In August of 2012, news outlets ranging from the Washington Post to the Huffington Post ran a story about the rise of atheism in America. The source for the story was a poll that asked people, “Irrespective of whether you attend a place of worship or not, would you say you are a religious person, not a religious person or a convinced atheist?” This type of question, which asks people to classify themselves in one way or another, is common in polling and generates categorical data. In this lab we take a look at the atheism survey and explore what’s at play when making inference about population proportions using categorical data.
To access the press release for the poll, conducted by WIN-Gallup International, click on the following link:
Take a moment to review the report then address the following questions.
In the first paragraph, several key findings are reported. Do these percentages appear to be sample statistics (derived from the data sample) or population parameters?
These findings are sample statistics, based on the global poll.
The title of the report is “Global Index of Religiosity and Atheism”. To generalize the report’s findings to the global human population, what must we assume about the sampling method? Does that seem like a reasonable assumption?
Independence, we will assume the sample is random and that observations are independent of each other.
The sample must be less that 10% of the population. We can assume that condition is met since it is likely the poll did not sample 70,000,000 people.
Turn your attention to Table 6 (pages 15 and 16), which reports the sample size and response percentages for all 57 countries. While this is a useful format to summarize the data, we will base our analysis on the original data set of individual responses to the survey. Load this data set into R with the following command.
load("more/atheism.RData")
atheism
correspond to?summary(atheism)
## nationality response year
## Pakistan : 5409 atheist : 5498 Min. :2005
## France : 3359 non-atheist:82534 1st Qu.:2005
## Korea, Rep (South): 3047 Median :2012
## Ghana : 2995 Mean :2009
## Macedonia : 2418 3rd Qu.:2012
## Peru : 2414 Max. :2012
## (Other) :68390
Each row if table 6 corresponds to survey results for a population of a country.
Each row in “atheism” table corresponds to an individual person’s response to “atheist/non-atheist question only.
To investigate the link between these two ways of organizing this data, take a look at the estimated proportion of atheists in the United States. Towards the bottom of Table 6, we see that this is 5%. We should be able to come to the same number using the atheism
data.
us12
that contains only the rows in atheism
associated with respondents to the 2012 survey from the United States. Next, calculate the proportion of atheist responses. Does it agree with the percentage in Table 6? If not, why?us12 <- subset(atheism, nationality == "United States" & year == "2012")
summary(us12)
## nationality response year
## United States:1002 atheist : 50 Min. :2012
## Afghanistan : 0 non-atheist:952 1st Qu.:2012
## Argentina : 0 Median :2012
## Armenia : 0 Mean :2012
## Australia : 0 3rd Qu.:2012
## Austria : 0 Max. :2012
## (Other) : 0
50/1002
## [1] 0.0499002
Yes, our calculations show 5% which agrees with Table 6.
As was hinted at in Exercise 1, Table 6 provides statistics, that is, calculations made from the sample of 51,927 people. What we’d like, though, is insight into the population parameters. You answer the question, “What proportion of people in your sample reported being atheists?” with a statistic; while the question “What proportion of people on earth would report being atheists” is answered with an estimate of the parameter.
The inferential tools for estimating population proportion are analogous to those used for means in the last chapter: the confidence interval and the hypothesis test.
If the conditions for inference are reasonable, we can either calculate the standard error and construct the interval by hand, or allow the inference
function to do it for us.
inference(us12$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0499 ; n = 1002
## Check conditions: number of successes = 50 ; number of failures = 952
## Standard error = 0.0069
## 95 % Confidence interval = ( 0.0364 , 0.0634 )
Note that since the goal is to construct an interval estimate for a proportion, it’s necessary to specify what constitutes a “success”, which here is a response of "atheist"
.
Although formal confidence intervals and hypothesis tests don’t show up in the report, suggestions of inference appear at the bottom of page 7: “In general, the error margin for surveys of this kind is \(\pm\) 3-5% at 95% confidence”.
#Margin of Error
1.96*0.0069
## [1] 0.013524
inference
function, calculate confidence intervals for the proportion of atheists in 2012 in two other countries of your choice, and report the associated margins of error. Be sure to note whether the conditions for inference are met. It may be helpful to create new data sets for each of the two countries first, and then use these data sets in the inference
function to construct the confidence intervals.Calculating Confidence Interval and Margin of Error for France and Ukraine.
#France
fr12 <- subset(atheism, nationality == "France" & year == "2012")
inference(fr12$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.2873 ; n = 1688
## Check conditions: number of successes = 485 ; number of failures = 1203
## Standard error = 0.011
## 95 % Confidence interval = ( 0.2657 , 0.3089 )
#Margin of Error
1.96*0.011
## [1] 0.02156
summary(fr12$response)
## atheist non-atheist
## 485 1203
#Ukraine
ua12 <- subset(atheism, nationality == "Ukraine" & year == "2012")
inference(ua12$response, est = "proportion", type = "ci", method = "theoretical",
success = "atheist")
## Single proportion -- success: atheist
## Summary statistics:
## p_hat = 0.0296 ; n = 1013
## Check conditions: number of successes = 30 ; number of failures = 983
## Standard error = 0.0053
## 95 % Confidence interval = ( 0.0192 , 0.0401 )
#Margin of Error
1.96*0.0053
## [1] 0.010388
summary(ua12$response)
## atheist non-atheist
## 30 983
The conditions for the inference are met since we assume the sample was randomly selected and the sample size are less than 10% of the total populations for these two countries. The success-failure conditon since there are more that 10 success/failures in each of those countries.
Imagine you’ve set out to survey 1000 people on two questions: are you female? and are you left-handed? Since both of these sample proportions were calculated from the same sample size, they should have the same margin of error, right? Wrong! While the margin of error does change with sample size, it is also affected by the proportion.
Think back to the formula for the standard error: \(SE = \sqrt{p(1-p)/n}\). This is then used in the formula for the margin of error for a 95% confidence interval: \(ME = 1.96\times SE = 1.96\times\sqrt{p(1-p)/n}\). Since the population proportion \(p\) is in this \(ME\) formula, it should make sense that the margin of error is in some way dependent on the population proportion. We can visualize this relationship by creating a plot of \(ME\) vs. \(p\).
The first step is to make a vector p
that is a sequence from 0 to 1 with each number separated by 0.01. We can then create a vector of the margin of error (me
) associated with each of these values of p
using the familiar approximate formula (\(ME = 2 \times SE\)). Lastly, we plot the two vectors against each other to reveal their relationship.
n <- 1000
p <- seq(0, 1, 0.01)
me <- 2 * sqrt(p * (1 - p)/n)
plot(me ~ p, ylab = "Margin of Error", xlab = "Population Proportion")
p
and me
.For the population proportion between 0 and 0.5 there is a direct correlation, do the proportion between 0.5 and 1 - there is an inverse correlation.
The textbook emphasizes that you must always check conditions before making inference. For inference on proportions, the sample proportion can be assumed to be nearly normal if it is based upon a random sample of independent observations and if both \(np \geq 10\) and \(n(1 - p) \geq 10\). This rule of thumb is easy enough to follow, but it makes one wonder: what’s so special about the number 10?
The short answer is: nothing. You could argue that we would be fine with 9 or that we really should be using 11. What is the “best” value for such a rule of thumb is, at least to some degree, arbitrary. However, when \(np\) and \(n(1-p)\) reaches 10 the sampling distribution is sufficiently normal to use confidence intervals and hypothesis tests that are based on that approximation.
We can investigate the interplay between \(n\) and \(p\) and the shape of the sampling distribution by using simulations. To start off, we simulate the process of drawing 5000 samples of size 1040 from a population with a true atheist proportion of 0.1. For each of the 5000 samples we compute \(\hat{p}\) and then plot a histogram to visualize their distribution.
p <- 0.1
n <- 1040
p_hats <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats[i] <- sum(samp == "atheist")/n
}
hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.18))
These commands build up the sampling distribution of \(\hat{p}\) using the familiar for
loop. You can read the sampling procedure for the first line of code inside the for
loop as, “take a sample of size \(n\) with replacement from the choices of atheist and non-atheist with probabilities \(p\) and \(1 - p\), respectively.” The second line in the loop says, “calculate the proportion of atheists in this sample and record this value.” The loop allows us to repeat this process 5,000 times to build a good representation of the sampling distribution.
Describe the sampling distribution of sample proportions at \(n = 1040\) and \(p = 0.1\). Be sure to note the center, spread, and shape.
Hint: Remember that R has functions such as mean
to calculate summary statistics.
summary(p_hats)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.07019 0.09327 0.09904 0.09969 0.10577 0.12981
max(p_hats) - min(p_hats)
## [1] 0.05961538
Our sample is normally distributed and it is centered around 0.1 - the range is 0.06.Repeat the above simulation three more times but with modified sample sizes and proportions: for \(n = 400\) and \(p = 0.1\), \(n = 1040\) and \(p = 0.02\), and \(n = 400\) and \(p = 0.02\). Plot all four histograms together by running the par(mfrow = c(2, 2))
command before creating the histograms. You may need to expand the plot window to accommodate the larger two-by-two plot. Describe the three new sampling distributions. Based on these limited plots, how does \(n\) appear to affect the distribution of \(\hat{p}\)? How does \(p\) affect the sampling distribution?
p <- 0.1
n <- 400
p_hats2 <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats2[i] <- sum(samp == "atheist")/n
}
p <- 0.02
n <- 1040
p_hats3 <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats3[i] <- sum(samp == "atheist")/n
}
p <- 0.02
n <- 400
p_hats4 <- rep(0, 5000)
for(i in 1:5000){
samp <- sample(c("atheist", "non_atheist"), n, replace = TRUE, prob = c(p, 1-p))
p_hats4[i] <- sum(samp == "atheist")/n
}
par(mfrow = c(2, 2))
hist(p_hats, main = "p = 0.1, n = 1040", xlim = c(0, 0.18))
hist(p_hats2, main = "p = 0.1, n = 400", xlim = c(0, 0.18))
hist(p_hats3, main = "p = 0.02, n = 1040", xlim = c(0, 0.18))
hist(p_hats4, main = "p = 0.02, n = 400", xlim = c(0, 0.18))
Once you’re done, you can reset the layout of the plotting window by using the command par(mfrow = c(1, 1))
command or clicking on “Clear All” above the plotting window (if using RStudio). Note that the latter will get rid of all your previous plots.
par(mfrow = c(1, 1))
The distribution for 3 new plots is still normal. The p value effects the center of the distribution and the sample size effects the spread, the higher n results in the lower spread.
Based on the graphs we have constructed in Exercise 10 - the distribution for both these countries is normal, however only Australia meets “the success-failure condition”. The number of atheists in Equador is 400*0.02 = 8.
The question of atheism was asked by WIN-Gallup International in a similar survey that was conducted in 2005. (We assume here that sample sizes have remained the same.) Table 4 on page 13 of the report summarizes survey results from 2005 and 2012 for 39 countries.
Answer the following two questions using the inference
function. As always, write out the hypotheses for any tests you conduct and outline the status of the conditions for inference.
a. Is there convincing evidence that Spain has seen a change in its atheism index between 2005 and 2012?
Hint: Create a new data set for respondents from Spain. Form confidence intervals for the true proportion of athiests in both years, and determine whether they overlap.
H0 : There is no difference in atheism index for Spain between 2012 and 2005
HA : There is a difference in atheism index for Spain between 2012 and 2005
Conditions for ingerence are satisfied: The sample is random/independent and the number of observations is under 10% of Spain’s population. Success-failures condition is met as they are both over 10 for all results.
```r
spain <- subset(atheism, nationality == "Spain" & year == "2012" | nationality == "Spain" & year == "2005")
inference(y = spain$response, x = spain$year, est = "proportion", type = "ht", null = 0,
alternative = "twosided", method = "theoretical", success = "atheist")
```
```
## Warning: Explanatory variable was numerical, it has been converted to
## categorical. In order to avoid this warning, first convert your explanatory
## variable to a categorical variable using the as.factor() function.
```
```
## Response variable: categorical, Explanatory variable: categorical
## Two categorical variables
## Difference between two proportions -- success: atheist
## Summary statistics:
## x
## y 2005 2012 Sum
## atheist 115 103 218
## non-atheist 1031 1042 2073
## Sum 1146 1145 2291
```
```
## Observed difference between proportions (2005-2012) = 0.0104
##
## H0: p_2005 - p_2012 = 0
## HA: p_2005 - p_2012 != 0
## Pooled proportion = 0.0952
## Check conditions:
## 2005 : number of expected successes = 109 ; number of expected failures = 1037
## 2012 : number of expected successes = 109 ; number of expected failures = 1036
## Standard error = 0.012
## Test statistic: Z = 0.848
## p-value = 0.3966
```
<img src="elinaazrilyan-inf_for_categorical_data_files/figure-html/unnamed-chunk-7-1.png" width="672" />
p-value is greated than 0.05 so we cannot reject our Null Hypothesis - we conclude that there is no significant difference between 2005 and 2012 atheism index in Spain.
**b.** Is there convincing evidence that the United States has seen a
change in its atheism index between 2005 and 2012?
H0 : There is no difference in atheism index for US between 2012 and 2005
HA : There is a difference in atheism index for US between 2012 and 2005
Conditions for ingerence are satisfied: The sample is random/independent and the number of observations is under 10% of United States population. Success-failures condition is met as they are both over 10 for all results.
```r
US <- subset(atheism, nationality == "United States" & year == "2012" | nationality == "United States" & year == "2005")
inference(y = US$response, x = US$year, est = "proportion", type = "ht", null = 0,
alternative = "twosided", method = "theoretical", success = "atheist")
```
```
## Warning: Explanatory variable was numerical, it has been converted to
## categorical. In order to avoid this warning, first convert your explanatory
## variable to a categorical variable using the as.factor() function.
```
```
## Response variable: categorical, Explanatory variable: categorical
## Two categorical variables
## Difference between two proportions -- success: atheist
## Summary statistics:
## x
## y 2005 2012 Sum
## atheist 10 50 60
## non-atheist 992 952 1944
## Sum 1002 1002 2004
```
```
## Observed difference between proportions (2005-2012) = -0.0399
##
## H0: p_2005 - p_2012 = 0
## HA: p_2005 - p_2012 != 0
## Pooled proportion = 0.0299
## Check conditions:
## 2005 : number of expected successes = 30 ; number of expected failures = 972
## 2012 : number of expected successes = 30 ; number of expected failures = 972
## Standard error = 0.008
## Test statistic: Z = -5.243
## p-value = 0
```
<img src="elinaazrilyan-inf_for_categorical_data_files/figure-html/unnamed-chunk-8-1.png" width="672" />
p-value is less than 0.05 so we reject our Null Hypothesis - we conclude that there is a significant difference between 2005 and 2012 atheism index in US.
A type 1 error is rejecting the null hypothesis when H0 is actually true. We would expect there to be a 5% chance of a type I error. So, we would expect that to happen for the following number of countries in this sample:
0.05*39
## [1] 1.95
ME = z*SE SE = 0.01/1.96 = 0.005102041
SE = sqrt(p(1-p))/n n = (p(1-p))/SE^2
Since we don’t know the value of p - we can refer to our plot to find that p=0.5 results in the highest margin of error, so we are going to use that.
SE = 0.01/1.96
(0.5*0.5)/(SE^2)
## [1] 9604
We will require a sample size of 9604.
This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written for OpenIntro by Andrew Bray and Mine Çetinkaya-Rundel.