000
##     Inhibit          -0.013    0.023   -0.584    0.559   -0.061   -0.061
##     Shift            -0.008    0.067   -0.114    0.909   -0.010   -0.010
##    .NRD_i             0.642    0.005  120.815    0.000   11.851   11.851
##    .NRD_s             0.020    0.002    8.182    0.000    0.843    0.843
##    .RD_i              0.721    0.012   62.236    0.000    6.522    6.522
##    .RD_s              0.028    0.004    7.415    0.000    1.179    1.179
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.946    0.103    9.167    0.000    0.946    0.951
##    .SSRTavg           0.956    0.116    8.239    0.000    0.956    0.962
##    .Antisaccade       0.567    0.099    5.757    0.000    0.567    0.571
##    .KeepTrack         0.889    0.103    8.600    0.000    0.889    0.893
##    .SpatialBack       0.686    0.102    6.759    0.000    0.686    0.679
##    .LetMem            0.958    0.104    9.182    0.000    0.958    0.964
##    .NumLett           0.424    0.092    4.630    0.000    0.424    0.426
##    .ColShape          0.474    0.088    5.377    0.000    0.474    0.477
##    .CatSwitch         0.727    0.090    8.042    0.000    0.727    0.731
##    .FR1               0.002    0.001    4.478    0.000    0.002    0.437
##    .FR2               0.003    0.000    7.534    0.000    0.003    0.463
##    .FR3               0.003    0.000    6.574    0.000    0.003    0.339
##    .FR4               0.002    0.001    2.970    0.003    0.002    0.179
##    .SD1               0.010    0.002    6.119    0.000    0.010    0.456
##    .SD2               0.005    0.001    6.543    0.000    0.005    0.287
##    .SD3               0.002    0.000    4.915    0.000    0.002    0.138
##    .SD4               0.002    0.001    3.262    0.001    0.002    0.135
##     Inhibit           0.048    0.039    1.236    0.217    1.000    1.000
##     Shift             0.572    0.126    4.535    0.000    1.000    1.000
##    .NRD_i             0.002    0.001    4.242    0.000    0.796    0.796
##    .NRD_s             0.001    0.000    3.995    0.000    0.959    0.959
##    .RD_i              0.006    0.002    3.002    0.003    0.531    0.531
##    .RD_s              0.001    0.000    2.667    0.008    0.998    0.998
## 
## R-Square:
##                    Estimate
##     StroopPerf        0.049
##     SSRTavg           0.038
##     Antisaccade       0.429
##     KeepTrack         0.107
##     SpatialBack       0.321
##     LetMem            0.036
##     NumLett           0.574
##     ColShape          0.523
##     CatSwitch         0.269
##     FR1               0.563
##     FR2               0.537
##     FR3               0.661
##     FR4               0.821
##     SD1               0.544
##     SD2               0.713
##     SD3               0.862
##     SD4               0.865
##     NRD_i             0.204
##     NRD_s             0.041
##     RD_i              0.469
##     RD_s              0.002

Chi-square difference test compare unconstrained and constrained

anova(allfit, equalfit)
semPaths(allfit, layout='tree')

Auto-regressive Paths Analysis of SD and FR

pathmodel<- '
Inhibit=~StroopPerf+SSRTavg+Antisaccade+KeepTrack+SpatialBack+LetMem
Shift=~ NumLett+ColShape+CatSwitch
NRD_i~Inhibit+Shift

NRD_i=~1*FR1+1*FR2+1*FR3+1*FR4

FR2~FR1
FR3~FR2
FR4~FR3

RD_i~Inhibit+Shift

RD_i=~1*SD1+1*SD2+1*SD3+1*SD4

SD2~SD1
SD3~SD2
SD4~SD3
'

pathfit <- growth(pathmodel, data, missing='ml')
summary(pathfit, fit.measures=T, standardized=T, rsquare=T)
## lavaan 0.6-3 ended normally after 194 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         44
## 
##   Number of observations                           176
##   Number of missing patterns                        21
## 
##   Estimator                                         ML
##   Model Fit Test Statistic                     176.268
##   Degrees of freedom                               126
##   P-value (Chi-square)                           0.002
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             1191.672
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.952
##   Tucker-Lewis Index (TLI)                       0.949
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -430.936
##   Loglikelihood unrestricted model (H1)       -342.802
## 
##   Number of free parameters                         44
##   Akaike (AIC)                                 949.871
##   Bayesian (BIC)                              1089.373
##   Sample-size adjusted Bayesian (BIC)          950.036
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.048
##   90 Percent Confidence Interval          0.029  0.063
##   P-value RMSEA <= 0.05                          0.580
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.075
## 
## Parameter Estimates:
## 
##   Information                                 Observed
##   Observed information based on                Hessian
##   Standard Errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit =~                                                            
##     StroopPerf        1.000                               0.218    0.219
##     SSRTavg           0.891    0.582    1.531    0.126    0.194    0.195
##     Antisaccade       2.949    1.265    2.332    0.020    0.643    0.645
##     KeepTrack         1.503    0.746    2.015    0.044    0.328    0.328
##     SpatialBack       2.677    1.162    2.305    0.021    0.584    0.580
##     LetMem            0.836    0.546    1.532    0.126    0.182    0.183
##   Shift =~                                                              
##     NumLett           1.000                               0.757    0.759
##     ColShape          0.951    0.149    6.390    0.000    0.720    0.723
##     CatSwitch         0.683    0.128    5.332    0.000    0.517    0.519
##   NRD_i =~                                                              
##     FR1               1.000                               0.059    0.710
##     FR2               1.000                               0.059    0.722
##     FR3               1.000                               0.059    0.699
##     FR4               1.000                               0.059    0.654
##   RD_i =~                                                               
##     SD1               1.000                               0.096    0.698
##     SD2               1.000                               0.096    0.726
##     SD3               1.000                               0.096    0.773
##     SD4               1.000                               0.096    0.750
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   NRD_i ~                                                               
##     Inhibit           0.144    0.074    1.930    0.054    0.530    0.530
##     Shift            -0.005    0.012   -0.410    0.682   -0.065   -0.065
##   FR2 ~                                                                 
##     FR1               0.065    0.009    6.935    0.000    0.065    0.066
##   FR3 ~                                                                 
##     FR2               0.080    0.009    8.873    0.000    0.080    0.077
##   FR4 ~                                                                 
##     FR3               0.098    0.009   10.385    0.000    0.098    0.091
##   RD_i ~                                                                
##     Inhibit           0.364    0.170    2.144    0.032    0.824    0.824
##     Shift            -0.049    0.023   -2.117    0.034   -0.382   -0.382
##   SD2 ~                                                                 
##     SD1               0.165    0.013   12.252    0.000    0.165    0.171
##   SD3 ~                                                                 
##     SD2               0.160    0.011   14.982    0.000    0.160    0.170
##   SD4 ~                                                                 
##     SD3               0.165    0.011   15.188    0.000    0.165    0.160
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Inhibit ~~                                                            
##     Shift             0.098    0.044    2.219    0.027    0.594    0.594
##  .NRD_i ~~                                                              
##    .RD_i              0.001    0.001    0.855    0.393    0.144    0.144
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.000                               0.000    0.000
##    .SSRTavg           0.000                               0.000    0.000
##    .Antisaccade       0.000                               0.000    0.000
##    .KeepTrack         0.000                               0.000    0.000
##    .SpatialBack       0.000                               0.000    0.000
##    .LetMem            0.000                               0.000    0.000
##    .NumLett           0.000                               0.000    0.000
##    .ColShape          0.000                               0.000    0.000
##    .CatSwitch         0.000                               0.000    0.000
##    .FR1               0.000                               0.000    0.000
##    .FR2               0.000                               0.000    0.000
##    .FR3               0.000                               0.000    0.000
##    .FR4               0.000                               0.000    0.000
##    .SD1               0.000                               0.000    0.000
##    .SD2               0.000                               0.000    0.000
##    .SD3               0.000                               0.000    0.000
##    .SD4               0.000                               0.000    0.000
##     Inhibit          -0.013    0.023   -0.590    0.555   -0.062   -0.062
##     Shift            -0.007    0.067   -0.110    0.912   -0.010   -0.010
##    .NRD_i             0.633    0.006  100.293    0.000   10.724   10.724
##    .RD_i              0.665    0.011   61.448    0.000    6.910    6.910
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .StroopPerf        0.947    0.103    9.169    0.000    0.947    0.952
##    .SSRTavg           0.956    0.116    8.241    0.000    0.956    0.962
##    .Antisaccade       0.581    0.098    5.937    0.000    0.581    0.585
##    .KeepTrack         0.888    0.104    8.582    0.000    0.888    0.892
##    .SpatialBack       0.673    0.101    6.660    0.000    0.673    0.664
##    .LetMem            0.961    0.105    9.194    0.000    0.961    0.967
##    .NumLett           0.423    0.090    4.684    0.000    0.423    0.424
##    .ColShape          0.475    0.088    5.410    0.000    0.475    0.478
##    .CatSwitch         0.727    0.090    8.078    0.000    0.727    0.731
##    .FR1               0.003    0.000    7.311    0.000    0.003    0.496
##    .FR2               0.003    0.000    7.047    0.000    0.003    0.406
##    .FR3               0.003    0.000    7.175    0.000    0.003    0.423
##    .FR4               0.004    0.001    7.589    0.000    0.004    0.474
##    .SD1               0.010    0.001    8.340    0.000    0.010    0.513
##    .SD2               0.005    0.001    7.508    0.000    0.005    0.271
##    .SD3               0.002    0.000    5.813    0.000    0.002    0.152
##    .SD4               0.003    0.000    6.750    0.000    0.003    0.192
##     Inhibit           0.047    0.039    1.220    0.223    1.000    1.000
##     Shift             0.573    0.125    4.578    0.000    1.000    1.000
##    .NRD_i             0.003    0.000    5.392    0.000    0.756    0.756
##    .RD_i              0.005    0.001    3.658    0.000    0.549    0.549
## 
## R-Square:
##                    Estimate
##     StroopPerf        0.048
##     SSRTavg           0.038
##     Antisaccade       0.415
##     KeepTrack         0.108
##     SpatialBack       0.336
##     LetMem            0.033
##     NumLett           0.576
##     ColShape          0.522
##     CatSwitch         0.269
##     FR1               0.504
##     FR2               0.594
##     FR3               0.577
##     FR4               0.526
##     SD1               0.487
##     SD2               0.729
##     SD3               0.848
##     SD4               0.808
##     NRD_i             0.244
##     RD_i              0.451
semPaths(pathfit,layout='tree')