This week, we’ll work out some Taylor Series expansions of popular functions.

For each function, only consider its valid ranges as indicated in the notes when you are computing the Taylor Series expansion. Please submit your assignment as a R-Markdown document.


\(f(x) =\frac{1}{(1-x)}\)

This function is not defined when x = 1.

Derivaties and evaluation at \(x=0\).

\(f(x) = \frac{1}{(1-x)} \rightarrow f(0) = 1\)

\(f'(x) = \frac{1}{(1-x)^2} \rightarrow f'(0) = 1\)

\(f''(x) = \frac{2}{(1-x)^3} \rightarrow f''(0) = 2\)

\(f'''(x) = \frac{6}{(1-x)^4} \rightarrow f'''(0) = 6\)

\(f^4(x) = \frac{24}{(1-x)^5} \rightarrow f^4(0) = 24\)

\(f^5(x) = \frac{120}{(1-x)^6} \rightarrow f^5(0) = 120\)

Use McClaurin Series formula:

\(1 + \frac{1}{1!} x^1 + \frac{2}{2!}x^2 + \frac{6}{3!}x^3 + \frac{24}{4!}x^4 + \frac{120}{5!}x^5 + ...\)

Simplifies to:

\(1 + x + x^2 + x^3 + x^4 + x^5 + ...+ x^n\)

In summation form:

\(\sum_{n=0}^{\infty} x^n\)


\(f(x)=e^x\)

Derivatives and evaluation at \(x=0\):

\(f(x)=e^x\) \(\rightarrow\) f(0) = 1

\(f'(x)=e^x\) \(\rightarrow\) f’(0) = 1

\(f''(x)=e^x\) \(\rightarrow\) f’’(0) = 1

\(f'''(x)=e^x\) \(\rightarrow\) f’’’(0) = 1

\(f^4(x)=e^x\) \(\rightarrow\) \(f^4(0) = 1\)

\(f^5(x)=e^x\) \(\rightarrow\) \(f^5(0) = 1\)

Use McClaurin Series formula:

\(1\) + \(\frac{1}{1!}\)\(x^1\) + \(\frac{1}{2!}\)\(x^2\) + \(\frac{1}{3!}\)\(x^3\) + \(\frac{1}{4!}\)\(x^4\) + …

This simplifies to:

\(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + ... + \frac{x^n}{n!}\)

In summation form:

\(\sum_{n=0}^{\infty} \frac{x^n}{n!}\)


\(f(x)=ln(1+x)\)

Derivatives and evaluation at \(x=0\).

\(f(x) = ln(1+x) \rightarrow f(0) = 0\)

\(f'(x) = \frac{1}{x+1} \rightarrow f'(0) = 1\)

\(f''(x) = \frac{-1}{(x+1)^2} \rightarrow f''(0) = -1\)

\(f'''(x) = \frac{2}{(x+1)^3} \rightarrow f'''(0) = 2\)

\(f^4(x) = \frac{-6}{(x+1)^4} \rightarrow f^4(0) = -6\)

\(f^5(x) = \frac{24}{(x+1)^5} \rightarrow f^5(0) = -24\)

Use McClaurin Series formula:

\(0 + \frac{1}{1!}x^1 - \frac{1}{2!}x^2 + \frac{2}{3!}x^3 - \frac{6}{4!}x^4+ \frac{24}{5!}x^5 + ...\)

Simplifies to:

\(x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 + \frac{1}{5}x^5+ ... (-1)^{n+1}\frac{1}nx^n\)

In summation form:

\(\sum_{n=0}^{\infty} (-1)^{n+1}\frac{1}nx^n\)