# CARREGAR BIBLIOTECAS
library(summarytools)
library(qwraps2)
library(knitr)
library(Hmisc)
## Loading required package: lattice
## Loading required package: survival
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:summarytools':
##
## label, label<-
## The following objects are masked from 'package:base':
##
## format.pval, units
library(nortest)
library(data.table)
library(ggplot2)
library(tidyverse)
## -- Attaching packages --------------------------------------------------------- tidyverse 1.2.1 --
## v tibble 1.4.2 v purrr 0.2.5
## v tidyr 0.8.1 v dplyr 0.7.8
## v readr 1.1.1 v stringr 1.3.1
## v tibble 1.4.2 v forcats 0.3.0
## -- Conflicts ------------------------------------------------------------ tidyverse_conflicts() --
## x dplyr::between() masks data.table::between()
## x dplyr::filter() masks stats::filter()
## x dplyr::first() masks data.table::first()
## x dplyr::lag() masks stats::lag()
## x dplyr::last() masks data.table::last()
## x dplyr::src() masks Hmisc::src()
## x dplyr::summarize() masks Hmisc::summarize()
## x purrr::transpose() masks data.table::transpose()
# CARREGAR BANCO DE DADOS
bd_final = fread(file.choose()) # bd_final2_wide
#names(bd_final)
#glimpse(bd_final)
attach(bd_final)
# CRIAR/EDITAR VARIÁVEIS
#names(bd_final[,c(105:125,128:148)])
bd_final = bd_final %>% mutate(
scared = case_when(scared == 0 ~ 1,
scared == 1 ~ 2,
scared == 2 ~ 3,
scared == 3 ~ 4,
scared == 4 ~ 5),
terrified = case_when(terrified == 0 ~ 1,
terrified == 1 ~ 2,
terrified == 2 ~ 3,
terrified == 3 ~ 4,
terrified == 4 ~ 5),
nervous = case_when(nervous == 0 ~ 1,
nervous == 1 ~ 2,
nervous == 2 ~ 3,
nervous == 3 ~ 4,
nervous == 4 ~ 5),
restless = case_when(restless == 0 ~ 1,
restless == 1 ~ 2,
restless == 2 ~ 3,
restless == 3 ~ 4,
restless == 4 ~ 5),
trembling = case_when(trembling == 0 ~ 1,
trembling == 1 ~ 2,
trembling == 2 ~ 3,
trembling == 3 ~ 4,
trembling == 4 ~ 5),
angry = case_when(angry == 0 ~ 1,
angry == 1 ~ 2,
angry == 2 ~ 3,
angry == 3 ~ 4,
angry == 4 ~ 5),
unfriendly = case_when(unfriendly == 0 ~ 1,
unfriendly == 1 ~ 2,
unfriendly == 2 ~ 3,
unfriendly == 3 ~ 4,
unfriendly == 4 ~ 5),
irritable = case_when(irritable == 0 ~ 1,
irritable == 1 ~ 2,
irritable == 2 ~ 3,
irritable == 3 ~ 4,
irritable == 4 ~ 5),
fill_with_disdain = case_when(fill_with_disdain == 0 ~ 1,
fill_with_disdain == 1 ~ 2,
fill_with_disdain == 2 ~ 3,
fill_with_disdain == 3 ~ 4,
fill_with_disdain == 4 ~ 5),
bored = case_when(bored == 0 ~ 1,
bored == 1 ~ 2,
bored == 2 ~ 3,
bored == 3 ~ 4,
bored == 4 ~ 5),
hating = case_when(hating == 0 ~ 1,
hating == 1 ~ 2,
hating == 2 ~ 3,
hating == 3 ~ 4,
hating == 4 ~ 5),
proud = case_when(proud == 0 ~ 1,
proud == 1 ~ 2,
proud == 2 ~ 3,
proud == 3 ~ 4,
proud == 4 ~ 5),
strong = case_when(strong == 0 ~ 1,
strong == 1 ~ 2,
strong == 2 ~ 3,
strong == 3 ~ 4,
strong == 4 ~ 5),
audacious = case_when(audacious == 0 ~ 1,
audacious == 1 ~ 2,
audacious == 2 ~ 3,
audacious == 3 ~ 4,
audacious == 4 ~ 5),
confident = case_when(confident == 0 ~ 1,
confident == 1 ~ 2,
confident == 2 ~ 3,
confident == 3 ~ 4,
confident == 4 ~ 5),
fearless = case_when(fearless == 0 ~ 1,
fearless == 1 ~ 2,
fearless == 2 ~ 3,
fearless == 3 ~ 4,
fearless == 4 ~ 5),
calm = case_when(calm == 0 ~ 1,
calm == 1 ~ 2,
calm == 2 ~ 3,
calm == 3 ~ 4,
calm == 4 ~ 5),
relaxed = case_when(relaxed == 0 ~ 1,
relaxed == 1 ~ 2,
relaxed == 2 ~ 3,
relaxed == 3 ~ 4,
relaxed == 4 ~ 5),
freely = case_when(freely == 0 ~ 1,
freely == 1 ~ 2,
freely == 2 ~ 3,
freely == 3 ~ 4,
freely == 4 ~ 5),
scared_av2 = case_when(scared_av2 == 0 ~ 1,
scared_av2 == 1 ~ 2,
scared_av2 == 2 ~ 3,
scared_av2 == 3 ~ 4,
scared_av2 == 4 ~ 5),
terrified_av2 = case_when(terrified_av2 == 0 ~ 1,
terrified_av2 == 1 ~ 2,
terrified_av2 == 2 ~ 3,
terrified_av2 == 3 ~ 4,
terrified_av2 == 4 ~ 5),
nervous_av2 = case_when(nervous_av2 == 0 ~ 1,
nervous_av2 == 1 ~ 2,
nervous_av2 == 2 ~ 3,
nervous_av2 == 3 ~ 4,
nervous_av2 == 4 ~ 5),
restless_av2 = case_when(restless_av2 == 0 ~ 1,
restless_av2 == 1 ~ 2,
restless_av2 == 2 ~ 3,
restless_av2 == 3 ~ 4,
restless_av2 == 4 ~ 5),
trembling_av2 = case_when(trembling_av2 == 0 ~ 1,
trembling_av2 == 1 ~ 2,
trembling_av2 == 2 ~ 3,
trembling_av2 == 3 ~ 4,
trembling_av2 == 4 ~ 5),
angry_av2 = case_when(angry_av2 == 0 ~ 1,
angry_av2 == 1 ~ 2,
angry_av2 == 2 ~ 3,
angry_av2 == 3 ~ 4,
angry_av2 == 4 ~ 5),
unfriendly_av2 = case_when(unfriendly_av2 == 0 ~ 1,
unfriendly_av2 == 1 ~ 2,
unfriendly_av2 == 2 ~ 3,
unfriendly_av2 == 3 ~ 4,
unfriendly_av2 == 4 ~ 5),
irritable_av2 = case_when(irritable_av2 == 0 ~ 1,
irritable_av2 == 1 ~ 2,
irritable_av2 == 2 ~ 3,
irritable_av2 == 3 ~ 4,
irritable_av2 == 4 ~ 5),
fill_with_disdain_av2 = case_when(fill_with_disdain_av2 == 0 ~ 1,
fill_with_disdain_av2 == 1 ~ 2,
fill_with_disdain_av2 == 2 ~ 3,
fill_with_disdain_av2 == 3 ~ 4,
fill_with_disdain_av2 == 4 ~ 5),
bored_av2 = case_when(bored_av2 == 0 ~ 1,
bored_av2 == 1 ~ 2,
bored_av2 == 2 ~ 3,
bored_av2 == 3 ~ 4,
bored_av2 == 4 ~ 5),
hating_av2 = case_when(hating_av2 == 0 ~ 1,
hating_av2 == 1 ~ 2,
hating_av2 == 2 ~ 3,
hating_av2 == 3 ~ 4,
hating_av2 == 4 ~ 5),
proud_av2 = case_when(proud_av2 == 0 ~ 1,
proud_av2 == 1 ~ 2,
proud_av2 == 2 ~ 3,
proud_av2 == 3 ~ 4,
proud_av2 == 4 ~ 5),
strong_av2 = case_when(strong_av2 == 0 ~ 1,
strong_av2 == 1 ~ 2,
strong_av2 == 2 ~ 3,
strong_av2 == 3 ~ 4,
strong_av2 == 4 ~ 5),
audacious_av2 = case_when(audacious_av2 == 0 ~ 1,
audacious_av2 == 1 ~ 2,
audacious_av2 == 2 ~ 3,
audacious_av2 == 3 ~ 4,
audacious_av2 == 4 ~ 5),
confident_av2 = case_when(confident_av2 == 0 ~ 1,
confident_av2 == 1 ~ 2,
confident_av2 == 2 ~ 3,
confident_av2 == 3 ~ 4,
confident_av2 == 4 ~ 5),
fearless_av2 = case_when(fearless_av2 == 0 ~ 1,
fearless_av2 == 1 ~ 2,
fearless_av2 == 2 ~ 3,
fearless_av2 == 3 ~ 4,
fearless_av2 == 4 ~ 5),
calm_av2 = case_when(calm_av2 == 0 ~ 1,
calm_av2 == 1 ~ 2,
calm_av2 == 2 ~ 3,
calm_av2 == 3 ~ 4,
calm_av2 == 4 ~ 5),
relaxed_av2 = case_when(relaxed_av2 == 0 ~ 1,
relaxed_av2 == 1 ~ 2,
relaxed_av2 == 2 ~ 3,
relaxed_av2 == 3 ~ 4,
relaxed_av2 == 4 ~ 5),
freely_av2 = case_when(freely_av2 == 0 ~ 1,
freely_av2 == 1 ~ 2,
freely_av2 == 2 ~ 3,
freely_av2 == 3 ~ 4,
freely_av2 == 4 ~ 5))
bd_final = bd_final %>% mutate(
medo_av1 = scared + terrified + nervous + restless + trembling,
hostilidade_av1 = angry + unfriendly + irritable + fill_with_disdain + bored + hating,
assertividade_av1 = proud + strong + audacious + confident + fearless,
serenidade_av1 = calm + relaxed + freely,
medo_av2 = scared_av2 + terrified_av2 + nervous_av2 + restless_av2 + trembling_av2,
hostilidade_av2 = angry_av2 + unfriendly_av2 + irritable_av2 + fill_with_disdain_av2 +
bored_av2 + hating_av2,
assertividade_av2 = proud_av2 + strong_av2 + audacious_av2 + confident_av2 + fearless_av2,
serenidade_av2 = calm_av2 + relaxed_av2 + freely_av2)
bd_final = bd_final %>% mutate(
negative_affects_av1 = medo_av1 + hostilidade_av1,
positive_affects_av1 = assertividade_av1 + serenidade_av1,
negative_affects_av2 = medo_av2 + hostilidade_av2,
positive_affects_av2 = assertividade_av2 + serenidade_av2)
#<média/delta sono>
bd_final$md_sono_av1 <- rowMeans(bd_final[,c(150:172)], na.rm = T)
bd_final$md_sono_av2 <- rowMeans(bd_final[,c(173:195)], na.rm = T)
##############################
###### ANALISES PARTE 1 ######
##############################
detach(bd_final)
attach(bd_final)
# OVERVIEW (vars numericas)
bd_vars_num = bd_final %>% select(
age,weight,imc,height,height,ansiedade_apego,evitacao_apego,cuidado_materno_pnts,
cuidado_paterno_pnts,protecao_materno_pnts,protecao_paterno_pnts,cortisol_value,
cortisol_value_av2,hamilton_av1,hamilton_av2,medo_av1,hostilidade_av1,
assertividade_av1,serenidade_av1,medo_av2,hostilidade_av2,assertividade_av2,
serenidade_av2,negative_affects_av1,positive_affects_av1,negative_affects_av2,
positive_affects_av2,md_sono_av1,md_sono_av2)
print(
dfSummary(bd_vars_num, graph.magnif = 0.75),
method = "render")
print(
descr(bd_vars_num, transpose = TRUE, omit.headings = TRUE, style = "rmarkdown"),
method = "render") # stats = c("mean","sd","med","iqr","min","max","skewness","kurtosis")
|
Mean |
Std.Dev |
Min |
Q1 |
Median |
Q3 |
Max |
MAD |
IQR |
CV |
Skewness |
SE.Skewness |
Kurtosis |
N.Valid |
Pct.Valid |
|
age |
38.21 |
10.31 |
19.60 |
30.60 |
36.95 |
47.20 |
60.20 |
9.49 |
14.80 |
0.27 |
0.33 |
0.46 |
-0.68 |
26.00 |
100.00 |
|
weight |
83.01 |
17.81 |
56.00 |
66.00 |
84.00 |
92.50 |
135.00 |
19.27 |
25.38 |
0.21 |
0.71 |
0.46 |
0.63 |
26.00 |
100.00 |
|
imc |
26.90 |
5.39 |
17.28 |
24.54 |
26.19 |
28.09 |
41.67 |
2.63 |
3.41 |
0.20 |
0.83 |
0.46 |
0.66 |
26.00 |
100.00 |
|
height |
1.76 |
0.07 |
1.64 |
1.72 |
1.75 |
1.80 |
1.91 |
0.07 |
0.07 |
0.04 |
0.32 |
0.46 |
-0.47 |
26.00 |
100.00 |
|
ansiedade_apego |
24.23 |
6.54 |
12.00 |
22.00 |
25.00 |
29.00 |
35.00 |
5.19 |
6.75 |
0.27 |
-0.47 |
0.46 |
-0.68 |
26.00 |
100.00 |
|
evitacao_apego |
20.77 |
4.29 |
13.00 |
17.00 |
21.00 |
23.00 |
29.00 |
4.45 |
5.75 |
0.21 |
-0.07 |
0.46 |
-0.90 |
26.00 |
100.00 |
|
cuidado_materno_pnts |
22.00 |
8.30 |
5.00 |
15.00 |
20.50 |
30.00 |
36.00 |
8.15 |
14.25 |
0.38 |
0.08 |
0.46 |
-1.06 |
26.00 |
100.00 |
|
cuidado_paterno_pnts |
17.85 |
9.89 |
0.00 |
13.00 |
17.50 |
26.00 |
36.00 |
7.41 |
12.00 |
0.55 |
-0.09 |
0.46 |
-0.68 |
26.00 |
100.00 |
|
protecao_materno_pnts |
20.96 |
7.83 |
5.00 |
16.00 |
18.50 |
29.00 |
35.00 |
6.67 |
11.75 |
0.37 |
0.22 |
0.46 |
-1.00 |
26.00 |
100.00 |
|
protecao_paterno_pnts |
16.04 |
7.83 |
2.00 |
10.00 |
18.00 |
21.00 |
34.00 |
6.67 |
11.00 |
0.49 |
-0.11 |
0.46 |
-0.65 |
26.00 |
100.00 |
|
cortisol_value |
5.34 |
1.24 |
3.22 |
4.50 |
5.20 |
5.99 |
8.59 |
1.17 |
1.49 |
0.23 |
0.57 |
0.46 |
-0.07 |
25.00 |
96.15 |
|
cortisol_value_av2 |
4.45 |
0.93 |
2.89 |
3.85 |
4.34 |
4.72 |
6.84 |
0.67 |
0.84 |
0.21 |
0.54 |
0.46 |
0.01 |
26.00 |
100.00 |
|
hamilton_av1 |
29.23 |
9.21 |
14.00 |
23.00 |
28.50 |
34.00 |
49.00 |
8.15 |
10.75 |
0.32 |
0.55 |
0.46 |
-0.28 |
26.00 |
100.00 |
|
hamilton_av2 |
20.42 |
10.96 |
3.00 |
13.00 |
20.00 |
28.00 |
51.00 |
11.12 |
13.75 |
0.54 |
0.77 |
0.46 |
0.30 |
26.00 |
100.00 |
|
medo_av1 |
15.23 |
3.83 |
8.00 |
13.00 |
16.00 |
18.00 |
25.00 |
2.97 |
4.75 |
0.25 |
0.15 |
0.46 |
-0.10 |
26.00 |
100.00 |
|
hostilidade_av1 |
16.19 |
6.00 |
6.00 |
10.00 |
17.00 |
20.00 |
28.00 |
7.41 |
9.75 |
0.37 |
0.15 |
0.46 |
-1.06 |
26.00 |
100.00 |
|
assertividade_av1 |
10.35 |
3.63 |
5.00 |
8.00 |
10.50 |
13.00 |
18.00 |
3.71 |
4.75 |
0.35 |
0.18 |
0.46 |
-0.83 |
26.00 |
100.00 |
|
serenidade_av1 |
5.65 |
1.60 |
3.00 |
4.00 |
6.00 |
7.00 |
9.00 |
1.48 |
2.75 |
0.28 |
0.27 |
0.46 |
-0.60 |
26.00 |
100.00 |
|
medo_av2 |
11.42 |
3.98 |
5.00 |
8.00 |
11.00 |
14.00 |
19.00 |
4.45 |
5.75 |
0.35 |
0.21 |
0.46 |
-0.95 |
26.00 |
100.00 |
|
hostilidade_av2 |
12.65 |
5.24 |
6.00 |
9.00 |
12.50 |
14.00 |
25.00 |
5.19 |
5.00 |
0.41 |
0.80 |
0.46 |
-0.28 |
26.00 |
100.00 |
|
assertividade_av2 |
11.62 |
3.70 |
5.00 |
9.00 |
11.00 |
14.00 |
19.00 |
2.97 |
4.75 |
0.32 |
0.33 |
0.46 |
-0.69 |
26.00 |
100.00 |
|
serenidade_av2 |
7.27 |
2.05 |
4.00 |
6.00 |
7.00 |
9.00 |
12.00 |
2.22 |
3.00 |
0.28 |
0.16 |
0.46 |
-0.68 |
26.00 |
100.00 |
|
negative_affects_av1 |
31.42 |
8.96 |
18.00 |
23.00 |
33.00 |
37.00 |
53.00 |
11.12 |
13.50 |
0.29 |
0.32 |
0.46 |
-0.65 |
26.00 |
100.00 |
|
positive_affects_av1 |
16.00 |
4.70 |
8.00 |
13.00 |
16.00 |
19.00 |
27.00 |
4.45 |
6.00 |
0.29 |
0.22 |
0.46 |
-0.67 |
26.00 |
100.00 |
|
negative_affects_av2 |
24.08 |
8.00 |
11.00 |
17.00 |
24.00 |
28.00 |
42.00 |
8.15 |
10.75 |
0.33 |
0.48 |
0.46 |
-0.40 |
26.00 |
100.00 |
|
positive_affects_av2 |
18.88 |
5.18 |
9.00 |
15.00 |
18.50 |
23.00 |
28.00 |
5.93 |
7.75 |
0.27 |
0.13 |
0.46 |
-1.06 |
26.00 |
100.00 |
|
md_sono_av1 |
8.08 |
1.10 |
6.51 |
7.18 |
8.12 |
8.91 |
10.24 |
1.39 |
1.73 |
0.14 |
0.24 |
0.46 |
-1.21 |
25.00 |
96.15 |
|
md_sono_av2 |
7.80 |
1.13 |
6.22 |
6.93 |
7.64 |
8.27 |
10.54 |
1.05 |
1.33 |
0.15 |
0.71 |
0.46 |
-0.30 |
25.00 |
96.15 |
Generated by summarytools 0.8.8 (R version 3.5.1)
2018-12-03
# OVERVIEW (vars categoricas)
bd_vars_cat = bd_final %>% select(
gender, education_level, labor_status,
living_dt___0,living_dt___1,living_dt___2,living_dt___3,living_dt___4,living_dt___5,
children,children_amount,
health_issues___1,health_issues___2,health_issues___3,health_issues___4,
health_issues___5,health_issues___6,health_issues___7,health_issues___8,
psycho_treatment, previous_surgery,
physical_exercises,physical_exercices_freq,
physical_exercices_type___1,physical_exercices_type___2,
physical_exercices_type___3,physical_exercices_type___4,
physical_exercices_type___5,physical_exercices_type___6,
physical_exercices_type___7,physical_exercices_type___8,
physical_exercices_type___9,physical_exercices_type___10,physical_exercices_type___11,
snore_habit,snore_claims,sleep_difficulties,sleep_maintenance,sleep_satisfaction,
stay_at_home,being_alone,going_out,go_to_gym,reading,electronic_media)
col_names <- names(bd_vars_cat) # ver: str(bd_vars_cat)
bd_vars_cat[,names(bd_vars_cat)] = lapply(bd_vars_cat[,col_names], factor)
print(
dfSummary(bd_vars_cat, graph.magnif = 0.75),
method = "render")
# OVERVIEW (vars categoricas - MINI)
bd_vars_mini = bd_final %>% select(
mini_edm___0,mini_edm___1,mini_edm___2,mini_edm___3,
mini_distimia___1,mini_suicidio,
mini_hipomania___0,mini_hipomania___1,mini_hipomania___2,
mini_mania___0,mini_mania___1,mini_mania___2,
mini_panico___0,mini_panico___1,mini_panico___2,mini_panico___3,
mini_agorafobia___0,mini_agorafobia___1,mini_agorafobia___2,mini_agorafobia___3,
mini_agorafobia___4,mini_acompanha_psi,mini_medicacoes,
mini_fobia_social___1,mini_toc___1,mini_tept___1,
mini_alcool___0,mini_alcool___1,mini_alcool___2,
mini_substancio___0,mini_substancio___1,mini_substancio___2,
mini_psicose___0,mini_psicose___1,mini_psicose___2,
mini_bulimia___0,mini_bulimia___1,mini_bulimia___2,
mini_ansiedade___1,mini_personalidade___1)
col_names <- names(bd_vars_mini)
bd_vars_mini[,names(bd_vars_mini)] = lapply(bd_vars_mini[,col_names], factor)
print(
dfSummary(bd_vars_mini, graph.magnif = 0.75),
method = "render")
### <fazer descritivas para vars entrevistas inicial e final + recategorizar vars mini?>
##############################
###### ANALISES PARTE 2 ######
##############################
# TESTES DE NORMALIDADE (vars desfecho no baseline)
A = matrix(c(
round(lillie.test(cortisol_value)$p.value, 4), # ver: lillie.test(cortisol_value)
round(lillie.test(md_sono_av1)$p.value, 4),
round(lillie.test(hamilton_av1)$p.value, 4),
# round(lillie.test(ansiedade_apego)$p.value, 4), # só baseline
# round(lillie.test(evitacao_apego)$p.value, 4), # só baseline
round(lillie.test(negative_affects_av1)$p.value, 4),
round(lillie.test(positive_affects_av1)$p.value, 4),
round(lillie.test(medo_av1)$p.value, 4),
round(lillie.test(hostilidade_av1)$p.value, 4),
round(lillie.test(assertividade_av1)$p.value, 4),
round(lillie.test(serenidade_av1)$p.value, 4),
# round(lillie.test(cuidado_materno_pnts)$p.value, 4), # categorizada (só baseline)
# round(lillie.test(cuidado_paterno_pnts)$p.value, 4), # categorizada (só baseline)
# round(lillie.test(protecao_materno_pnts)$p.value, 4), # categorizada (só baseline)
# round(lillie.test(protecao_paterno_pnts)$p.value, 4), # categorizada (só baseline)
round(shapiro.test(md_sono_av1)$p.value, 4), # ver: shapiro.test(md_sono_av1)
round(shapiro.test(cortisol_value)$p.value, 4),
round(shapiro.test(hamilton_av1)$p.value, 4),
# round(shapiro.test(ansiedade_apego)$p.value, 4), # só baseline
# round(shapiro.test(evitacao_apego)$p.value, 4), # só baseline
round(shapiro.test(negative_affects_av1)$p.value, 4),
round(shapiro.test(positive_affects_av1)$p.value, 4),
round(shapiro.test(medo_av1)$p.value, 4),
round(shapiro.test(hostilidade_av1)$p.value, 4),
round(shapiro.test(assertividade_av1)$p.value, 4),
round(shapiro.test(serenidade_av1)$p.value, 4)),
# round(shapiro.test(cuidado_materno_pnts)$p.value, 4), # categorizada (só baseline)
# round(shapiro.test(cuidado_paterno_pnts)$p.value, 4), # categorizada (só baseline)
# round(shapiro.test(protecao_materno_pnts)$p.value, 4), # categorizada (só baseline)
# round(shapiro.test(protecao_paterno_pnts)$p.value, 4)
nrow=9, ncol=2, byrow=F)
dimnames(A) = list(
c("cortisol_cat_av1",
"md_sono_av1",
"hamilton_av1",
# "ansiedade_apego",
# "evitacao_apego",
"negative_affects_av1",
"positive_affects_av1",
"medo_av1",
"hostilidade_av1",
"assertividade_av1",
"serenidade_av1"),
# "cuidado_materno_pnts",
# "cuidado_paterno_pnts",
# "protecao_materno_pnts",
# "protecao_paterno_pnts"),
c("Teste Kolmogorov-Smirnov com correção de Lilliefors (valor-p)",
"Teste de Shapiro-Wilk (valor-p)"))
knitr::kable(A, format="markdown")
| cortisol_cat_av1 |
0.9315 |
0.2658 |
| md_sono_av1 |
0.1691 |
0.7405 |
| hamilton_av1 |
0.2550 |
0.1314 |
| negative_affects_av1 |
0.1521 |
0.2797 |
| positive_affects_av1 |
0.3538 |
0.7127 |
| medo_av1 |
0.4621 |
0.6034 |
| hostilidade_av1 |
0.1925 |
0.3148 |
| assertividade_av1 |
0.5050 |
0.3444 |
| serenidade_av1 |
0.3808 |
0.1323 |
### <Não há evidência para rejeitar a hipótese nula de normalidade das vars.>
### <incluir histogramas e qqnorm/qqline?>
##############################
###### ANALISES PARTE 3 ######
##############################
# ANALISES DESCRITIVAS (vars numericas selecionadas)
B = matrix(c(
median_iqr(age, na_rm=T, show_n="never"),
median_iqr(weight, na_rm=T, show_n="never"),
median_iqr(height, na_rm=T, show_n="never"),
median_iqr(imc, na_rm=T, show_n="never"),
median_iqr(ansiedade_apego, na_rm=T, show_n="never"),
median_iqr(evitacao_apego, na_rm=T, show_n="never"),
median_iqr(cuidado_materno_pnts, na_rm=T, show_n="never"),
median_iqr(cuidado_paterno_pnts, na_rm=T, show_n="never"),
median_iqr(protecao_materno_pnts, na_rm=T, show_n="never"),
median_iqr(protecao_paterno_pnts, na_rm=T, show_n="never"),
median_iqr(cortisol_value, na_rm=T, show_n="never"),
median_iqr(cortisol_value_av2, na_rm=T, show_n="never"),
median_iqr(md_sono_av1, na_rm=T, show_n="never"),
median_iqr(md_sono_av2, na_rm=T, show_n="never"),
median_iqr(hamilton_av1, na_rm=T, show_n="never"),
median_iqr(hamilton_av2, na_rm=T, show_n="never"),
median_iqr(medo_av1, na_rm=T, show_n="never"),
median_iqr(medo_av2, na_rm=T, show_n="never"),
median_iqr(hostilidade_av1, na_rm=T, show_n="never"),
median_iqr(hostilidade_av2, na_rm=T, show_n="never"),
median_iqr(assertividade_av1, na_rm=T, show_n="never"),
median_iqr(assertividade_av2, na_rm=T, show_n="never"),
median_iqr(serenidade_av1, na_rm=T, show_n="never"),
median_iqr(serenidade_av2, na_rm=T, show_n="never"),
median_iqr(negative_affects_av1, na_rm=T, show_n="never"),
median_iqr(negative_affects_av2, na_rm=T, show_n="never"),
median_iqr(positive_affects_av1, na_rm=T, show_n="never"),
median_iqr(positive_affects_av2, na_rm=T, show_n="never"),
mean_sd(age, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(weight, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(height, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(imc, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(ansiedade_apego, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(evitacao_apego, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(cuidado_materno_pnts, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(cuidado_paterno_pnts, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(protecao_materno_pnts, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(protecao_paterno_pnts, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(cortisol_value, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(cortisol_value_av2, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(md_sono_av1, na_rm=T, show_n="never"),
mean_sd(md_sono_av2, na_rm=T, show_n="never"),
mean_sd(hamilton_av1, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(hamilton_av2, na_rm=T, show_n="never", denote_sd = "paren"),
mean_sd(medo_av1, na_rm=T, show_n="never"),
mean_sd(medo_av2, na_rm=T, show_n="never"),
mean_sd(hostilidade_av1, na_rm=T, show_n="never"),
mean_sd(hostilidade_av2, na_rm=T, show_n="never"),
mean_sd(assertividade_av1, na_rm=T, show_n="never"),
mean_sd(assertividade_av2, na_rm=T, show_n="never"),
mean_sd(serenidade_av1, na_rm=T, show_n="never"),
mean_sd(serenidade_av2, na_rm=T, show_n="never"),
mean_sd(negative_affects_av1, na_rm=T, show_n="never"),
mean_sd(negative_affects_av2, na_rm=T, show_n="never"),
mean_sd(positive_affects_av1, na_rm=T, show_n="never"),
mean_sd(positive_affects_av2, na_rm=T, show_n="never")),
nrow=28, ncol=2, byrow=F)
dimnames(B) = list(
c("Idade, y",
"Peso, Kg",
"Estatura, m",
"IMC, Kg/m²",
"Ansiedade_apego, pnts",
"Evitacao_apego, pnts",
"Cuidado_materno, pnts",
"Cuidado_paterno, pnts",
"Protecao_materno, pnts",
"Protecao_paterno, pnts",
"Cortisol_value_av1, ng/L",
"Cortisol_value_av2, ng/L",
"Sono_av1, hrs",
"Sono_av2, hrs",
"Hamilton_av1, pnts",
"Hamilton_av2, pnts",
"Medo_av1, pnts",
"Medo_av2, pnts",
"Hostilidade_av1, pnts",
"Hostilidade_av2, pnts",
"Assertividade_av1, pnts",
"Assertividade_av2, pnts",
"Serenidade_av1, pnts",
"Serenidade_av2, pnts",
"Negative affects_av1, pnts",
"Negative affects_av2, pnts",
"Positive affects_av1, pnts",
"Positive affects_av2, pnts"),
c("mediana (IIQ)", "média ± dp"))
knitr::kable(B, format="markdown")
| Idade, y |
36.95 (30.90, 45.70) |
38.21 (10.31) |
| Peso, Kg |
84.00 (67.00, 92.38) |
83.01 (17.81) |
| Estatura, m |
1.75 (1.72, 1.80) |
1.76 (0.07) |
| IMC, Kg/m² |
26.19 (24.57, 27.98) |
26.90 (5.39) |
| Ansiedade_apego, pnts |
25.00 (22.00, 28.75) |
24.23 (6.54) |
| Evitacao_apego, pnts |
21.00 (17.25, 23.00) |
20.77 (4.29) |
| Cuidado_materno, pnts |
20.50 (15.25, 29.50) |
22.00 (8.30) |
| Cuidado_paterno, pnts |
17.50 (13.00, 25.00) |
17.85 (9.89) |
| Protecao_materno, pnts |
18.50 (16.00, 27.75) |
20.96 (7.83) |
| Protecao_paterno, pnts |
18.00 (10.00, 21.00) |
16.04 (7.83) |
| Cortisol_value_av1, ng/L |
5.20 (4.50, 5.99) |
5.34 (1.24) |
| Cortisol_value_av2, ng/L |
4.34 (3.87, 4.71) |
4.45 (0.93) |
| Sono_av1, hrs |
8.12 (7.18, 8.91) |
8.08 \(\pm\) 1.10 |
| Sono_av2, hrs |
7.64 (6.93, 8.27) |
7.80 \(\pm\) 1.13 |
| Hamilton_av1, pnts |
28.50 (23.00, 33.75) |
29.23 (9.21) |
| Hamilton_av2, pnts |
20.00 (13.00, 26.75) |
20.42 (10.96) |
| Medo_av1, pnts |
16.00 (13.00, 17.75) |
15.23 \(\pm\) 3.83 |
| Medo_av2, pnts |
11.00 (8.25, 14.00) |
11.42 \(\pm\) 3.98 |
| Hostilidade_av1, pnts |
17.00 (10.25, 20.00) |
16.19 \(\pm\) 6.00 |
| Hostilidade_av2, pnts |
12.50 (9.00, 14.00) |
12.65 \(\pm\) 5.24 |
| Assertividade_av1, pnts |
10.50 (8.00, 12.75) |
10.35 \(\pm\) 3.63 |
| Assertividade_av2, pnts |
11.00 (9.00, 13.75) |
11.62 \(\pm\) 3.70 |
| Serenidade_av1, pnts |
6.00 (4.25, 7.00) |
5.65 \(\pm\) 1.60 |
| Serenidade_av2, pnts |
7.00 (6.00, 9.00) |
7.27 \(\pm\) 2.05 |
| Negative affects_av1, pnts |
33.00 (23.25, 36.75) |
31.42 \(\pm\) 8.96 |
| Negative affects_av2, pnts |
24.00 (17.25, 28.00) |
24.08 \(\pm\) 8.00 |
| Positive affects_av1, pnts |
16.00 (13.00, 19.00) |
16.00 \(\pm\) 4.70 |
| Positive affects_av2, pnts |
18.50 (15.00, 22.75) |
18.88 \(\pm\) 5.18 |
# ANALISES DESCRITIVAS (vars categoricas selecionadas)
# <fazer>
##############################
###### ANALISES PARTE 4 ######
##############################
## ANALISES GRAFICAS DA VARIAVEL SONO
# GRUPO TRATAMENTO (media de sono: baseline x encerramento)
trat = bd_final %>% filter(random==1) %>% select(md_sono_av1, md_sono_av2)
trat = rename(trat, baseline = "md_sono_av1", encerramento = "md_sono_av2")
trat$baseline = round(trat$baseline, 1)
trat$encerramento = round(trat$encerramento, 1)
trat$id=as.factor(c(1:13))
trat=melt(trat)
## Using id as id variables
ggplot(data=trat, aes(x=variable, y=value, group=id, colour=id)) +
geom_line() + geom_point() +
xlab("Sono") + ylab("Média de horas") # id=3 é NA
## Warning: Removed 1 rows containing missing values (geom_path).
## Warning: Removed 1 rows containing missing values (geom_point).

# GRUPO CONTROLE (media de sono: baseline x encerramento)
cont = bd_final %>% filter(random==0) %>% select(md_sono_av1, md_sono_av2)
cont = rename(cont, baseline = "md_sono_av1", encerramento = "md_sono_av2")
cont$baseline = round(cont$baseline,1)
cont$encerramento = round(cont$encerramento,1)
cont$id=as.factor(c(1:13))
cont=melt(cont)
## Using id as id variables
ggplot(data=cont, aes(x=variable, y=value, group=id, colour=id)) +
geom_line() + geom_point() +
xlab("Sono") + ylab("Média de horas") # id=11 é NA
## Warning: Removed 1 rows containing missing values (geom_path).
## Warning: Removed 1 rows containing missing values (geom_point).

# DISTRIBUIÇÃO INDIVIDUAL DO TEMPO DE SONO A CADA DIA (baseline x encerramento)
bd_sono_baseline = bd_final %>% select(ends_with(".x"))
print(
dfSummary(bd_sono_baseline, graph.magnif = 0.75),
method = "render")
bd_sono_encerramento = bd_final %>% select(ends_with(".y"))
print(
dfSummary(bd_sono_encerramento, graph.magnif = 0.75),
method = "render")
##############################
###### ANALISES PARTE 5 ######
##############################
detach(bd_final)
attach(bd_final)
# ANALISES DESCRITIVAS POR GRUPO DE TRATAMENTO
by(gender %in% 0, random, n_perc, na_rm=T)
## random: 0
## [1] "13 (100.00\\%)"
## --------------------------------------------------------
## random: 1
## [1] "13 (100.00\\%)"
by(age, random, mean_sd, na_rm=T)
## random: 0
## [1] "36.92 $\\pm$ 11.38"
## --------------------------------------------------------
## random: 1
## [1] "39.49 $\\pm$ 9.40"
by(race %in% 1, random, n_perc, na_rm=T)
## random: 0
## [1] "7 (53.85\\%)"
## --------------------------------------------------------
## random: 1
## [1] "11 (84.62\\%)"
by(education_level >= 7, random, n_perc, na_rm=T)
## random: 0
## [1] "5 (38.46\\%)"
## --------------------------------------------------------
## random: 1
## [1] "9 (69.23\\%)"
by(labor_status %in% 1, random, n_perc, na_rm=T)
## random: 0
## [1] "6 (46.15\\%)"
## --------------------------------------------------------
## random: 1
## [1] "8 (61.54\\%)"
by(health_issues___8 %in% 1, random, n_perc, na_rm=T)
## random: 0
## [1] "11 (84.62\\%)"
## --------------------------------------------------------
## random: 1
## [1] "8 (61.54\\%)"
by(psycho_treatment %in% 1, random, n_perc, na_rm=T)
## random: 0
## [1] "9 (69.23\\%)"
## --------------------------------------------------------
## random: 1
## [1] "9 (69.23\\%)"
by(physical_exercises %in% 1, random, n_perc, na_rm=T)
## random: 0
## [1] "4 (30.77\\%)"
## --------------------------------------------------------
## random: 1
## [1] "7 (53.85\\%)"
by(weight, random, mean_sd, na_rm=T) # confere: mean(weight[random==0]); sd(weight[random==0])
## random: 0
## [1] "77.98 $\\pm$ 14.19"
## --------------------------------------------------------
## random: 1
## [1] "88.04 $\\pm$ 20.12"
by(height, random, mean_sd, na_rm=T)
## random: 0
## [1] "1.75 $\\pm$ 0.05"
## --------------------------------------------------------
## random: 1
## [1] "1.76 $\\pm$ 0.09"
by(imc, random, mean_sd, na_rm=T)
## random: 0
## [1] "25.59 $\\pm$ 4.54"
## --------------------------------------------------------
## random: 1
## [1] "28.21 $\\pm$ 6.02"
by(ansiedade_apego, random, mean_sd, na_rm=T)
## random: 0
## [1] "24.69 $\\pm$ 6.54"
## --------------------------------------------------------
## random: 1
## [1] "23.77 $\\pm$ 6.78"
by(evitacao_apego, random, mean_sd, na_rm=T)
## random: 0
## [1] "21.15 $\\pm$ 4.36"
## --------------------------------------------------------
## random: 1
## [1] "20.38 $\\pm$ 4.37"
by(cuidado_materno_cat, random, n_perc, na_rm=T)
## random: 0
## [1] "5 (38.46\\%)"
## --------------------------------------------------------
## random: 1
## [1] "3 (23.08\\%)"
by(protecao_materno_cat, random, n_perc, na_rm=T)
## random: 0
## [1] "11 (84.62\\%)"
## --------------------------------------------------------
## random: 1
## [1] "12 (92.31\\%)"
by(cuidado_paterno_cat, random, n_perc, na_rm=T)
## random: 0
## [1] "2 (15.38\\%)"
## --------------------------------------------------------
## random: 1
## [1] "5 (38.46\\%)"
by(protecao_paterno_cat, random, n_perc, na_rm=T)
## random: 0
## [1] "11 (84.62\\%)"
## --------------------------------------------------------
## random: 1
## [1] "6 (46.15\\%)"
by(cortisol_value, random, mean_sd, na_rm=T)
## random: 0
## [1] "12; 4.87 $\\pm$ 1.10"
## --------------------------------------------------------
## random: 1
## [1] "5.78 $\\pm$ 1.24"
by(md_sono_av1, random, mean_sd, na_rm=T)
## random: 0
## [1] "12; 7.87 $\\pm$ 1.09"
## --------------------------------------------------------
## random: 1
## [1] "8.28 $\\pm$ 1.11"
by(hamilton_av1, random, mean_sd, na_rm=T)
## random: 0
## [1] "31.15 $\\pm$ 10.52"
## --------------------------------------------------------
## random: 1
## [1] "27.31 $\\pm$ 7.62"
by(negative_affects_av1, random, mean_sd, na_rm=T)
## random: 0
## [1] "34.08 $\\pm$ 10.09"
## --------------------------------------------------------
## random: 1
## [1] "28.77 $\\pm$ 7.10"
by(medo_av1, random, mean_sd, na_rm=T)
## random: 0
## [1] "16.31 $\\pm$ 4.21"
## --------------------------------------------------------
## random: 1
## [1] "14.15 $\\pm$ 3.21"
by(hostilidade_av1, random, mean_sd, na_rm=T)
## random: 0
## [1] "17.77 $\\pm$ 6.43"
## --------------------------------------------------------
## random: 1
## [1] "14.62 $\\pm$ 5.32"
by(positive_affects_av1, random, mean_sd, na_rm=T)
## random: 0
## [1] "15.00 $\\pm$ 4.92"
## --------------------------------------------------------
## random: 1
## [1] "17.00 $\\pm$ 4.43"
by(assertividade_av1, random, mean_sd, na_rm=T)
## random: 0
## [1] "9.46 $\\pm$ 3.86"
## --------------------------------------------------------
## random: 1
## [1] "11.23 $\\pm$ 3.30"
by(serenidade_av1, random, mean_sd, na_rm=T)
## random: 0
## [1] "5.54 $\\pm$ 1.33"
## --------------------------------------------------------
## random: 1
## [1] "5.77 $\\pm$ 1.88"
# TESTES DE HIPOTESE: diferença das medidas de interesse entre grupos de tratamento no baseline
# fisher.test(gender, random) só homens
round(fisher.test(race %in% 1, random)$p.value, 4) # ver: fisher.test(race %in% 1, random)
## [1] 0.2016
round(fisher.test(education_level >= 7, random)$p.value, 4) # ftable(education_level >= 7, random)
## [1] 0.2377
round(fisher.test(labor_status %in% 1, random)$p.value, 4)
## [1] 0.6951
round(fisher.test(health_issues___8 %in% 1, random)$p.value, 4)
## [1] 0.3783
round(fisher.test(psycho_treatment %in% 1, random)$p.value, 4) # table(psycho_treatment, random)
## [1] 1
round(fisher.test(physical_exercises %in% 1, random)$p.value, 4) # table(psycho_treatment, random)
## [1] 0.4283
round(fisher.test(cuidado_materno_cat %in% 1, random)$p.value, 4)
## [1] 0.6728
round(fisher.test(protecao_materno_cat %in% 1, random)$p.value, 4) # ftable(protecao_materno_cat, random)
## [1] 1
round(fisher.test(cuidado_paterno_cat %in% 1, random)$p.value, 4)
## [1] 0.3783
round(fisher.test(protecao_paterno_cat %in% 1, random)$p.value, 4)
## [1] 0.0968
round(t.test(age ~ random)$p.value, 4) # ver: t.test(age ~ random)
## [1] 0.5364
round(t.test(weight ~ random)$p.value, 4)
## [1] 0.1551
round(t.test(height ~ random)$p.value, 4)
## [1] 0.5083
round(t.test(imc ~ random)$p.value, 4) # exemplo: round(t.test(imc ~ random)$p.value,4)
## [1] 0.2241
round(t.test(ansiedade_apego ~ random)$p.value, 4)
## [1] 0.727
round(t.test(evitacao_apego ~ random)$p.value, 4)
## [1] 0.6571
round(t.test(cortisol_value ~ random)$p.value, 4)
## [1] 0.0648
round(t.test(md_sono_av1 ~ random)$p.value, 4)
## [1] 0.3601
round(t.test(hamilton_av1 ~ random)$p.value, 4)
## [1] 0.2973
round(t.test(negative_affects_av1 ~ random)$p.value, 4)
## [1] 0.1353
round(t.test(medo_av1 ~ random)$p.value, 4)
## [1] 0.1564
round(t.test(hostilidade_av1 ~ random)$p.value, 4)
## [1] 0.186
round(t.test(positive_affects_av1 ~ random)$p.value, 4)
## [1] 0.287
round(t.test(assertividade_av1 ~ random)$p.value, 4)
## [1] 0.2215
round(t.test(serenidade_av1 ~ random)$p.value, 4)
## [1] 0.7212
#t.test(cuidado_materno_pnts ~ random)
#t.test(cuidado_paterno_pnts ~ random)
#t.test(protecao_materno_pnts ~ random)
#t.test(protecao_paterno_pnts ~ random)
### <Não há evidência para rejeitar a hipótese nula de igualdade entre medias/proporções das vars.>
##############################
###### ANALISES PARTE 6 ######
##############################
# ANALISES DAS VARIAÇÕES DOS DESFECHOS POR GRUPO DE TRATAMENTO (Tabela 2)
## Média e desvios-padrao
by(cortisol_value_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "4.36 $\\pm$ 1.24"
## --------------------------------------------------------
## random: 1
## [1] "4.53 $\\pm$ 0.50"
by(md_sono_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "7.53 $\\pm$ 0.80"
## --------------------------------------------------------
## random: 1
## [1] "12; 8.08 $\\pm$ 1.39"
by(hamilton_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "24.38 $\\pm$ 12.45"
## --------------------------------------------------------
## random: 1
## [1] "16.46 $\\pm$ 7.81"
by(negative_affects_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "27.38 $\\pm$ 8.34"
## --------------------------------------------------------
## random: 1
## [1] "20.77 $\\pm$ 6.33"
by(positive_affects_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "16.38 $\\pm$ 4.25"
## --------------------------------------------------------
## random: 1
## [1] "21.38 $\\pm$ 4.93"
by(medo_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "13.00 $\\pm$ 3.42"
## --------------------------------------------------------
## random: 1
## [1] "9.85 $\\pm$ 4.00"
by(hostilidade_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "14.38 $\\pm$ 5.66"
## --------------------------------------------------------
## random: 1
## [1] "10.92 $\\pm$ 4.31"
by(assertividade_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "9.77 $\\pm$ 2.89"
## --------------------------------------------------------
## random: 1
## [1] "13.46 $\\pm$ 3.57"
by(serenidade_av2, random, mean_sd, na_rm=T)
## random: 0
## [1] "6.62 $\\pm$ 1.98"
## --------------------------------------------------------
## random: 1
## [1] "7.92 $\\pm$ 1.98"
## variação dos desfechos de interesse
bd_final = bd_final %>% mutate(
delta_cortisol = cortisol_value_av2 - cortisol_value, # ver: cbind(bd_final$cortisol_value_av2, bd_final$cortisol_value)
delta_sono = md_sono_av2 - md_sono_av1,
delta_hamilton = hamilton_av2 - hamilton_av1,
delta_negative_affects = negative_affects_av2 - negative_affects_av1,
delta_positive_affects = positive_affects_av2 - positive_affects_av1,
delta_medo = medo_av2 - medo_av1,
delta_hostilidade = hostilidade_av2 - hostilidade_av1,
delta_assertividade = assertividade_av2 - assertividade_av1,
delta_serenidade = serenidade_av2 - serenidade_av1)
detach(bd_final)
attach(bd_final)
by(delta_cortisol, random, mean_sd, na_rm = T) # mean(bd_final$delta_cortisol[bd_final$random==0], na.rm=T)
## random: 0
## [1] "12; -0.38 $\\pm$ 1.29"
## --------------------------------------------------------
## random: 1
## [1] "-1.25 $\\pm$ 1.28"
by(delta_sono, random, mean_sd, na_rm=T)
## random: 0
## [1] "12; -0.34 $\\pm$ 1.16"
## --------------------------------------------------------
## random: 1
## [1] "12; -0.21 $\\pm$ 0.46"
by(delta_hamilton, random, mean_sd, na_rm=T)
## random: 0
## [1] "-6.77 $\\pm$ 9.86"
## --------------------------------------------------------
## random: 1
## [1] "-10.85 $\\pm$ 8.38"
by(delta_negative_affects, random, mean_sd, na_rm=T)
## random: 0
## [1] "-6.69 $\\pm$ 9.98"
## --------------------------------------------------------
## random: 1
## [1] "-8.00 $\\pm$ 6.47"
by(delta_positive_affects, random, mean_sd, na_rm=T)
## random: 0
## [1] "1.38 $\\pm$ 3.99"
## --------------------------------------------------------
## random: 1
## [1] "4.38 $\\pm$ 4.93"
by(delta_medo, random, mean_sd, na_rm=T)
## random: 0
## [1] "-3.31 $\\pm$ 3.86"
## --------------------------------------------------------
## random: 1
## [1] "-4.31 $\\pm$ 3.59"
by(delta_hostilidade, random, mean_sd, na_rm=T)
## random: 0
## [1] "-3.38 $\\pm$ 6.58"
## --------------------------------------------------------
## random: 1
## [1] "-3.69 $\\pm$ 3.47"
by(delta_assertividade, random, mean_sd, na_rm=T)
## random: 0
## [1] "0.31 $\\pm$ 2.69"
## --------------------------------------------------------
## random: 1
## [1] "2.23 $\\pm$ 2.83"
by(delta_serenidade, random, mean_sd, na_rm=T)
## random: 0
## [1] "1.08 $\\pm$ 1.89"
## --------------------------------------------------------
## random: 1
## [1] "2.15 $\\pm$ 2.51"
round(t.test(delta_cortisol ~ random)$p.value, 4)
## [1] 0.1052
round(t.test(delta_sono ~ random)$p.value, 4)
## [1] 0.7178
round(t.test(delta_hamilton ~ random)$p.value, 4)
## [1] 0.2675
round(t.test(delta_negative_affects ~ random)$p.value, 4)
## [1] 0.6958
round(t.test(delta_positive_affects ~ random)$p.value, 4)
## [1] 0.1014
round(t.test(delta_medo ~ random)$p.value, 4)
## [1] 0.5006
round(t.test(delta_hostilidade ~ random)$p.value, 4)
## [1] 0.8831
round(t.test(delta_assertividade ~ random)$p.value, 4)
## [1] 0.0886
round(t.test(delta_serenidade ~ random)$p.value, 4)
## [1] 0.2297
########################################
################ LIXO ##################
########################################
# view(lapply(bd_final[ ,c(16:25)],freq),footnote = NA)#, file = 'doencas.html')
# freq(bd_final$health_issues___8, style = "rmarkdown")
# freq(bd_final$health_issues___8, style = "rmarkdown", report.nas=F, omit.headings=T, totals=F)
# with(bd_final, view(by(cortisol_value, random, freq), method = "pander"))
# by(weight, random, shapiro.test)
# ks.test(weight, random)
# nortest::lillie.test(imc[random==1])$p.value
#cor.test()
#spearman.test()
#mcnemar.test()
#kruskal.test() # politomica x nominal
#wilcox.test() # ordinal x bin
#prop.test()
#fisher.test() # bin x bin
#t.test() # num x bin