1 Binomial (n=20, \(\pi\)) Distribution

1.1 Probability Mass Function

Here we consider a random variable, X, with a Binomial (n=20, \(\pi\)) distribution. The table below shows the probability mass function, specifically the possible values of the random variable and their probabilities. For example the \(P(X=3|\pi=.25)=.134\).

Probability Mass Function for a Binomial (n=20, pi) distribution with different values of pi
x pi.eq.25 pi.eq.5 pi.eq.75 pi.eq.9
0 0.003 0.000 0.000 0.000
1 0.021 0.000 0.000 0.000
2 0.067 0.000 0.000 0.000
3 0.134 0.001 0.000 0.000
4 0.190 0.005 0.000 0.000
5 0.202 0.015 0.000 0.000
6 0.169 0.037 0.000 0.000
7 0.112 0.074 0.000 0.000
8 0.061 0.120 0.001 0.000
9 0.027 0.160 0.003 0.000
10 0.010 0.176 0.010 0.000
11 0.003 0.160 0.027 0.000
12 0.001 0.120 0.061 0.000
13 0.000 0.074 0.112 0.002
14 0.000 0.037 0.169 0.009
15 0.000 0.015 0.202 0.032
16 0.000 0.005 0.190 0.090
17 0.000 0.001 0.134 0.190
18 0.000 0.000 0.067 0.285
19 0.000 0.000 0.021 0.270
20 0.000 0.000 0.003 0.122

1.1.1 Graphs

Probability Mass Function for Binomial(n=20, pi) and pi betwen 0.25 and 0.9

Probability Mass Function for Binomial(n=20, pi) and pi betwen 0.25 and 0.9

1.2 Cumulative Distribution Functrion

Here we consider a random variable, X, with a Binomial (n=20, \(\pi\)) distrbiution. The table below shows the cumulative distribution function, specifically, x, the possible values of the random variable and \(P(X \leq x)\). For example the \(P(X \leq3|\pi=.25)=.225\).

Cumulative Function for a Binomial (n=20, pi) distribution with different values of pi
x pi.eq.25 pi.eq.5 pi.eq.75 pi.eq.9
0 0.003 0.000 0.000 0.000
1 0.024 0.000 0.000 0.000
2 0.091 0.000 0.000 0.000
3 0.225 0.001 0.000 0.000
4 0.415 0.006 0.000 0.000
5 0.617 0.021 0.000 0.000
6 0.786 0.058 0.000 0.000
7 0.898 0.132 0.000 0.000
8 0.959 0.252 0.001 0.000
9 0.986 0.412 0.004 0.000
10 0.996 0.588 0.014 0.000
11 0.999 0.748 0.041 0.000
12 1.000 0.868 0.102 0.000
13 1.000 0.942 0.214 0.002
14 1.000 0.979 0.383 0.011
15 1.000 0.994 0.585 0.043
16 1.000 0.999 0.775 0.133
17 1.000 1.000 0.909 0.323
18 1.000 1.000 0.976 0.608
19 1.000 1.000 0.997 0.878
20 1.000 1.000 1.000 1.000

1.3 Binomial Distribution: One Minus Cumulative Distribution Functrion

Here we consider a random variable, X, with a Binomial (n=20, \(\pi\)) distrbiution. The table below shows one minus the cumulative distribution function, specifically, x, the possible values of the random variable and \(P(X\geq (x+1))=1-P(X \leq x)\).For example when \(\pi=.25\),the \(P(X \geq 4)=1-P(X\leq 3)=.775\).

One Minus Cumulative Distribution Function for a Binomial (n=20, pi) distribution with different values of pi
x pi.eq.25 pi.eq.5 pi.eq.75 pi.eq.9
0 0.997 1.000 1.000 1.000
1 0.976 1.000 1.000 1.000
2 0.909 1.000 1.000 1.000
3 0.775 0.999 1.000 1.000
4 0.585 0.994 1.000 1.000
5 0.383 0.979 1.000 1.000
6 0.214 0.942 1.000 1.000
7 0.102 0.868 1.000 1.000
8 0.041 0.748 0.999 1.000
9 0.014 0.588 0.996 1.000
10 0.004 0.412 0.986 1.000
11 0.001 0.252 0.959 1.000
12 0.000 0.132 0.898 1.000
13 0.000 0.058 0.786 0.998
14 0.000 0.021 0.617 0.989
15 0.000 0.006 0.415 0.957
16 0.000 0.001 0.225 0.867
17 0.000 0.000 0.091 0.677
18 0.000 0.000 0.024 0.392
19 0.000 0.000 0.003 0.122
20 0.000 0.000 0.000 0.000

2 Binomial (n=40, \(\pi\)) Distribution

2.1 Probability Mass Function

Here we consider a random variable, X, with a Binomial (n=40, \(\pi\)) distrbiution. The table below shows the probability mass function, specifically the possible values of the random variable and their probabilities.

Probability Mass Function for a Binomial (n=40, pi) distribution with different values of pi
x pi.eq.25 pi.eq.5 pi.eq.65 pi.eq.75 pi.eq.9
0 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000
2 0.001 0.000 0.000 0.000 0.000
3 0.004 0.000 0.000 0.000 0.000
4 0.011 0.000 0.000 0.000 0.000
5 0.027 0.000 0.000 0.000 0.000
6 0.053 0.000 0.000 0.000 0.000
7 0.086 0.000 0.000 0.000 0.000
8 0.118 0.000 0.000 0.000 0.000
9 0.140 0.000 0.000 0.000 0.000
10 0.144 0.001 0.000 0.000 0.000
11 0.131 0.002 0.000 0.000 0.000
12 0.106 0.005 0.000 0.000 0.000
13 0.076 0.011 0.000 0.000 0.000
14 0.049 0.021 0.000 0.000 0.000
15 0.028 0.037 0.000 0.000 0.000
16 0.015 0.057 0.001 0.000 0.000
17 0.007 0.081 0.002 0.000 0.000
18 0.003 0.103 0.005 0.000 0.000
19 0.001 0.119 0.010 0.000 0.000
20 0.000 0.125 0.019 0.000 0.000
21 0.000 0.119 0.034 0.001 0.000
22 0.000 0.103 0.054 0.003 0.000
23 0.000 0.081 0.078 0.007 0.000
24 0.000 0.057 0.103 0.015 0.000
25 0.000 0.037 0.123 0.028 0.000
26 0.000 0.021 0.131 0.049 0.000
27 0.000 0.011 0.126 0.076 0.000
28 0.000 0.005 0.109 0.106 0.000
29 0.000 0.002 0.084 0.131 0.001
30 0.000 0.001 0.057 0.144 0.004
31 0.000 0.000 0.034 0.140 0.010
32 0.000 0.000 0.018 0.118 0.026
33 0.000 0.000 0.008 0.086 0.058
34 0.000 0.000 0.003 0.053 0.107
35 0.000 0.000 0.001 0.027 0.165
36 0.000 0.000 0.000 0.011 0.206
37 0.000 0.000 0.000 0.004 0.200
38 0.000 0.000 0.000 0.001 0.142
39 0.000 0.000 0.000 0.000 0.066
40 0.000 0.000 0.000 0.000 0.015

2.1.1 Graphs

Probability Mass Function for Binomial(n=40, pi) and pi betwen 0.25 and 0.9

Probability Mass Function for Binomial(n=40, pi) and pi betwen 0.25 and 0.9

2.2 Cumulative Distribution Function

Here we consider a random variable, X, with a Binomial (n=40, \(\pi\)) distrbiution. The table below shows the cumulative distribution function, specifically, x, the possible values of the random variable and \(P(X \leq x)\).

Cumulative Function for a Binomial (n=40, pi) distribution with different values of pi
x pi.eq.25 pi.eq.5 pi.eq.65 pi.eq.75 pi.eq.9
0 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000
2 0.001 0.000 0.000 0.000 0.000
3 0.005 0.000 0.000 0.000 0.000
4 0.016 0.000 0.000 0.000 0.000
5 0.043 0.000 0.000 0.000 0.000
6 0.096 0.000 0.000 0.000 0.000
7 0.182 0.000 0.000 0.000 0.000
8 0.300 0.000 0.000 0.000 0.000
9 0.440 0.000 0.000 0.000 0.000
10 0.584 0.001 0.000 0.000 0.000
11 0.715 0.003 0.000 0.000 0.000
12 0.821 0.008 0.000 0.000 0.000
13 0.897 0.019 0.000 0.000 0.000
14 0.946 0.040 0.000 0.000 0.000
15 0.974 0.077 0.000 0.000 0.000
16 0.988 0.134 0.000 0.001 0.000
17 0.995 0.215 0.000 0.003 0.000
18 0.998 0.318 0.000 0.008 0.000
19 0.999 0.437 0.000 0.017 0.000
20 1.000 0.563 0.001 0.036 0.000
21 1.000 0.682 0.002 0.070 0.000
22 1.000 0.785 0.005 0.124 0.000
23 1.000 0.866 0.012 0.202 0.000
24 1.000 0.923 0.026 0.305 0.000
25 1.000 0.960 0.054 0.428 0.000
26 1.000 0.981 0.103 0.559 0.000
27 1.000 0.992 0.179 0.686 0.000
28 1.000 0.997 0.285 0.795 0.000
29 1.000 0.999 0.416 0.879 0.001
30 1.000 1.000 0.560 0.936 0.005
31 1.000 1.000 0.700 0.970 0.015
32 1.000 1.000 0.818 0.988 0.042
33 1.000 1.000 0.904 0.996 0.100
34 1.000 1.000 0.957 0.999 0.206
35 1.000 1.000 0.984 1.000 0.371
36 1.000 1.000 0.995 1.000 0.577
37 1.000 1.000 0.999 1.000 0.777
38 1.000 1.000 1.000 1.000 0.920
39 1.000 1.000 1.000 1.000 0.985
40 1.000 1.000 1.000 1.000 1.000

2.3 Binomial Distribution: One Minus Cumulative Distribution Functrion

Here we consider a random variable, X, with a Binomial (n=40, \(\pi\)) distrbiution. The table below shows one minus the cumulative distribution function, specifically, \(P(X > x)=P(X\geq x+1)\). For example when \(\pi=.25\), \(P(X \geq 6)=0.957\)

One Minus Cumulative Distribution Function for a Binomial (n=40, pi) distribution with different values of pi
x pi.eq.25 pi.eq.5 pi.eq.65 pi.eq.75 pi.eq.9
0 1.000 1.000 1.000 1.000 1.000
1 1.000 1.000 1.000 1.000 1.000
2 0.999 1.000 1.000 1.000 1.000
3 0.995 1.000 1.000 1.000 1.000
4 0.984 1.000 1.000 1.000 1.000
5 0.957 1.000 1.000 1.000 1.000
6 0.904 1.000 1.000 1.000 1.000
7 0.818 1.000 1.000 1.000 1.000
8 0.700 1.000 1.000 1.000 1.000
9 0.560 1.000 1.000 1.000 1.000
10 0.416 0.999 1.000 1.000 1.000
11 0.285 0.997 1.000 1.000 1.000
12 0.179 0.992 1.000 1.000 1.000
13 0.103 0.981 1.000 1.000 1.000
14 0.054 0.960 1.000 1.000 1.000
15 0.026 0.923 1.000 1.000 1.000
16 0.012 0.866 0.999 1.000 1.000
17 0.005 0.785 0.997 1.000 1.000
18 0.002 0.682 0.992 1.000 1.000
19 0.001 0.563 0.983 1.000 1.000
20 0.000 0.437 0.964 0.999 1.000
21 0.000 0.318 0.930 0.998 1.000
22 0.000 0.215 0.876 0.995 1.000
23 0.000 0.134 0.798 0.988 1.000
24 0.000 0.077 0.695 0.974 1.000
25 0.000 0.040 0.572 0.946 1.000
26 0.000 0.019 0.441 0.897 1.000
27 0.000 0.008 0.314 0.821 1.000
28 0.000 0.003 0.205 0.715 1.000
29 0.000 0.001 0.121 0.584 0.999
30 0.000 0.000 0.064 0.440 0.995
31 0.000 0.000 0.030 0.300 0.985
32 0.000 0.000 0.012 0.182 0.958
33 0.000 0.000 0.004 0.096 0.900
34 0.000 0.000 0.001 0.043 0.794
35 0.000 0.000 0.000 0.016 0.629
36 0.000 0.000 0.000 0.005 0.423
37 0.000 0.000 0.000 0.001 0.223
38 0.000 0.000 0.000 0.000 0.080
39 0.000 0.000 0.000 0.000 0.015
40 0.000 0.000 0.000 0.000 0.000

3 Binomial (n=8, \(\pi\)) Distribution

3.1 Probability Mass Function

Here we consider a random variable, X, with a Binomial (n=8, \(\pi\)) distrbiution. The table below shows the probability mass function, specifically the possible values of the random variable and their probabilities.

Probability Mass Function for a Binomial (n=8, pi) distribution with different values of pi
x pi.eq.25 pi.eq.5 pi.eq.75 pi.eq.9
0 0.100 0.004 0.000 0.000
1 0.267 0.031 0.000 0.000
2 0.311 0.109 0.004 0.000
3 0.208 0.219 0.023 0.000
4 0.087 0.273 0.087 0.005
5 0.023 0.219 0.208 0.033
6 0.004 0.109 0.311 0.149
7 0.000 0.031 0.267 0.383
8 0.000 0.004 0.100 0.430

3.1.1 Graphs

Probability Mass Function for Binomial(n=8, pi) and pi betwen 0.25 and 0.9

Probability Mass Function for Binomial(n=8, pi) and pi betwen 0.25 and 0.9