Displays summary statistics and plots on the GRAPHS-2015 dataset. All statistics and plotting functions used are from the ASlib package.
library(aslib)
dataset = parseASScenario("GRAPHS-2015")
summary(dataset)
## Length Class Mode
## desc 14 ASScenarioDesc list
## feature.runstatus 7 data.frame list
## feature.costs 7 data.frame list
## feature.values 37 data.frame list
## algo.runs 5 data.frame list
## algo.runstatus 9 data.frame list
## cv.splits 3 data.frame list
getFeatureNames(dataset)
## [1] "cheap.pattern.time"
## [2] "cheap.pattern.vertices"
## [3] "cheap.pattern.edges"
## [4] "cheap.pattern.loops"
## [5] "cheap.pattern.meandeg"
## [6] "cheap.pattern.maxdeg"
## [7] "cheap.pattern.degisfixed"
## [8] "cheap.pattern.density"
## [9] "cheap.target.time"
## [10] "cheap.target.vertices"
## [11] "cheap.target.edges"
## [12] "cheap.target.loops"
## [13] "cheap.target.meandeg"
## [14] "cheap.target.maxdeg"
## [15] "cheap.target.degisfixed"
## [16] "cheap.target.density"
## [17] "distance.pattern.time"
## [18] "distance.pattern.isconnected"
## [19] "distance.pattern.meandistance"
## [20] "distance.pattern.maxdistance"
## [21] "distance.pattern.proportiondistancege2"
## [22] "distance.pattern.proportiondistancege3"
## [23] "distance.pattern.proportiondistancege4"
## [24] "distance.target.time"
## [25] "distance.target.isconnected"
## [26] "distance.target.meandistance"
## [27] "distance.target.maxdistance"
## [28] "distance.target.proportiondistancege2"
## [29] "distance.target.proportiondistancege3"
## [30] "distance.target.proportiondistancege4"
## [31] "lad.values.removed"
## [32] "lad.values.removed.percent"
## [33] "lad.values.removed.min"
## [34] "lad.values.removed.max"
## [35] "lad.time"
summarizeFeatureValues(dataset)
getAlgorithmNames(dataset)
## [1] "lad" "supplementallad" "vf2" "glasgow1"
## [5] "glasgow2" "glasgow3" "glasgow4"
summarizeAlgoPerf(dataset)
summarizeAlgoRunstatus(dataset)
Important note w.r.t. some of the following plots: If appropriate, we imputed performance values for failed runs. We used \(max + 0.3 * (max - min)\), in case of minimization problems, or \(min - 0.3 * (max - min)\), in case of maximization problems.
plotAlgoPerfBoxplots(dataset, impute.zero.vals = TRUE, log = TRUE)
plotAlgoPerfDensities(dataset, impute.zero.vals = TRUE, log = TRUE)
plotAlgoPerfCDFs(dataset, impute.zero.vals = TRUE, log = TRUE)
plotAlgoPerfScatterMatrix(dataset, impute.zero.vals = TRUE, log = TRUE)
The figure showing the correlations of the ranks of the performance values shows the Spearman correlation coefficient. Missing values were imputed prior to computing the correlation coefficients. The algorithms are ordered in a way that similar (highly correlated) algorithms are close to each other. Per default the clustering is based on hierarchical clustering, using Ward’s method.
plotAlgoCorMatrix(dataset)
GRAPHS-2015 EDA original source
Kotthoff, Lars, Ciaran McCreesh, and Christine Solnon. 2016. “Portfolios of Subgraph Isomorphism Algorithms.” In LION 10.