Use integration by substitution to solve the integral below.
\[ \int 4e^{-7x} \ dx \]
\[ \begin{align} du &= -7 \ dx \\ \\ \frac{du}{-7} &= dx \end{align} \]
\[ \begin{align} &\int 4e^{u} \ \frac{du}{-7} &\qquad \text{simplify} \\ \\ &= \frac{-4}{7} \int e^{u} &\qquad \text{substitute } u \\ \\ & = \frac{-4}{7} e^{-7x} + C \\ \end{align} \]
Biologists are treating a pond contaminated with bacteria. The level of contamination is changing at a rate of \(\frac{dN}{dt} = \frac{-3150}{t^4} -220\) bacteria per cubic centimeter per day, where \(t\) is the number of days since treatment began. Find a function \(N(t)\) to estimate the level of contamination if the level after 1 day was \(6530\) bacteria per cubic centimeter.
\[ \begin{align} \int \frac{dN}{dt} &= \int \frac{-3150}{t^4} -220 \\ \\ N(t) &= \frac{3150}{3t^3} -220t + C \\ \\ N(t) &= \frac{1050}{t^3} -220t + C \\ \end{align} \]
\[ \begin{align} 6530 &= \frac{1050}{1^3} - 220(1) + C \\ \\ C &= 6530 - 1050 + 220 \\ \\ C &= 5700 \end{align} \]
\[ N(t) = \frac{1050}{t^3} -220t + 5700 \]
Find the total area of the red rectangles in the figure below, where the equation of the line is \(f(x) = 2x-9\).
\[ \begin{align} R_1 &= 1 \times 1\\ R_2 &= 1 \times 3 \\ R_3 &= 1 \times 5 \\ R_4 &= 1 \times 7 \\ \\ \text{Area} &= 1 + 3 + 5 + 7 = 16 \text{ square units} \end{align} \]
\[ \begin{align} \text{Area} &= \int_{4.5}^{8.5} (2x-9) \ dx \\ \\ \ &= \left. x^2-9x \ \right|_{4.5}^{8.5} \\ \\ \ &= [8.5^2 - 9(8.5)] - [4.5^2 - 9(4.5)]\\ \\ \ &= -4.25 + 20.25 \\ \\ &= 16 \text{ square units}\\ \end{align} \]
Find the area of the region bounded by the graphs of the given equations.
\[ \begin{align} y_1 &= x^2 - 2x - 2\\ y_2 &= x + 2 \end{align} \]
\[ \begin{align} x+2 &= x^2-2x-2 \\ 0 &= x^2-3x-4 \\ 0 &= (x+1)(x-4) \\ \\ x &= -1 \ \text{ and } \ 4 \end{align} \]
\[ \begin{align} \text{Area} &= \int_{-1}^{4} (x+2) \ dx \ - \int_{-1}^{4} (x^2-2x-2) \ dx \\ \\ \ &= \int_{-1}^{4} (-x^2+3x+4) \ dx \\ \\ \ &= \left. \frac{-x^3}{3} + \frac{3x^2}{2} + 4x \ \ \right|_{-1}^{4} \\ \\ \ &= [\frac{-4^3}{3} + \frac{3(4^2)}{2} + 4(4)] - [\frac{1^3}{3} + \frac{3(-1^2)}{2} + 4(-1)] \\ \\ \ &= \frac{-64}{3} + \frac{48}{2} + 16 - \frac{1}{3} + \frac{3}{2} + 4 \\ \\ \ &= \frac{-63}{3} + \frac{51}{2} + 20 \\ \\ \ &= 21.5 \text{ units squared}\\ \end{align} \]
(-63/3) + (45/2) + 20## [1] 21.5
A beauty supply store expects to sell \(110\) flat irons during the next year. it costs \(\$3.75\) to store one flat iron for one year. There is a fixed cost of \(\$8.25\) for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
\[ \begin{align} \text{Cost of storage} &= \frac{3.75x}{2} \\ \\ \text{Cost per order} &= 8.75 \times \frac{110}{x} \\ \\ \text{Inventory cost} &= (\frac{3.75x}{2}) \ + \ (8.75 \times \frac{110}{x}) \\ \\ f(x) &= 907.5x^{-1} + 1.875x \end{align} \]
\[ \begin{align} f'(x) &= \frac{907.5}{x^2} - 1.875 \\ \\ 0 &= \frac{907.5}{x^2} - 1.875 \\ \\ 1.875x^2 &= 907.5 \\ \\ x^2 &= \frac{907.5}{1.875} = 484 \\ \\ x &= \sqrt{484} = 22 \text{ flat irons per order} \end{align} \]
Use integration by parts to solve the integral below.
\[ \int ln(9x) \cdot x^6 \ dx \]
\[ \int u \ dv = uv - \int v \ du \]
\[ \begin{align} \int ln(9x) \ x^6 &= ln(9x) \times \frac{x^7}{7} - \int \frac{x^7}{7} \ \frac{1}{x} \ dx \\ \\ &= \frac{x^7}{7} \times ln(9x) - \int \frac{x^7}{7x} \ = \ \frac{x^7}{7} \times ln(9x) - \int \frac{x^6}{7}\\ \\ &= \frac{7x^7}{49} \times ln(9x) - \frac{x^7}{49} + C\\ \\ &= \frac{x^7}{49} \ (7 \ ln(9x) - 1) + C \end{align} \]
Determine whether \(f(x)\) is a probability density function on the interval \([1, e^6]\). If not, determine the value of the definite integral.
\[ f(x) = \frac{1}{6x} \]
\[ \begin{align} \int_{1}^{e^6} \frac{1}{6x} \ dx &= \left. \frac{1}{6} ln(x) \ \right|_{1}^{e^6} \\ \\ &= \frac{1}{6} \times ln(e^6) \ - \ \frac{1}{6} \times ln(1) \\ \\ &= \frac{1}{6} \times \frac{6}{1} \ - \ 0 \\ \\ &= 1 \end{align} \]