\[ f'(x)= \frac{1}{(1-x)^2}\] \[ f''(x)= \frac{2}{(1-x)^3}\]
\[ f'''(x)= \frac{6}{(1-x)^4}\]
\[ f''''(x)= \frac{24}{(1-x)^5}\]
Evaluate at x=0 \(f'(0)=1\) \(f''(0)=2\) \(f'''(0)=6\) \(f''''(0)=24\)
generalized \[ f^n(x)= \frac{n!}{(1-x)^{n+1}}\]
therefore as our coefficents are always n! \[\displaystyle\sum_{n=0}^{\infty} \frac{f^n(x)}{n!}*x^n== \displaystyle\sum_{n=0}^{\infty} x^n \]
\[f^n(x)= e^x\]
\[e^n(0)=1\]
\[ f'(x)= \frac{1}{(x+1)}\]
\[ f''(x)= \frac{-1}{(x+1)^2}\]
\[ f'''(x)= \frac{2}{(x+1)^3}\] \[ f''''(x)= -\frac{6}{(x+1)^4}\]
evaluate at x=0 \(f'(0)=1\) \(f''(0)=-1\) \(f'''(0)=2\) \(f''''(0)=-6\)
series looks like
\[ 0 + \frac{1}{1}x^{1}-\frac{1}{2}x^{2} + \frac{2}{6}x^{3} - \frac{6}{24}x^{4} \]